INVERSE PROBLEM FOR EULER-POISSON-DARBOUX
ABSTRACT DIFFERENTIAL EQUATION
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ABSTRACT. For the nonhomogeneous FEuler—Poisson-Darboux equation in a Banach space, we consider
the problem of determination of a parameter on the right-hand side of the equation by the excessive final
condition. This problem can be reduced to the inversion of some operator represented in a suitable form and
related to the operator solving the Cauchy problem for the homogeneous Euler—Poisson-Darboux equation.
As the final result, we show that the solvability of the problem considered depends on the distribution of
zeroes of some analytic function. In addition, we give a simple sufficient condition ensuring the unique
solvability of the problem.

Let E be a Banach space, A be a closed linear operator in ' whose domain D(A) is dense in F, and
t1 > 0. We seek a function u(t) € C?([0,t1], E) with values from D(A) for ¢ € [0,t1] and a parameter
p € IV satistying the relations

u(t) + %u’(t) = Au(t) + f(t) +p, 0<t<ty, (1.1)
w(0) = ug, ¥'(0) =0, wu(ty) = u1, (1.2)
where k € (0,2], ug, u; € D(A). As for f(t), we suppose that the following condition holds.
Condition 1.1. The function f(t) takes values from D(A) and belongs to C(|0, t1], E) together with Af(t).

Taking into account the final condition w(t;) = u; in (1.2), we call problem (1.1), (1.2) the inverse
problem for the abstract Fuler—Poisson—Darbouz equalion or the problem of determinalion of a parameter.
Problems of this kind relate to the theory of ill-posed problems.

The inverse problem for the equation

u (1) = Au(t) + f() +p (1.3)

with » = 1 or n = 2 under various restrictions for the operator A was considered by many authors.
The survey can be found in [11]. In that paper, it was also shown that the uniqueness in the inverse
problem for Eq. (1.3) depends (for any n € N) only on the location of eigenvalues of the operator A on
the complex plane and is related to the distribution of zeroes of a function of the Mittag—Lefller type,
while the solvability is much more delicate.

Problems of form (1.1), (1.2) with bounded operators A were studied in [8]. It was proved there that
problem (1.1), (1.2) with a bounded operator A has a unique solution if and only if the inequality

% (oFi(k/2 +1/2;852/4) — 1) £0, 2z € a(A),

[ee) T J
holds on the spectrum o(A) of the operator A, where oFy(a;z) = > %, while I'(:) denotes the
J=0 :

gamma-function.

In the present paper, we establish conditions of the unique solvability of problem (1.1), (1.2) in the
case of an unbounded operator A. First let us describe the set of admissible operators A.

By G, k > 0, denote the set of all operators A such that the direct Cauchy problem

w’(t) + %w'(t) = Aw(t), w(0) =wo, w'(0)=0 (1.4)



is uniformly well defined; the corresponding solving operator to (1.4) (the Bessel operator-function (BOF'))
is denoted by Yg(t). Thus, if A € G, then (1.4) has a unique solution depending continuously on the
initial data. Moreover, w(t) = Yi(t)wo and

IVe@®)|| < Me**, M >1, w>0. (1.5)
A criterion of the uniform well-posedness of problem (1.4) and properties of the BOF Y, (t) are given
in [3|. In particular, it is proved in [3]| that

(1) if A € G, and m > k, then A € Gyy;
(2) if A € Gy and Re\ > w, then A\? is a regular point for A, i.e., there exists a bounded inverse

operator R(A\?) = (N1 — A)_l and

M()T(k/241)
(Re X —w)ltk/2”
To study problem (1.1), (1.2), we need the BOFs Y;(t) and Ya_g(t). Thus, we impose the following

restrictions on A.

Condition 1.2. Ifk € (0,1], then A € Gy; if k € (1,2), then A € Gao_y; finally, if k = 2, then A € Gy,
where Gy is the set of generators of cosine operator-functions C(t, A).

HAl—WR(A?)H < (1.6)

If k € (0,1) U (1,2] and Conditions 1.1 and 1.2 are fulfilled, then problem (1.1), (1.2) is equivalent
(see [4]) to the problem of finding a function u(t) and a parameter p satisfying the relations

u(®) = Yilthuo + 1= { £7Yarklt) [ PV dr = Yi0) [ Yol s
0 0
1 1-k / k /
+—— [ 7 Yor(t) | TFYR(T)pdT = Yi(t) | Yo p(T)pdr |, (1.7)
u(ty) = ug.

It follows from these relations that problem (1.1), (1.2) is uniquely solvable if and only if the equation
Byp = ¢ is uniquely solvable for all ¢ € D(A), where

Byp = —— / (Yoo k(0)Yi()p — TYi(t)Vaok(7)p) . (1.8)
0

In other words, we must determine whether the point A = 0 is a resolvent point of the operator By or
not. Expression (1.8) seems to be useless for this purpose; therefore, the main part of the present paper
is devoted to obtaining a more convenient representation.

Theorem 1.1. Let x € D(A), k € (0;1)U (1;2), and Condition 1.2 be fulfilled. Then the operator By
defined by (1.8) can be represented as

oo+ico
1 1
B = — / 1 OFu(k/2+1/2,600%/4) = 1) ROH)adA, 00 >w > 0. (1.9)
og—100

Proof. Tt follows from [3] that under the restrictions imposed on the operator A, one has
2R22D(k /2 4 1)2

o1+i00
Yi(t) = k212 ) / AE=R2L 0 p(VROZ) AN, o1 > w, (1.10)

01—100



1/2—k/2 9 9 ot o0
Y2 k( ) 2 lﬂ_trlfg/k/g k/ ) / £<1+k>/2[1/2—k/2(t£)R(£2) d£7 o9 > W, (111)
09 —100
for the BOFs Yi(t) and Ya_g(t), where I,(z) is the modified Bessel function.
Transform each term in (1.8) separately, using representations (1.10) and (1.11).
Let x € D(A), w <Repu < g2 < oy, and p? be a regular point for the operator A. Then x = R(u?)y,
y € E. Therefore, applying the Hilbert identity

(1 = N*)R(1*)R(N?) = R(\?) — R(1*) (1.12)

and representation (1.10), we get

[ 2120 (/2 4 1/2) | e e RO2)y
/ Yi(r)adr = g / / [ARV2NS2=R2 1/2(”) —gdAdr
0 0 o1—i00
o1t+ico
C2RRrR2 b1y [ R
;’:/ +1/2) / / k/241/2)8/2— k/2I/ 12 (7_)\) (2 ))\y2 dhdr. (1.13)
0 o1—ic0
Taking into account the integral representation
2! /
_VZV
I(z) = —/(1 — s 2coshzs ds, |arg 2| <m, Rev>—1/2, (1.14)
I'(v+1/2
VA 172 )
for the modified Bessel function and the estimate
t1 oo 1 2
k/2 1 :t<0'1+l,0)7'8(0-1+7/p)R((0-1 +7/p) )yH dS dp dT
) ) p? — (o1 +ip)?
MRID(k/2 4 1) o] | RO gy ipl
(o1 = k/2+1 |M o T )7 ds dpdr <oo, 0<k<2,

valid by virtue of (1.6), we change the integration order in the first term on the right-hand side of (1.13).
Using [10, 1.11.1.5], we get

t1 o1+i00

k/2—1/2
2 I(k/2+1/2) / / k/241/2)3/2— k/2lk/2 1/2(7_)\) R(\?)y A\ dr
i — A2
0 o1—ic0
2k/2 1/2tk/2+1/2 T(k 2+1 2 o1t R )\2
o1 —100

To change the second term in (1.13), use the equality

1 o1tico )\1—1/

ﬁ / Iy(tl)\))\ )\2 d\ = )\ VI (tl)\O) 14+v> |I/| , 01>Re Ag > 0, (1.16)

01 —100

following from the properties of the Meyer transform [1, formula 10.1.1]. We have



t1 o1tico

- R
Dlbfz+1/2) [ [ AR, )] B 3 ar

ok/2—1/2

s

0 o1—ic0
=R 2R )R (R /2 4 1) 2) Do o (i) R(uP)y. - (117)
Since y = (u?I — A)x, it follows from (1.15)—(1.17) that

t1 1+i00

ok/2=1/28 22 (9 4 1/2) © -
/Tkyk(T)LE dr = 1 — (h/2 1 1/2) / SR (VRGP
0 o1—100
R()\Q) 27 _ A\gd 4 2k/2=1/2 k/241/2D(1 /9 1 1/2) ]
* it — Awdht (t1/1) (k)2 + 1/2) T ol tap)e
o1t+ico
ok/2-1/2 !
- Ttlf/2+1/2f(k/2 +1/2) ( / )\1/2_k/2fk/2+1/2(t1)\)R()\2)5Ed)\
1—1%00
o1+100 d)\
x _
T / AL/2—k/2 Ik/2+1/2(t1)\)—_)\ ) + 22T (4 f PR (R 2 4 1/2) L g o (B )
01—100
o1t+ico
ok/2-1/2 ! ~
- Tt’f/2“/2r(k/2+1/2) / AR p(A RO dA. (1.18)
01 —100

Using (1.11), (1.18), and (1.12), rewrite the first term of (1.8) in the form

i1 o9+100 01+100

1 —k k 1/24+k/2y1/2—k/2
Tkt% Yg_k(tl)/T Yie(r)xdr = m / / gl/2tk/2)\1/2-k/ 1o kja(ti€)
0 09 —100 01 —100
(52) ; oatico g1+i00

02 —100 01 —100

R(\%)x
N2 — g2
The inner integral in the first term of (1.19) is calculated with the help of (1.16), while we change the

integration order in the second term. By (1.14) and the residue theorem, for the second term of (1.19),
we have

X Il/2+k/2(t1)\) drdé, o9 < oy. (1.19)

o9+100 01+i00

t R )\2
27 COS(17T]{]/2) / / EURRRNERL g g (1) Lo (tlﬁ) ( )52 d\ d€
09 —100 01 —100
' o1+i00 ; 0'2+ioo£ e—t185
S S 1/2—k/2 2) —k/2
3 cos(nk/2) / A Iy joyiy2 (B1A) RO o d)\/ e de
o1—t00 09 —100
02+ZO<>£ e—tlsf ; o1+i0
03—100 01—100



1
« /(1 _ 82)—k/2(6—t13>\ + e—t1$>\) ds — 0.
0

Hence,
1 i1 ; oo2+ico
Tkt%_ky2—k(tl)/7kyk(7)md7 = Wl(ﬂkﬂ) / Lok o () 1 ja a2 (W) R(ED 2 dE. (1.20)
0 09 —100

Thus, we obtain the desired representation for the first term of (1.8) and turn to the second term
of (1.8).

As before, let € D(A), v = R(u®)y, y € E, w < Rep < 03 < o1, and p? be a regular point of the
operator A. Applying the Hilbert identity (1.12) and equality (1.11), we have

7 21/2- k/2r(3/2 K2y F 00 R(¢?)
1—k /TE_k(T)wdT - im(l — / / 1/2+k/2£1/2+k/21/ k/2(7—£) £y2 dg dr
0 0 o9—ico
21/2 k/2F(3/2—k’/2 " 1/21k/2¢1/21k/2 R(p*)y
5 / / EUBIRL, _yalr) gl d dr. (121
0 o9—ico

As in (1.13), we can change the integration order in the first term of (1.21). Using [10, 1.11.1.5], we
get

oot+ico
21/2- k/?r(zs/z—k/z S RE2y
J2+k/2 0 1/24k/2
s / [ ()2 e
0 o9—ico
22k 3 k) T e RE)y
- — [ SVROGT o X
09 —100
g9+1ic0
2)
/ 5 y de (1:22)
-8
09 —100
To transform the second term of (1.21), we use (1.16) and get
“+i00
21/2- k/?r(zs/z—k/z S (i)
J2+k/2 0 1/24k/2
s / [ R () d
0 o9—ico
21/2—k/2t1/2+k/2’uk/2—3/2 ) ) )
L D(3/2 = k/2) Lo 1) RU)y + 1 2R(2)y. (1.23)

We will need the equality

oatioco
1 A~ 1=vdN 27V
— I, = )\_”_21,, t1ho) — —1,
p / N o N2 (t1ho) T4 7)

09 —100

24+v>|v|, og3>Rel >0, (1.24)

later on. It can be obtained from (1.16) and [1, 10.1.11]. Indeed,



oatioco oatioco oo2+ico

1 AT1vdN 1 A=V 1
— I, = (A — Lt )N 177d)\
in / (A7 SYERRTSY / (h )()\2 —A2)  inAZ / (B

72100 2100 02 —1%00
2—VtV
AoV L (Moth) — .
0 (Rot) NI(1+v)
Further, since y = (u?I — A)z, from (1.21)—(1.24) it follows that
1 a2+
1 21/2=k/24 ) PHRR (35 1 /9) iy R(¢?)
S — /2—1/2 Y
[ st dr = / Ay p(106) g ok €
0 09 —100
oatioco
/ 52 g — R(1?)y
T ) - k)
09 —100
ol/2—k/241/2Hk/2 k/2-3/21 (3 /9 _ L/
+ L /f—k B/ / )I—k/2—1/2(t1M)R(M2)y
ootioco
21/2—k/2t1/2+k/2 3/92 _k 2 72 1 ? R 52 T
- o / S R d - [ B ae 2s)
02 —100 09 —100

Using representations (1.10), (1.25), and the Hilbert identity (1.12), we can write the second term
of (1.8) in the form

t1 o1 +ic0 oa+ico

! ot 3/2—k/2 ¢k/2—1/2
: _kYk(tl)/TY2—k(T)LE dr = Gy / / A ¢ Tija1/2(tiA)
0 01 —100 0 —100
R()\?
Y 1/2(t1£)£( i > dE dA
' o1+ic0 oatico (52)
a 27rcos(17rk:/2) / / NIRRT 1/211’6/2 172 A g ja- 1/2(1515)£ 5 d& dA
01 —100 03 —100
o1+i00 o3+i00
R B o
— /2—k/24—1
mweos(mk/2)['(1/2 — k/2) / A § Iiya 1/2(t1)\)£ 5 d§ dA
01—100 03 —100
o1+ic0 oatico
i T ; HEr
/2—k/24—1 19
sk 2)T(1/2 — k/2) / A & iy 1/2(1M)£ — d¢ dX. (1.26)

01 —100 0 —100

2
Now let us transform the first term of (1.26). By the formula I,_1(z) — I, 41(2) = 71/[,,(2), repre-
sentation (1.14) for the Bessel function, and integral [9, 2.2.3.1], we have

o1 +100 oa+ioo

b k/2 ¢k
27 cos(mk/2) / NIRRT 1/211’6/2 12t k21 /2(018) 77—

01 —100 0 —100

R()\Q)

= d¢ dX
ZRp el



o1+100 0241400
/ NP L 1 () RO )a dA / & e k(M) s

o1—100 02 —100

1k
~ 2mcos(mk/2)

dg
£ — A

o1+i00 o200
A3/2_k/21k/2—1/2(t1)\)R()\2)LEd)\ / fk/Q 12 Lsj2pp2(18) 5 =3

o1 —100 09 —100

dg
£ — N

ty
+ 27 cos(mk /2)

o140

(L— k) 242732 A k/2 2 —k/2
et ] et RO /

o1—100

tlfsd£ —tlfsd£ (t1/2)5/2—k/2
( / §e-N) / (€ ) ot 73/2cos(mk/2)T(2 — k/2)

09 —100 09 —100

o1t+ico oatioco getﬁsdg 02+ioo£e—t1€3d£
X / AR 1IN R(N?) di/ yl=k/2 / B > ds

(€ - 22 (€2 =22
01—100 g9 —100 o9 —100

o1+1i00

(=R (/PR i / 3/2—k/2 / Lk (T
~ Jreos(nk/2)T(1 — k/2) A Tija-1/2(BA) ROz dA 2)\2 A2

01—100

o1+i00

e / AR () RO dA / )12

01—100

pt1As (t /2)5/2 k/2l7r

2N ) A8 = (k2T 2

o1+100
)\_1/2_k/2fk/2—1/2(t1)\)R()\2)$

01—100

_1/2,—1/2—k/2
(k:—l)2k/2 1/2151 /2—k/
Val(1 — k/2)

% (e—t1>\8 o e—t1>\3) ds —

1 o1t+ico

k—1 ok/2—1/2 1/2 k/2’i7T el

x/ 472 g g — ¢ )F(3/2 —k1/2) / ATVEERR L e (N RO dA. (1.27)
0

01 —100
The third term of (1.26) can be transformed with the help of the residue theorem. We have

o1+io0 oa+i00

(t1/2)1/2—k/2 R()\2)

8/2—k/2¢—1]
meos(nk/2)I'(1/2 —k/2) ) ' A § o 1/2(151)\)52 2 dé dA
01 —100 0 —100
o1+i00 ootico
(t1/2)1/2—k/2 / - , / |
N I o dE d)
meos(mk/2)L(1/2 — k/2) J A k/2—1/2(01A) RO\ e dé
017100 09 —100

(t1/2)Y/ 2K/ i 1/2—k/2 2
etk | N TR A (1.25)

01 —100

Change the integration order in the second and fourth terms of (1.26) and use integral (1.16). We get
o1+ic0 oatico
41
27 cos(mk/2)

01 —100 0 —100

2
NS/2RI2ER2A T o 1/2(t1£)£ (5) g dn



oatico

t
= Tremtryy) ] f O e pORE) wde, (129
o1 +ic0 oa+ico
(t1/2)1/2_k/2 3/2—k/2p—1 R(£2)£E
meos(nk/2)T(1/2 —k/2) ] | A § Ik/2—1/2(t1)\)£2_—)\2 d¢ d\
o2+ico

= (t1/2)1/2_k/2 —1/2—k/2 2
~icos(nk/2)I(1/2 — k/2) / ¢ Lij2—1/2(iE) R(ED ) dE. (1.30)

09 —100
Thus, taking into account formulas (1.26)—(1.30), we come to the following representation for the second
term of (1.8):

i1 o1+i00
1 t1 2
1 _kYk(tl)/TY2—k(T)$ dr = I cos(xk/2) / Lijo—1/2(1N) I_gja—1/2(11§) R(A%)x dA
0 01—100
o1t+ico
1 — k) (4 /2)Y/2 k2D (k2 4 1/2)
o ( )( 1/ ) g ( / / ) / )\_<1/2+k/2)Ik/2_1/2(t1)\)R()\2)$ dA. (131)

o1—100

Using (1.20) and (1.31) in (1.8), we get

o1+i00
31
By = Tcos(rh )i | (1 jo—kj2 (1N T joi 2 (i N) = T o1 j2 (BN 1 jo g2 (11 X)) RO dA
o1 —100
Dlk/2 1 1/2)(0/22 2 7 1T
+ o / AR o 1 (N ROz d.
o1—100
2
Application of the formula I, (z)I1_,(2) — [_,(2),—1(z) = —— sinvr (see [13, 3.7.3]) yields
1 01+io<>1
Brr = — / 3 (F(k:/z F1/2) (N 2)Y2 R L s (i N) — 1) R(A?) 2 d\
o1—100
1 01+z’o<>1
== / T (0P (/2 +1/2:8X2/4) 1) ROZ) @ dA.
01—100
Theorem 1.1 is proved. (|

To change the integration order in the first term of (1.13), we had to assume that 0 < k < 2. Show
now that representation (1.9) remains valid in the case k = 2.

Theorem 1.2. Let x € D(A), k = 2, and Condition 1.2 be fulfilled. Then the operator Be defined by (1.8)

can be represented as
1 00+z’o<>1
Byr= — / 5 (0F1(3/2; £832/4) = 1) ROz dA (1.32)

oo—100



Proof. In the case considered, equality (1.8) takes the form
t1 t1
1 1
Bor = = [ 7(C()S(1) — S wdr = / 7Sty — Py dr.
1 1
0 0

As is known from [12], for S(¢), one has

oo+ioco
St — —— / MRz d), @€ DA).
271
00—100
Therefore,
1 t1 oggt+ico
= , 7T ROz dA dr. (1.33)
271t
0 og—ico

Let © € D(A), w < Rep < 09, and p? be a regular point of the operator A. Then x = R(u?)y, y € E.
Applying the Hilbert identity (1.12) in (1.33), we have

t1 og+ico t1 oo+ico

A )y 1)y
t1 T _ t1 T 134
Ty / / AL Uy / / e Wdr o (134)

0 og—ico 0 og—ico

Transform each term of (1.34) separately. As in the proof of Theorem 1.1, we just interchange the
integration order in the first term of (1.34). So,

1 t1 ogtico R()\ ) oo+ico
)\(tl—T) Y 2
on m/ / Te e M=o m / NGz =y Ay dA
0 og—ico op—100
cotico 1 ago+1 R()\2)
Y
d)\ — ——dA. (1.35
2mi / Ap? = N2y 27t1d / A2(p? — \?2) (1:85)
o9—100 Tgo—100

Calculating the second term of (1.34) by means of residues, we get

t1 ogtico ) 1 t1 00+z’ooe>\<t1_7_)
At1=7) Y R(u2 _ind
271'1511/ / — )2 dA dr 27Tt1 /T ('u )y / /ﬂ — )2 7
0 og—ioco 0 o9—100
ru2y [ / inh(yut1)
Ay —u(t1=7) g _/ p(t1=7) g :iR 2y, Sh(pty R(12 1.36
o / re e [t | < ity — SR . (130

Using (1.35) and (1.36) in (1.34), we have

ootico
1 0/ MRy dA 1 ROy dr
BQLE =

27ty X2 (2 — N2 2mi A2 = \2)

o0—100 g0—100

/ )\2 ydA _iR(/ﬁ)y+MR(u2)y- (1.37)

o tlz tip?

Tgg—100

Since y = (u2I — A)z, it follows from (1.37) that



1 UOHOOe’\tl 5 x e eMidA 1 UOHOOR()@):E
Boxr = R\ dA\+—— — dA
2 ort e di5 o / N2 — N2 2ty / N2
og—100 oo—100 oo—100
oo+ioco oo+ico oo+ico
1 / R(\)x FIN / d\ oz / d\
2mi ) A 2rtyd ) NP =A%) 2mi ) AMp? - A2
op—100 o9—100 o9—100
cotico
z sinh(ut)e 1 0/ (M — 1A —1) ROz dA
/ﬂ tLUS n 27Tt1i ' )\2
og—100
opt+ioco oo+ioco
1 (M —e=M—200) 1 1 /sinh{y 5
= = — - —1
e / - RO)wdr = — / : ( - ) RO\)z dA
o9 —100 o9—100
1 00+io<>1
— o [ GRGE AR /) - RO
im A
oo—100
here we used the obvious equalities
go+ico 0p+ico
e M RO adA [ RO zd)
o ) T 0
oo—100 oo—100
and the equality
" RO2) 2 dA
R wdr (1.38)
A
oo—100

valid by virtue of [6, Theorem 6.3.1]. Note that integral (1.38) in representation (1.9) guarantees the

1
analyticity of the function 3 (oF1(k/2 +1/2; t32?/4) — 1) . The theorem is proved. O

Remark 1.1. Similarly to Theorem 1.2, it can be proved that representation (1.9) for problem (1.1), (1.2)
remains valid in the case where k = 0, A € GGy, and

ty ootico
Boyx = /S(t1 —s)xds = % / % (e”l - 1) R(A?) 2 d\
0 og—100
oo+ico
~ % / % (0F1(1/2:12A2/4) —1) R(A?) 2 dA
og—100
for x € D(A).

Finally, consider problem (1.1), (1.2) for k = 1. In this case, equality (1.7) should be replaced (see [4])
by the relation

wwm@w+/ﬂawmw—m@awmvwh+/ﬂawmw—m@awMMn
0 0

where



— Yo (1)) @ — 2102 Yi(t)

1
/ (1 -8 —2 In (t(1 — s2)) Yo(ts)z ds, x € D(A), (1.39)

0

1
Zi(Dx = lim ——— (Y,
(B = lim — (Y(2)

>1|w

and the operator B; is defined by
t1
Blp: T(Zl(tl)H(T) —H(tl)Zl(T))pdT. (1.40)
0
Theorem 1.3. Let x € D(A), k = 1, and Condition 1.2 be fulfilled. Then the operator By defined

by (1.40) can be represented as
oo+ico

~ / - (0F1(1;t1A%/4) = 1) ROz dA, 09 > w > 0. (1.41)

BliE =
Zﬂ'
o9 —100

Proof. Since representation (1.39) holds for Z;(t)x and lim1 Y (t) x = Y1(t)  uniformly over ¢ € [0, #1]
m—

(see |2, 7]), relation (1.40) takes the form
t1 t1

(Y (1) / Yi()adr — Y (t) / Yi(Padr — Yi(h) / Yoz dr
0 0 0

+Y1(t1)/7'2_mY2_m(T):E dr) . (1.42)

0

1
Biz = lim ——
L mH—>n1m—1

As in the proof of Theorem 1.1, we establish the following relations

ty

Yin(t1) / Yi(r)e dr
0 3/2—k/2 o1 ieo
2(2t1) F(m/2 + 1/2) / )\1/2_m/2Im/2_1/2(t1)\) x Il(tl)\)R()\2)$ dA, (143)

I

o1—100

t1

1Y) / Yy dr
B e Y S ¥ W i
_ e (3/2 = k/2) / N2V2L 0 n(A) x (A ROz dA,  (1.44)

I

01—100

7 2(t1/2)2/2 /2D (m /2 + 1/2)

Yi(ty) /TYm(T):E dr = p
0 o1+100 1 01+io<>1
m —_
/ AL s s (N To( N RO d + — / XIO(tl)\)R()\Q)w A, (1.45)

01—100

01 —100



t1

Yi(t) / 2my, (P dr

° (2132232 — ko) 1
- — / NP2 () X To( ) BO)a dA. (1.46)

01—100

Using (1.43)—(1.46) in relation (1.42), we obtain the following representation:

cotico
Lo 12(LiA) — 11 ja_pmya(ti A
Bro — h / (Il(tl)\) gy L2 1/2(t1A) = L1 jo—m 2 (t1A)
(% m—1 m—1
00—100
I BN =T (10) LT
. 3/2—m/2\l1A) — Lyya—1/2(01 2 2
I 1 — —I .
+ Ip(t1A) mlI_)Il1 — > R(A)xdX + P / \ o(tiA) R(A*)x dA
o1—100
Taking into account the representation
Ko(2) = = lim M
2 von sin v
for the MacDonald function of integer index and the formula
1
L(2)Kyy1(2) + L1 (2) Ku(2) = P
(see |6, 3.71.20]), we finally get the relation
y o1t+ico 1
Bix — # / (tl—)\lo(tl)\) — L(t N Ko(t \) — Io(tlA)Kl(tlA)> RNz d)
01 —100
01+io<>1 1 01+z’o<>1
—— z _ 2 _ 2+ L 242 74\ _ 2
= [ S o))~ D) ROy = — / = (R (1, BX/4) — 1) ROz dA
o1—100 o1—100
The theorem is proved. |

Remark 1.2. If A is a bounded operator, then the operator By defined by (1.8) for k € [0, 1) U (1, 2]
and by (1.40) for k = 1 has the representation (see [8])

1 1
Bkgg:ﬁ /;(OFl(k:/2+1/2; t1z/4) — 1) R(z)x dz, x ek,
5

where 7 is a contour enveloping the spectrum o(A) of the operator A. Thus, if we introduce the function
1
XN = (oF1(k/2 +1/2; t]A/4) — 1)

important in the study of the solvability to the inverse problem (1.1), (1.2), then we have By = xx(A) in
the case considered.

Remark 1.3. We restrict ourselves to k € [0, 2] because, in general, the BOF Y5_(¢) is no longer a
bounded operator for k > 2 (see [4]), and we should impose some additional restrictions on ug, 4, and
f(t) to prove the theorems in that case.

Establish a necessary condition for the uniqueness of the solution to problem (1.1), (1.2).



Theorem 1.4. Let k>0 and A be a closed linear operator in E. Suppose that the inverse problem (1.1), (1.2)
has a solution (u(t),p). If this solution is unique, then no zeroes A\; of the entire function xx(\) are eigen-
values of the operator A.

Proof. For A € C, the function 6(t) = %1 (0F1(k/2+1/2;t*A/4) — 1) is a solution to the scalar problem
k
0" (t) + ?9’(75) = M) +t1, 6(0) =¢(0) =
Assume the contrary, i.e., some zero A; from the countable set of zeroes of the entire function yx(A) is

an eigenvalue of A and h; # 0 is a corresponding eigenvector. Then the pair u;(t) = 0x,(t)h;, p = t1h;
is a nontrivial solution of the homogeneous inverse problem

u”(t) + %u'(t) = Au(t) +p, u(0) = (0) =u(t;) =0,

which is a contradiction to the uniqueness of the solution of problem (1.1), (1.2). The theorem is proved.
O

Note that for k = 0, the absence of zeroes of xo(\) in the spectrum of the unbounded operator
A is also sufficient (see [11]) for the uniqueness of the solution, but, as was shown in [5], it is not
sufficient for the unique solvability of problem (1.1), (1.2). Thus, in order to obtain sufficient conditions
for the unique solvability of problem (1.1}, (1.2), one has to impose additional assumptions on A, ug, uq,
and f(t). The representation of the operator By (see Remark 1.1) and the fact that zeroes of xo(A) can
be written out explicitly, \; = — (27rj/t1)2, j =1,2,..., are found to be very important here. So, for
further investigations in the case where £ > 0, we need to know the distribution of zeroes of the entire
function yr(A).

Now we pass to a sufficient condition of the unique solvability of problem (1.1), (1.2), starting with the
spectral properties of the BOF Y (t).

Theorem 1.5. Suppose that k > 0 and A € Gx. Then the following inclusion holds for the spectra of the
operators A and Yi(t):
oF1(k/2 +1/2; 2 0(A)/4) C o(Yi(D)). (1.47)

Proof. Let A\ € oF1(k/2+1/2; t? 0(A)/4), i.e., there exists u € o(A) such that A = oy (k/2+1/2; t2 1/4).
Verify that A € o(Yy(t)). Assuming that A € p(Y(t)), show that p € p(A).
The direct checking yields

tT

k/2 Yar /sinh(\/ﬁ(tr —5))Yo(s)xds

0
= oF1(k/2 4 1/2; t* p/Dx — Yi()z, x € D(A), (1.48)

1
2
VIB(k/2,1/2) (il = AO/

where

1
d d 2s

Yolso = 75 (s Yals) o) = 72 B(k:/2+1/2,1—k;/2)0/<1 &) kv (s de

Since D(A) is dense in F, it follows from (1.48) (after the integration by parts) that

tT

1

2 k/2 o

Bk/2.1/2) (nl—A) / dr /3 cosh(y/u(tr — s)) Ya(s)xds = x — Yi(t)x, xe€FE,
0 0

which implies that 1 € p(A). This contradiction concludes the proof. Note that for k& = 0, inclusion (1.47)
was established in [12]. O



Theorem 1.6. Let k € [0, 2|, the operator A obey Condition 1.2, and the BOF Yy (t) be such that
[Ye(t)|l < 1. (1.49)

If up, w1 € D(A) and f(t) obeys Condition 1.1, then problem (1.1), (1.2) has a unique solution (u(t),p)
and the following estimates hold:

ol < Mo (ol + ol + s 1501 (1.50)
<
1o < 800 (ol + ol + B ol + 4+ o 17O+ oo A7) (1)

Proof. By virtue of inequality (1.49), the spectrum o(Y%(t1)) of the operator Yj(t1) lies inside the disk
|A| < o < 1, while inclusion (1.47) from Theorem 1.5 implies that A = 0 does not belong to the spectrum
of the operator A. Hence, there exists the bounded inverse A~! defined on the whole space E. Let p € E
and k # 1. From (1.8), after obvious transformations, we get

t1
1
Bip = / (ti—kr%_k(tl)yk(r)p — TYi(h)Yak(r)p) A AT dr
0

t1

—ky, (t1)
- 4 Yanith) / )+ ErIY)) A pdr
0
() f - kY (1) f
= (VL) 4 V() 1 (= DY) A pdr — D) el / (7¥in)) A par
0 0
Yt) [ ' ¢
=W [ (vt ) A pdr =it [ Yim) A7pdr - (1 N ()Yt
0 0
t
- T Vet — Vara i) + Vi) ) A7, (152)
Using the equality
k—1
Yo (t1)Yy(t1) — Ya(t1)Ya_i(t1) = o (I = Yo (t1)Y(t1)) (1.53)
proved in [4] in the process of solving the nonhomogeneous Euler—Poisson—Darboux equation, we get
Bp = (Ya(t) = 1) A7'p. (1.54)
Thus,
Bilg=AYi(t) —D7"g, g€ DA, (1.55)

and, therefore, problem (1.1), (1.2) is uniquely solvable.
Now prove estimates (1.50), (1.51).
By virtue of (1.7) and (1.55), the desired value of p from the equation Bip = ¢ is given by
t1
p=A(tr) = D)7 w1 = Yilt) uo — / (t%_ka%—k(tl)Yk(T) - TYk(tl)Y2—k(T)) f(r)ydr ). (1.56)
0
Since the function f(¢) obeys Condition 1.1 and the operator A is closed, it follows from (1.5) that

t1

A [ (B4 7Yems ()W) = 7Yi(0)Yausl)) £(7) d

0



< Ma(t) [ A7) dr < Mat) gmax 450, (157)

[ (B Yo tr) = mYie)Yeru(n) £ dr|| <Mo)L (159
0

Let A be a regular point of the operator A. Since the operator A (Yi(t1) — I)™' is closed, we see that
the operator A (Yi(t1) — )™ (AT — A)~! is also closed. Therefore, by the equality A (Vi(t) — 1)~
A(Ye(t)) = D™V ANT — A)7H(AT — A) and estimates (1.56), (1.57), and (1.58), we have

t1
Ipll < M [[((MN — A) | uy — Yil(t1) ug — / (ti—kr%_k(tl)yk( ) — 7Y (t1) Yo (T
0

0<t<ty

< Mj <Cl lutll + C2 |luoll + Cs max [ f(&)]| + Cal[Aur| + Cs || Aol + C6 Zax A f(t)

0<t<ty

< a0y (Joll + ]+ 4ol + ] + g 1701 + o 14 7 >||).

An estimate for u(t) containing all the terms from the right-hand side of (1.51) could be obtained on
the basis of (1.7) and (1.51). However, the more precise estimate (1.50) actually holds for u(t).
Representation (1.7) is valid for u(t). Therefore, taking (1.56) into account, we get

u(t) = YiOo + —— / R TYa (Vi) — TYVA()Yak(D)) F(7) d
+ / (ti—kfkyg_k(tl)yk(r) —Tyk(tl)yg_k(r)) A(Yi(t) — D7 dr (ug — Yai(ty) uo
0 t1
_ / (B4 Yamk(0)Yilm) — 7Yt Yorr()) f(r) dry |, (159)
0

Now let us prove the existence of a number M such that the estimate
t1

/ (U7 Yookt Yilr) = 7Y Yaok(7) ) A(Yit) = D)™ wdr | < M a] (1.60)
0
holds for any ¢ € [0, 1], x € D(A).
From (1.54), it follows that
51

BrA (Ye(t)) — )71 / (ti_kaYg_k(tl)Yk(T) - TYk(tl)Yg_k(T)) AY(t) =D adr = (1 — k).
0
This yields (1.60) by virtue of (1.5). Thus, the desired estimate for u(t) follows from (1.5), (1.56), (1.58),
(1.60), and (1.59) now.
The case k = 1 is analyzed analogously. We just note that the equality
1

M)Zit) — Zi(t)Y((t)) © = v

should be used instead of (1.53). The theorem is proved.
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