Acoustic and filtration properties of a thermoelastic porous
medium: Biot’s equations of thermo-poroelasticity

A.M. Meirmanov

Abstract. A linear system of differential equations describing the joint
motion of a thermoelastic porous body and an incompressible thermofluid
occupying a porous space is considered. Although the problem is linear, it
is very hard to tackle due to the fact that its main differential equations
involve non-smooth rapidly oscillating coefficients, inside the differentia-
tial operators. A rigorous substantiation based on Nguetseng’s two-scale
convergence method is carried out for the procedure of the derivation
of homogenized equations (not containing rapidly oscillating coefficients),
which for different combinations of the physical parameters can represent
Biot’s system of equations of thermo-poroelasticity, the system consisting of
Lamé’s non-isotropic equations of thermoelasticity for the solid component
and the acoustic equations for the fluid component of a two-temperature
two-velocity continuum, or Lame’s non-isotropic thermoelastic system for
a two-temperature one-velocity continuum.
Bibliography: 16 titles.

Introduction

In this paper we consider the problem of a joint motion of a thermoelastic
deformable solid (the thermoelastic skeleton) perforated by a system of channels
and pores and an incompressible thermofluid occupying the porous space. We refer
to this as the (NA) model. In dimensionless variables (without primes)

x' = Lx, t'=rt, w' = Lw, 0=i),—0
the differential equations of the model for small values of the dimensionless dis-

placement vector w and small deviations of the dimensionless temperature 0 in
a domain fl CK 3 have the following form:

divP+ pF, (0.1)
00 . d .
a'|—cp1r1n7 div(ovVal) —ag— divw + »* (0.2)
where the stress tensor of the continuous medium

P=xP/+ (I -x)Ps 0-3)
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coincides with the viscous stress tensor
P; = o"D "X, - (pf + a9fd)l (0.4)

in the fluid and the elastic stress tensor
Ps = a>B(x, w) —(—avdivw + aes9)l (0-5)

in the skeleton.  The pressure pf in the fluid can be found  from thecontinuity
equation
Pf + Xapdivw = 0. (0-6)

Here and throughout we use the notation

D(x,u) = ~(Vu+ (Vu)T).

P= XPf+ (1- x)Ps, ® = \Cpf+ (1 - x)cps,

ov = Xaxf + (1 —I")axsi cle = Xa9f + (1 —tyctes-

The characteristic function x(x) °f the porous space ilf C 0 is assumed to be
known.

For the derivation of (0.1)-(0.6) and the description of dimensionless constants
(which are all strictly positive) see [1].

We endow the model (NA) with homogeneous initial and boundary conditions

i <
s o, OJt=o0=o0, xefl, (0.7)
wlt=0=0" ~m t=0
w=0 0=0, x G5 =dill t~ 0. (0-8)

From the mathematical point of view the corresponding initial-boundary value
problem is well-posed in the following sense: it is uniquely soluble in a suitable
function space on any finite time interval (see [1]). However, this model is ineffi-
cient from the standpoint of possible applications, such as numerical calculations.
Therefore, the question of finding approximate models is of importance. If the
model involves a small parameter e, then the optimal approximations must have
limiting regimes that tend to the exact model as e approaches zero. A natural small
parameter in the model under consideration is the characteristic size I of the pores
divided by the characteristic size L of the domain:

|
"o

Such an approximation significantly simplifies the original problem and at the same
time preserves all its main features. However, even with a small parameter the
model (NA) remains rather complicated and some additional simplifying assump-
tions are required. In terms of the geometric properties of the medium the most
appropriate such simplification is to postulate that the porous structure is periodic.
In what follows we will call this ‘submodel’ of the model (NA) the model (NB)e.

Our main aim is to derivate limit regimes (homogenized equations) for the
model (NB)f.
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We make the following assumptions.

Assumption 1. The domain il = (0, 1)3 is a periodic repetition of an elementary
cell YE= eY, where Y = (0,1)3. The quantity 1/e is integer, so that il contains
an integer number of elementary cells. Let Ys be the ‘solid part’ of Y and assume
that the ‘fluid part’ Yf is its open complement. We also set 7 = dYf fl dYs. The
boundary 7 must be a C1-surface, the porous space il is the periodic repetition
of the elementary cell eY), the solid skeleton il£ is the periodic repetition of the
elementary cell eYs, and the C 1-boundary = dilEC\dilE is the periodic repetition
in il of the boundary e¥. The skeleton fis is a connected domain.

In these assumptions

X(x) = Xe(x) =
cp= 4(x) = XE(¥)cpf+ (1 - xe(x))cps,
P = PE(x) = XE(*)Pf + (1 - Xe(*))ps,
= 04 (x) = xe(x)axf + (I - xe(x))axs,

oe = al|(x) = xe(x)aef + (I - xe(x))a0s,

where x(y) is the characteristic function of Yf in Y.

We say that the porous space is disconnected (isolated pores) if 7 fldY = o0 .

In this paper we suppose that all the dimensionless parameters below depend on
the small parameter e and there exist (finite or infinite) limits

A — . _ . _ . -
GI){f]g:;l(e) po, él\rpocka(e) An, Ilma'IE'\(éeg to, J\l{gap(e) p*.

Moreover, we only consider the case when rn < 00 and
{tn= o, p* = 00, 0 < AN < 00.

If tg = 00, then we renormalize the displacement vector and the temperature by
setting
w —maTw, 0 —maT6

and reduce the problem to the previous case. The condition p* = 00 means that
the fluid under consideration is incompressible.

Using Nguetseng’s two-scale convergence method (see [2]) we shall show that,
depending on the relations between the dimensionless parameters of themodel
and the geometry of the elementary cells Ys and Yf, the limitregimes can be:
Biot’s system of equations of thermo-poroelasticity, the system consisting of Lamé’s
non-isotropic equations of thermoelasticity for the solid component and the acoustic
equations for the fluid component of a two-temperature two-velocity continuum, or
Lamé’ non-isotropic system for a two-temperature one-velocity continuum.

We now discuss the subject of this paper in greater detail. Since the differential
equations under consideration contain discontinuous coefficients inside differenti-
atial operators, the original system of equations reduces in a natural fashion to
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a system of integral identities with well-defined terms. The homogenization of this
system for a family of solution (we, OE) depending on a small parameter e reduces
to the following steps:
- picking a subsequence of solutions convergent ase \ 0 (and finding the limit
solution);
- finding a system of equations (the homogenized system) solved by the limit
solution.
For the first step we require bounds for solutions that are uniform in e. Finding
estimates for the solutions in the cases tg = 0 and p* = oo is non-trivial.

At the second step we must pass to the limit ase \ 0 in integrals in the situation
when some terms are products of several factors each of which converges only weakly
in L2(Qt )- It is at this point that we use Nguetseng’s method, which is popular in
homogenization theory (see, for instance, the survey [3] and Zhikov’s papers [4]—6]).
This method is fairly simple in concept, but the solution of the corresponding
microscopic equations on the elementary cell is technically complicated and requires
many calculations, which we shall normally leave out, presenting only the final
result.

We also point out an interesting fact: if the entire medium is incompressible from
the outset (the case when ap = av = oo or divw£ = 0), then the system of equation
splits: the heat equation can be solved independently of the dynamical equations.
But if this property holds asymptotically (p* = iJn = oo, where ijn = lim~n a?(e))-
then the system of equations remain coupled in the general case. Moreover, in
this case, as in the case of compressible media the homogenized equations contain
non-local expressions (functionals), which are not taken into account in standard
phenomenological models.

We point out that in this paper we only consider a small number of the possi-
ble limit cases (homogenized equations). Obviously, finding all possible consistent
mathematical models that give asymptotic approximations to the original com-
monly accepted model is an important and interesting problem, both from a math-
ematical and a practical standpoint. It is equally obvious that in the solution of
actual physical problems one does not resort to a limiting procedure. The researcher
has at his disposal only concrete physical constants (the density of the medium,
the viscosity of the fluid, the elastic constants of the solid skeleton, and so on) and
two variables: the characteristic size L of the domain under consideration and the
characteristic time r of the physical process. Changing these variables within the
application range of the mathematical model he can discover laws for the behaviour
of dimensionless complexes aT, a\, ..., which will suggest the choice of one or
other limit regime in the exact model. It is at this point that as complete a list
of homogenized equations as possible is required, because different limit regimes
correspond to different physical situations and it is virtually impossible to guess in
advance whether one situation or another is more likely.

Simpler models for isothermic media were considered in [7]—13].

§1. Formulation of the main results

As usual, equations (0.1), (0.2) are understood in the sense of distributions.
They involve equations (0.1), (0.2) in the proper sense, in the domains and il§,
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and also the boundary conditions

9 =o, [w] = o, X0€T, t>o, (1.1)
[Pen] = 0, [0£VO0-n]=0, X0€P, t~ O 1.2)

at the boundary where n is the unit normal to the boundary and

M (x0) = V(s)(x0) - v?(/)(x0),

Vis)(x0) = xlim, v?(x), tpU)(x0)= <p(x).
XEQ; XEQf

Condition (1.1) is a natural consequence of the definition of the solution class: we
seek solutions (the temperature 0 and the displacement w) with minimal continuity
properties. The first condition in (1.2) is a consequence of the momentum balance
at strong (contact) cracks and the second condition in (1.2) is a consequence of
energy conservation.

There exist various ways to represent equations (0.1), (0.2) and boundary condi-
tions (1.1), (1-2), which are equivalent in the sense of distributions. In what follows
it will be convenient to write them in the form of integral equalities.

Definition 1. A system of functions (WEOEpEqEp EqE) is called a generalized
solution in the model (NB)e if they satisfy the regularity conditions

we, VWE divweE, pE, pE gE, gr OE VOEGL2(ttT)

in the domain SV x (0, T), boundary conditions (0.8), the equations

=PE+ XeaefOe, (1-3)
— pf = -XEdivwE- — /3Ey (1.4)

ap J m
gE=re + {1- xe)ote,<f. (1.5)
ayPET -(1 -X e)divwe + /3e|1_— (1.6)

& N(vtreregd ity
(aTpEwEm - xfavP(x, wE) : D "x, - pEF mp

+ {(1 - XE)«aD(.t,we) - (gE+ )I} :D(x, ip)ddxdt = 0(1.7)

for all smooth vector-valued functions ip = ip(x,t) such that tp\dn= <pt_ T =
dip/dt\t T = 0, and the integral identity

J  MMaTOQQE+ agdivwe)™- — *VE + \fiEM dxdt =0 (1.8)

for all smooth functions £ = £(x,#) such that = £|t. T=o0.
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In the definition of a generalized solution we introduced new unknown functions
pE gEand gE which by analogy withp” we shall call pressures. In addition, we shall
call (1.4) and (1.6) the continuity equations and (1.3) and (1.5) the state equations
in the solid and fluid components, respectively. We introduced the normalization
term

so that

These conditions are necessary to ensure that the family of solutions pg pE qE
and gk is bounded uniformly in e in the L2(Qt) space.

In (1.7) we denote by A : B the convolution of two second-rank tensors with
respect to both indices, that is, A :B = tr(B* 0A) =

In addition to the assumptions we made in the introduction suppose that there
exist (finite or infinite) limits

lim av(e) = i]0. limaxs(e) xO0s, lim aef{s) = /30f,

In what follows we also make the following assumption.

Assumption 2. 1) The dimensionless parameters in the model (NB)e satisfy the
following restrictions:

M = 0; r0, x/, xos, Ay, Pos, An< 00;
ro+ Mi, xgs, Xf, A0, 7h> 0.

2) The functions |F|, \d¥/dt\, 'I', d'fy/dt belong to the space L2{QT).

Throughout what follows the parameters can take all the valuespermitted by the
assumptions made in the theorems. For example, if to= 0or r/Q1=0, then the terms
containing these parameters disappear from the equations.

The main results of this paper are Theorems 1 and 2.

Theorem 1. Under the above assumptions, for all t > 0, on an arbitrary time
interval [0, 5% Hre exists a unique generalized solution of the model (NB)E and

0<t<T
K@) +v/MV w2+ @2-")Vwe(i)l|jl2n < Co, (1.9
[[M|2,n T+ 7~ m A N 12" + |1 -x")W 1 20t < Cn, (1.10)
WA + \pE\+ m + \pE\AA < (L1d)

where the constant Co is independent of the small parameter e.
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Theorem 2. The functions w' and 9E admit, extensions u' and 0s, respectively,
from QET =QEXx (0,T) into the domain fix such that the sequences {ue} and {i%}
converge strongly in L2(Ht) and weakly in L2((0,T); W ~fi)) to the functions u
and $, respectively. At the same time the sequences {we}, {#e}, {P/}, {//},
{Pg} and {</f} converge weakly in L2(Ht) to w, 0, pf, gf, ps and g respectively.

0 If Hi = oo, then w = u, 9 = & and the functions u, $, pf, gf, ps and gs
satisfy the following initial-boundary value problem in </ :

@
- + V{qf +qgs) - pF

= div|AOAg : D(x, u) + Bg ~Adivu - + B{qfj, (1-12)
TOcp™ - div(Be-w ) - * -~ ~ = (/% - [Ds) , (1.13)

—ps + Cqg :D(x,u) + 1 —m + Og)divu

))70
= — On(™ - (tf)n) - 08(9/ - (g/)n), (1-14)
»/0
&% = Ps + (1 - gf =P f +niflofg, (1.15)
—ps+divu =0, (1-16)
»70

where
p = nipf + (1 - m)/os, cp = racpj + (1 - m)cps,

"= — 02(W}si + «3("?/}2, (<Mn = //
.In

»)

Tfte quantity m, which is called the porosity of the solid skeleton, is defined by

m=1J x(y)ry= (™)y-

Tfte symmetric strictly positive constant rank-4 tensor Ag, the constant matri-
ces Cg, Bg anfi Bf, the strictly positive definite constant matrix B0 and the con-
stants o|, ft= 0,1,2, 3, are defined below by formulae (4.38), (4.39) and (4.42).

Tfte differential equations (1.12)—1.16) are endowed with the homogeneous initial
conditions

du
Tgu = Tg— =0, 1.17
g I (1.17)
TQCpd-——- — ps ~ (Pof ~ Pos){3= 0 (1-18)
))70

fort = 0 and x GO and wiife the homogeneous boundary conditions

i2(x,#)=0, u(x, #) = 0, xgS, # > 0. (1-19)
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(1) If the porous space is disconnected, then w = u and in Qt the strong/ weak
limits u, d, pf, gf, ps and gs together with the weak limit 6f of the sequence {x£9£}
satisfy equations (1.12), (1.14), (1.16), the state equations

gs =Ps + {1. m)fasti, gf = pf + pofOf, (1-20)

and the heat equation

QQf AO
rocp/— + rocps(l - ~ div(B9 mVi9)

= * — 0 - -
+ o /ﬁt + (& / &»)ﬁ. (121)

The temperature Qf of the fluid is defined below by formulae (4.45)—4.47), where
the particular choice of the function 6? depends on the parameters and rg.

The problem is endowed with boundary conditions (1.18), initial conditions (1.17)
for the displacement, and the initial condition

ToCps'd QTPS - (Pof ~ Pos)P =0 (1-22)

P

for the temperature &in the solid skeleton for t = 0 and x Gil.

(1) Ifpi < oo,then in Qt the strongj weak limits u, d, w?9?, pf, qf,ps and gs
of the sequences {ue}, {Ne}, {xewe}, {xE9E}, {pf}, {qE}, {pf} and {qf} satisfy the
initial-boundary value problem consisting of the momentum balance equation

(32w f <%u \
\Pf-f

TO\P f-ftT +Pstl~ ) +v(gf+qgs)-pF

= div]aoAq:D(x,u) + Bg “divu —+ B®q/1 (1-23)

and the continuity equation (1.14) for the solid component, where Ag, Bg, and Bf
are as in (1.12), the continuity equation

ips + diij = (m —1divu, (1-24)
»0

the state equation (1.20), the heat equation (1.21), and the relation

g\’/‘v-f{x,t) =m 8—“ {x,t) +j(BI\{ii\, t—t)m(x,t) dr, (1.25)

1 d2
2(x.#) Val(x#) +pfE(GL) -TOp W (x.1),

fortg > 0 and fj,i > 0. or Darcy 's law in the form

dw? du ( 1 \
ST =mm * *\-m V," +P'F)’ <o
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for tg = 0. or finally, the momentum balance equation for the fluid, component,
which has the following form:

d2aw? d2u (1 \
TPf~fr2~ = r°PfRi ' + (ml_Bs)' ( V(If +PfF )> (L27)

for Mi = 0.

The problem is completed by the initial and boundary conditions (1.17). (1.18) and
(1.22) for the displacement u and the temperature 9 of the solid component, the
boundary condition

w”(x, t) m(x) = 0, (x,#) GS, t >0, (1-28)

and the initial condition
Towf = To-Qj- =0 (1-29)

for the displacement w? of the fluid component.

In equations (1.25)—1.28) n(x) is the unit normal to S at the point x G S.
while the matrix B\(n\,t) and the symmetric positive definite matrices Bn”i) and
(m1 —£3) are defined below by formulae (4.60)—4.65).

§2. Preliminaries

2.1. Two-scale convergence. The proof of Theorem 2 relies on the systematic
use of the method of two-scale convergence put forward by Nguetseng [2].

Definition 2. A sequence {tpE} C L2(Qt)is said to betwo-scale convergent
a limit 9 G L2(Qt x Y)if and only if for each smooth function a = a{x.,t\y).
1-periodic in y

lim

| gE(X, #<7 (x,— I dx dt = | I <Bxt, y)<r(x,t,y) dy dx dt. (2.1)
B °JnT \% el

JhtJy

The existence and the main properties of two-scale convergent sequences are
established by the following result (see [2], [3]).

Theorem 3 (Nguetseng’ theorem). 1. Each bounded sequence in L2(Qt ) contains
a subsequence two-scale convergent to a limit, G L2(Qt x Y).

2. Let, {ipe} and {eV "} be uniformly bounded sequences in, L2(Qt ). Then, there
exist, a function, ip = <€&{xt,y) l-periodic in, y and a subsequence of {tpf} such,
that <p,Vy<f G L2(Qt x Y) and <E, s'S/(fE are two-scale convergent to  and 'Slyip.
respectively.

3. Let, {ipe} and {V "} be uniformly bounded sequences in, L2(Qt ). Then, there
exist, functions < G L2(Qt) and tjj GL2(Qt x Y) and a subsequence of {<fE} such,
that V@ G L2(Qt), the function, tjj is 1-periodic in,y, 'Slyip GL2(Qt x Y), and 'S/ip6
is two-scale convergent, to V<y?(x,t) + V, /i/>(x,fy).

Corollary. Let,a GL2(Y), aE(x) = a(x/t), and let {ipe} C L2(Qt) be a sequence
two-scale convergent, to 9 G L2(Qt x Y). Then, the sequence {(jEpE} is two-scale
convergent, to a\p.

to
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2.2. An extension lemma. The following feature is typical in problems similar
to the (NB)e model: bounds for the displacement gradient Vwf are distinct in f2s
and ilf (in the liquid and the solid phases), which does not allow one an immedi-
ate use of stronger estimates. This difficulty can be overcome by constructing an
extension to the whole of of the displacement field defined in ils, while preserv-
ing the bound for the norm of the gradient in Qs. We have the following result
(see [14], [15]), which we state in a form appropriate for us.

Lemma 1. Suppose that, the assumptions on the geometry ofQE hold and let i*E €
), with iJE = 0 at the boundary SE= dilEfl dil. Then thereexistsa function

aEG such that its restriction to the subdomain ilE coincides with ipE,that is,
(1-X e(x))(cre(x) - ipE(x.)) = 0, xetl. (2.2)

Moreover,
Ikl2an<cwrhsn, IV<712n < cyv”Ilb.ni, (2.3)

where the constant C depends only on the geometry of the cell Y and does not,
depend on, e.

2.3. The Friedrichs Poincare inequality in a periodic structure. The fol-
lowing result is well known. It refines the value of the constant in the case of an
e-periodic geometric structure.

Lemma 2. Suppose that the assumptions about, the geometry of the domain, QE
hold. Then, for each, function, < GW ~~/) the inequality

[ \p2dx < Ce2 [ \Vcp\2d.x (2.4)
JnE JnE
holds with constant, C independent, ofe.
In what follows we use the following notation:
1) ($)r = jCSdy, {$)Yf =Jr x$dy, ($)rs= (i - x)$dy,

= | <pdx, fat = 1 i dxdl:
(n= ) b (Oat= i dx

2) if a and b are two vectors, then the matrix a €b is defined by the formula
(@@Db) sc = a(b «c)

for each vector c;
3) if B and C are two matrices, then B €C is a rank-4 tensor such that its
convolution with an arbitrary matrix A is defined by the formula

(B®C) :A =B(C :A);

4) we denote by I'i the matrix with exactly one non-zero entry: it is equal to
one and is placed at the intersection of the *th row and the jth column;

5) 313 = T7(PI + F*) = ;y(e; @ Bj + Bj (9 BY, Where (ei,e2,e3) are the standard
Cartesian basis vectors.
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83. Proofof Theorem 1
For tg > 0 the estimates (1.9), (1.10) follow from the energy identity

d2w' \ 2 ( dOE\ 2\
dx
-W) )
( dwE\ ( dwgl
ay I 1 —xe)D ,—— dx
wn {*'-r ) v’ dt/

dwE
Pj XEAdiVA - dx+av (1-\E)"div~(\jN dx

t
r dOE r f  C*We \ 2w
la V— dx+ I x*"D(x, D (X, (rj]tg )| dx

Jn at Jo g2 37
<F d2wE
dx
LPdt ~w

f Cdaw

V'’ JLX . dt2 1—m -/qi(l —\e)div dtg dx

obtained by differentiating the equations for wEand 0" with respect to time, multi-

plying the first equation by d2we/dt2, the second by dOE/dt, integrating by parts,

and summing. In the process we have expressed the pressures in terms of the

displacements with the use of the continuity equations and the state equations.
Since

il ek S\ 2 | tfw'": V
m\JOx d" A r dx) w iod,

1—m Jln 1 - Xs)div W dx

Jn
the estimates (1.9) and (1.10) follow from the inequality

7 7N dOE
max_( sJaZ -(* A *
o<t<T\ v dt2 ) 29 v~ U 28> dt ) 2n
m 906
+ Ve>- U -:ir)Vv 2 LVaW
2 I on7*
82w
1vIrT Vv Sf2 < A, (3.1)

2 yrT
where Co is independent of e.

The same estimate (3.1) guarantees the existence and uniqueness of the gen-
eralized solution for the model (NB)E because here we do not require estimates
uniform in e. while the boundedness of the pressures non-uniform in e is also an
easy consequence of (3.1).

Estimate (1.11) for the pressures, which is uniform in e, follows from the integral

identity (1.7) and the bounds (3.1), as an estimate for the corresponding functional,
once we recall that

(Pé(x,t)+pe(x,t))dx = 0.
Jn
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Indeed, expressing the pressures ¢j and qEin (1.7) using the state equations (1.3)
and (1.5), in view of (3.1), we obtain

Now choosing xp such that pE+pE= divip we arrive at the desired estimate for
the sum of the pressures pEY pE- Such a choice is always possible (see [16]) if we set

ip=Vif+ipo, divip0=0, Atp=pE+pE
vidn =°> ~  +M sn = 0-

Note that identity (1.7) allows only an estimate for the sum p* +pE However,
the product of these functions vanishes, so this is sufficient for the derivation of
bounds for each of them. We estimate the pressures  and gEon the basis of state
equations (1.3) and (1.5) using (3.1).

The greatest difficulty lies in finding an estimate for wE in the case «q = 0.

Assume that > 0 and « = 0. As usual, for the basic estimate we must
multiply the equation for wE (with pressures expressed in terms of the divergence
of the displacement and its time derivative, with the help of the state equation
and the continuity equations) by dwEdt and the equations for OE by OE, add the
results and integrate by parts. Only two terms in the result, pBF «dwEdt and
'I' «9E, require additional treatment. First of all, using Lemma 1 we construct an
extension ue of the function wE from the domain ilE into such that ue = wg
in ue GW<¢("n), and

[luell2,f2~ C|[Vue|l2,n < 4=11(1 - XE)Va*Vwe||2f.
After that we find an estimate for | ||| 2,0 with the help of Poincare’s inequality

(Lemma 2 for the difference ue —we):

< ljue]]2,Q+ Ct||xeV (ue - we)||2Q
< ljue||2,n + Ce||Vxue||2n + Ci(e«™1/2)lIxeviV V*well2si

< 4=11(1 -X E)V A~~~ Eh,n + C{£aB 1/2)\\xEr&" V xwe||2,f2.

We apply the same method to (E; hence there exists an extension t)E of the
function OE from QEinto such that dE= OEin ilg, dEG W] (0) and

C

Next, we carry over the time derivative from dwE/dt to pB- and find bounds for
all positive terms (including a,,x£div(9wEdt)2) in the usual way, with the help of
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Holder’s and Gronwall’s inequalities. The rest of the proof is as for tq > 0, provided
that we use the following consequence of (3.1):

daw
max a7

(0
0<t<T dt2 2n

84. Proofof Theorem 2

4.1.Weak and two-scale limits of sequences of displacements, temper-
atures and pressures. In view of Theorem 1, the sequences {9£}, {pf}, {//},

{Ps}> {Zsl an(i {w£} are bounded uniformly in e in the space L2(Qt)- Hence there
exists a sequence of {e > 0} and functions 0O, pf, gf, ps, gs and w such that

“m0, pf >mpf, gf >mqf, p§ >mps, g6 >mqgs, w£ >mw weakly in L1{QT)

ass\ 0.

By Lemma 1 there exists a function ue G L°°((0,T); Wf(f2)) such that ue = wg
in Qs x (0,T) and the family {ue} is bounded in the space L°°((0, T); W2(n))
uniformly with respect to e. Hence it is possible to extract a subsequence of {e > 0}
such that

ue —mu  weakly in L2((0, T);W}Q))

ass\ 0.
Using Lemma 1 again we conclude that there exists a function

r eL 2((0,T);W"Q))

such that & = 0£in Qsx (0, T) and the family {dE} is bounded in L 2((0, T)\ TUA("))
uniformly with respect to e. Hence there exists a subsequence of {e > 0} such that

r —at) weakly in L2((0, T);W\(Q),))
as s\ 0. Moreover.
XEotlIHY{x, w £) —i0, —a0 strongly in L2(Qt) 4.1)

ass\ 0.

Relabelling if necessary we assume that the sequences themselves are convergent.

We now use Nguetseng’s theorem: there exist functions 0(x,f, y), Pf(x.,t,y),
Ps(x,t, y), y), Qs(*,t,y), W(x,#y), 0s(x,t,y) and U(x,#,y) that are
1-periodic in y, such that the sequences {9£}, {p£}, {Ps}, { J { wE}, {Vv"}
and {VuBg} converge two-scale to 0(x,#,y), Pf(x.,t,y), Ps(x.,t,y), Qs(x,t,y),
Qf(x,t,y), W(x,t,y), W + Vy0s(x,i,y) and Vu + VyU(x, t,y), respectively.

Note that the sequence {divwe} converges weakly to divw and d, |u] e i 2((0, T):
T9%(n)). For a disconnected porous space the last assertion follows from the inclu-
sion d£, |ue| G £2((0, T); W ~fi)). For a connected porous space this follows from
the Friedrichs-Poincare inequality for ue and in the e-layer at the boundary S
and from the convergence of the sequences {ue} and to u and d, respectively,
strongly in L2(Qt) and weakly in L2((0,T);Wj (™).
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4.2. Micro- and macroscopic equations. 1.

Lemma 3. Forall x GO andy GY weak and two-scale limits of the sequences

{p/}, Wf}, M}, Wsh {«“}, {wf}, an.fi {ue} satisfy the following relations:

Qf = ~ XA, Qf = Pf + xPof®, (4-2)

= Ps+ (1 - x)Pos&, 4.3)

—Ps=-(1 - x) (divu + divyU - ~» v (4.4)
0 \Y 1_mlJ

divyw = 0, (4.5)

W = X'W + (1-X)U, 0 =x0+ (I-x)", (4.6)

<t = pf + PofOf, (4.7)

gs =ps + (1. m.)posd, (4.8)

—ps = -(1 - m)divu - (divyU)y, + p, (4.9)

»0
—ps+divw = 0, 4-10
=P (4-10)

where Qf = {Q)yf and P = ((divyU)y }q.

Proof. To prove (4.2) we substitute a test function xpE = £xp(x, t, x/e) in integral
identity (1.7), where xp(x.,t,y) is an arbitrary function 1l-periodic and compactly
supported in Yf with respect to y. Passing to the limit as e\ 0 we obtain

VyQf(x,t,y)=0, y GYf. (4.11)

The weak and the two-scale limiting procedures in (1.3) yield (4.7) and the second
equation in (4.2).
Performing now the two-scale limiting procedure in the equalities

(1-X e)P /=0, (1—Xe)<7/=0

we obtain
(i —x)Pf = o, (i - X)Qf = 0;

which proves (4.2).

Equations (4.3)-(4.5) and (4.7)-(4.10) are the result of passing to the two-scale
limit in equations (1.3)—1.6) with appropriate test functions. For example, equa-
tion (4.8) is a consequence of (1.6), while (4.5) and (4.10) result from the two-scale
limiting procedure for the sum of equations (1.4) and (1.6) with test functions of the
form iE = £ip(x,t,x/e) and with test functions independent of the ‘fast’ variable
y = xl/e.

To prove (4.6) we must consider the two-scale limit in the relations

1 - xB(wE- uE) = o, (1 - XE)(dE- &) = 0.
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Lemma 4. For all (x,t) G{lt andy GY the relation
div/|Ao(l -x)(D(y,U) + D(x,u)) - "Qs+ qgxj *I| =0 (4.12)

holds.

Proof. Substituting a test function of the form x = ex/>(x, # x/e) in (1.7), where
x/H{x.t,y) is an arbitrary function 1-periodic in y, vanishing at the boundary S,
then passing to the limit as e \ 0 we obtain the desired microscopic equation on
the cell Y.

In the same way, using the continuity equations (1.4) and (1.6) to eliminate the
terms xedivwe and (1 —xe)divwe, from the integral identity (1.8) we obtain
the following result for the temperature.

Lemma 5. For all (x,t) G £lt;
AyOs y GYs,

9Qs (4.13)
—=-W n, y G7.

I
o

We now proceed to the macroscopic equations for the solid displacement.

Lemma 6. Let p= mpf+ (1 —m)ps, = (w)yfmThen in At the functions u,
w”, ps, gqf, gs, Qf and t) satisfy the system of macroscopic equations

d2wf , ,92u ~
Topf~dt~ + Tops( “ m~~dth ~ P
= div{A0o((1 - m)D(x,u) + (D(y,U))rJ - (gf +qs)I}, (4.14)
( dotl @ FSdbPs T
. 0Q
= x0sdiv{(1l- /)W + (Vy0s)rs} + [00f - /30s)-" « (4.15)

Proof. Equations (4.14) and (4.15) arise as the limits of (1.7) and (1.8) with test
functions that have compact support in Q,t arid are independent of e. As in the
proof of the previous result, we have used the continuity equations (1.4) and (1.6)
in (1.8).

Remark. Using the same procedure we arrive at the initial conditions

. o .
TofPtiva+ps(1 - mu) =02 rotpr 8 4 ps1 - myY ) 0, (4.16)

t=0

To(cpfdf + cps(l - m) &) -——-- -(ps) - (/30f - i30sm ) 0. (4.17)
»0 J

t=0
4.3. Micro- and macroscopic equations. II.

Lemma 7. If = 00, then U= w and 0 = d.



A.M. Meirmanov

Proof. To verify this result it is sufficient to consider the differences ue —wE and
OE—d£ and use the Friedrichs-Poincare inequality just as in the proof of Theorem 1.

Lemma 8. Assume that Mi < oo and let V = x<9W/dt. Then

dv 1
T°pf~fr - PfF = PIAyv ~vyR - ~ Vgf> y eYf> (4-18)
<90 Oof dB
TCpfik = xIAIAYy0 + — — + *, ye Yf, (4.19)
vl
Vv=—,6 =& y G7, (4.20)
for mi > 0 and
dv 1
TPf~dt = ~VYyR ~m Vqf+ /9/F’ Y GYf) M2
P/90 _ijrde+* */ 4.22
rocP/ — = == — , ye*/, (4.22)
(XW - u) n =0, y G7, (4.23)

for M = 0.
In either case (mi > 0 or mi = 0) the functions V and 0 satisfy the homogeneous
initial conditions

V(y,0)=0, 0(y,00=0, vy eYf. (4.24)

In the boundary condition (4.21) n is the outward normal to the boundary 7.

Proof. The differential equations (4.18) and (4.21) follow as e \ 0 from the integral
identity (1.7) with test functions ip = ip(x/e)h(x, t), where cpis a solenoidal vector-
valued function with compact support in Yf.

The same arguments apply to equations (4.19) and (4.22), provided that we use
continuity equation (1.4) to eliminate the term xediv(9w£/dt) in integral iden-
tity (1.8)

The first boundary condition in (4.20) is a consequence of the first equation
in (4.6) and the two-scale convergence of the sequence {a/'V w E} to the func-
tion l\/i“ZVyW(x, f,y). In view of this convergence, the function VyW (x,f,y) is
bounded in L2(Y) uniformly in (x,t) for mi > 0. Similar arguments hold for the
second boundary condition in (4.20). The boundary condition (4.23) follows from
equations (4.5) and (4.6).

Lemma 9. If the porous space is disconnected (the case of isolated pores), then
w = u.

Proof. Indeed, for 0 » mi < 00 the system of equations (4.5), (4.18)-(4.20) or (4.5),
(4.21)-(4.23) has the unique solution V = du/dt.
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4.4. Homogenized equations. I.

Lemma 10. If i = 0o, thenw = u, 9 = d, and the strong/ weak limits u, d, pf.
gf, ps and gs solve the following initial-boundary value problem in Qt -

~d2u A
ToP-QA~ + A (If +1s) ~P F
= div|AnAg :D(x, u) + Bg *divu ——- dY + B*</l/j, (4-25)
dt y J 7 m

—ps + Cn :D(x,u) + (1 —m + Og)divu

))70
= — - <>n)- a?(9/ - (9/)n), (4.27)
»l0
+ (1 - m)Pos'd,gf =pt + mpofd, (4.28)
—ps+divu = 0, (4.29)
))70

where thesymmetricstrictly positive definite constant rank-4 tensor  Ag, the con-
stant matrices C'g,Bg,Bf, the strictly positive definite symmetric matrix B'0, and
the constants ak, k =0,1, 2, 3, are defined below by formulae (4.38), (4.39) and (4.42).

The differential equations (4.25) and (4.26) are endowed with the homogeneous
initial conditions

du
ToU = To, =0, (4.30)
ToCpé----——ps ~ (Pof ~ Pos) (— ag(d)n + a8{qgf)n) =0 (4.31)
»0 \' »0 /

fort = 0 and x GO and with the homogeneous boundary conditions

d(x,t) =0, u(x,t) =0, x€8S, t>0. (4.32)

Proof. We observe in the first place that u = w and 0 = d by Lemma 7.

The differential equations (4.25) follows from the macroscopic equations (4.14)
after substituting the expression

An(O(y,U))r = AnA® :D(x,u) + B®(divu- — d) + Bsqgf + A(t).
\ »0 J
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In its turn, this expression results from the solution of equations (4.3). (4.5) and

(4.12) on the pattern cell Ys. Indeed, setting

U=V UlJy)D,, +Uo(y) fdivu - ~ (0 -
\Y %)

+ — Uiy ){af - (af)n)+ — U 2(y)(tf)n + U 3(y){af)n.
m \o

Qs= An Q*?(y)D'J +Q»(y) fdivu - - (0O)n))
ij=I ' AQ :

Yo @ (af - (@f)n) + — Q:{y)(&)n + Q8{y){af)n,

where
1/ thtj

2 1 dxj dx.j
we arrive at the following boundary-value problems in Y:
divy{(i - X)mv, ujj)+ j13) - Qlj «i} = o,
An

Qs + (1 —x) divy U'id = 0;
Vo

divy{A0(l -x)D (j/,U0) -Q ® -1} = 0,

1,
Qs + (1 —x)(divyuo+ 1) = 0
Vo

divy{A0(l -x)D (y,Ui) - (Q«+x) -1} = 0,
s+ (1-x)div,U1=0
Vo

divy{A0(l -x)D (y,U2)- Qs -1} = 0,
1 o

Qs = (! -x)|§jiva2- 1-
Vo \ 1

divy| A1(1 - x)D(y,U3)- (q? + £+ X )n 0-

~ Qs =(i- x)(divyus - <divy )

Note that
3="(divyU2y.<0>n + (divyU3)y. (qf)n
Vo '

in view of the homogeneous boundary conditions for u(x,f).

1 . A
(divyU 2y, I
m )

(4.33)

(4-34)

(4-35)

(4-36)

(4.37)

Under our assumptions about the geometry of the pattern cell Ys the prob-
lems (4.33)-(4.37) have a unique solution (up to an arbitrary constant vector). To

get rid of these arbitrary constant vectors we set

(UN)y. = (URys = 0, k=o0,1,2,3, i, =1,2.3.
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Thus.

3 3
Ag= (i—m) J2 In®s,]J+ A*> A*= Y. uiJr ®JIVim (4'38)
ij=1 =1

In [10] we proved that the tensor Ag is symmetric and strictly positive definite.
Finally the continuity and state equations (4.27)-(4.29) for the pressures follow
from equations (4.7)-(4.10) after substituting the expression

(divyU)y,, = Cq :D(x, u) + a®fdivu - — @&-
\ Vo J

+ Til Si(y)("? - (gf)n) + -I/é aoityn + a3(qgf)n-,
where

Bl = Ag(D(y, Ufc))ys, = (divyU Ry,

3

(4.39)
C0= J2 (diyyU<J>v.JI? k =° 2>3-
ij=1
Now, for *= 1, 2, 3 we consider the model boundary-value problems
Aye? =0, y GYs, (4.40)
aef
—- = -e, n, G7,
an y
and set
3
. \ Yy (441)
i=1

Then 0 s solves problem (4.13) and after substituting (Vy0 s)y in (4.15) we obtain

Be= MsA(l- mI+E(V.,0-)n ® o (4-42)

The properties of the matrix Be are well known (see [5], [15]).

Lemma 11. If the porous space is disconnected, then w = u and in Qt the weak
limits 6?, u, d, pf, gqf, ps and gs satisfy equations (4.24), (4.26) and (4.28), where
Ag, Cq, Bq, Bf, B0, ak, k=0, 1,2, 3, are as in Lemma 10, the state equation

gs = Ps + (1 - m)Pos'd, gf =pf + 130f0f (4.43)

and the heat equation
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where
O {x,t) =~ \bé(t- )" N~ - Tocpf~{x,T) +m~{x, r)jdr
(4.45)
for p\ > 0 and tg> 0. If pi > 0 and tq = 0, then
= - - - N N
of {x,t) = m$(x,# CS( ooat + (x,#)/ (4.46)
and finally, if ~i = 0, then
oOfrt)-— I Ne ~(r) +*(x.rw (4.47)
70Cp/ Jo V. m /
i/lere 6®F#) and a® are defined below by formulae (4.50)—4.52) and
I 3 ="ag{d)n + a8{qf )n. (4.48)

Vo

The problem has initial and boundary conditions given by (4.30) and (4.32) and
the initial condition

ToCpsd —ps - (/3of - /30s)/3=0 (4.49)
Vo

fort —0 and x G 0.

Proof. The only difference from the previous Lemma, 10 is the heat equation for d
and the second state equation in (4.28) because 0 » d. The fluid temperature
0" = (0)yf is now determined from the microscopic equation (4.19) with bound-
ary and initial conditions (4.20) and (4.24) for pi > 0 and from the microscopic
equation (4.22) with initial condition (4.24) for p\ = 0.

Indeed, the solutions of these problems are given by the formula

© = tf(x,t)+ Jt) ©{(y,t - r)h(x,r) dr
for/<i >0 and r > 0 and by
0 = i?(x,i) - 05(y) At) +*(x, D,
for pi >0 and r = 0, where
/30f d(3 dvy

------ at 1$ —TOCpfgt

and the functions 0 { and 0 g are solutions that are periodic in y of the following
problems:

90
Ton<f"|{-: xlplAy&[f, y G Yf,
p (4.50)
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and
XUuitAy&Il = 1, y GYf, =0, yG7. (4.51)

Then (in accordance with the definition) 6? is given by formula (4.45) or (4.46).

where
) = {eDYf, &= (&Nvr (4.52)
If =0, then 0 is found simply by integrating with respect to time.

4.5. Homogenized equations. Il. Assume that < 00. In the same man-
ner as in 84.4 we verify that the strong limit u of the sequence {ue} satisfies an
initial-boundary value problem similar to (4.25)-(4.29), but different from the lat-
ter in general because the weak limit w of the sequence {we} is distinct from u in
the general case. More precisely the following result holds.

Lemma 12. If < oo, then the strong/weak limits u, w”», QlI, d, pf, gf, ps and gs

of the sequences {ue}, {xewe}, {\BOE}, {dE}, {p"}, {09}, {*} and {qf} satisfy the
initial-boundary value problem inAlje consisting of the momentum balance equation

( 32wf , ,<92u '\
T\ Pf~ft2~ + Ps( j + v(qf + gqs)-pF
= div|AgAq : D(x, u) + Bgrdivu —-  + £>*q/1 (4-53)

and the continuity equation (4.27) for the solid component, where Ag, Bqg and Bf
are the same as in (4.25), the continuity equation

1
—ps +divw/ = (m —I)divu, (4.54)
m

the state equations (4.43), the heat equation (4.44), and the relation

dwf 8vl f*
(:ﬁ ™ ’a{(x,#)+ fg Bi(/-ii,t —t) mz(x, t)dt, (4.55)
1 d2u
Z(x,#) = Vg/(x,#) + p/F(x,#) -T 0opf— j{yL,t),

fortqg > 0 and fj,i > 0, or Darcy’s law

dw?

i mﬂ" +Bz(/\)-(--{7qf+pfFj\, (4.56)

for ¢ = 0, or finally, the momentum balance equation for the fluid component in
the following form:

d2w f d2u  \ \
TPFAJfT = ToPfRi m-ftY + (ml “ Bs) » Vgl + pfFj, (4.57)

for Mi = 0.

The problem is given the initial and boundary conditions (4.30), (4.32) and (4.49)
for the displacement u and the temperature & of the solid component, and the bound-
ary condition

w(x,t) m(x) = 0, (x,t) G5, t> 0, (4-58)
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and the initial condition

t dw?
row/ = To— = 0 (4.59)

for the displacement wf of the fluid component.
In (4.53)-(4.59) n(x) is the unit normal at x G S, and the matrices B i(/Wi#),
B2(Mi) an(l B3 are defined below by formulae (4.60)—4.65).

Proof. We deduce homogenized equations expressing the momentum balance (4.53)
and the homogenized continuity equation (4.54) similarly to (4.25) and (4.29). For
example, to obtain (4.54) it is sufficient to express divw in (4.10) using homo-
genization in the first equation in (4.6): w = w”+ (I —m)u. Initial conditions (4.30)
and (4.59) are easy consequences of conditions (4.16) and (4.24). The derivation of
boundary condition (4.58) is standard (see [8]).

Thus, the proof of the lemma reduces to the derivation of a homogenized equa-
tion for the velocity v of the fluid component in the form of Darcy’s law or the
momentum balance law.

a) If /i > 0 and tg >0, then the solution of the microscopic equations (4.5).
(4.18), and (4.20) with homogeneous initial conditions (4.24) is expressed by the
following formulae:

0\l il
V="4ft+J Bi(y”™-r)-z(x,r)dr.

R =J[ Rf(yfl~T)-z(x,r)dr,
0

where
3 3
B{(y.#) = "2V I(yfl) ® et, = nioE(y #)e]j.
i=1 i=1
and the functions V*(y,t) and RI(y,t) are defined by means of the periodic
boundary-value problem

ToPf~W = MIAyi “ Vi?i® divyVv*= °’ y GYfy *> 0 (4.60)
V*=0, yG7, t>0 TofJfV'iy, 0) =e; YG Y).

In (4.60) et is a unit vector along the x4-axis. Therefore.
BiUiut) = (B[)Yf(t). (4.61)
b) If to = 0 and ni > 0, then the solution of the stationary microscopic equa-

tions (4.5), (4.18) and (4.20) is given by the formula

£ +bW - > (+,f)

in which
3

B2(y) = : ®ei’
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and the functions U'(y) are determined by the periodic boundary-value problem

- uiAU;+ VR‘=¢e,, div,U;=0, y GYf;
Y, 1

. (4.62)
U* =0, y G7-
Thus,
B2(m) = (B~ (y)hv (4.63)
The matrix £2(mi) is symmetric and positive definite (see [8], Ch. 8).
c) Finally, if g > 0 and ~ = 0, then to solve the microscopic equations (4.5)

and (4.21) together with (4.23) and (4.24), we first find the pressure i?(x,t,y)
as a solution of the periodic Neumann problem for Laplace’s equation in the
domain Yf. If

;E(X,#,y) =X 7 ,(y)e* IZ(XA)_
i=1
where R' (y) is the solution of the problem

ARt =0, Yy GYT; VRtmn = nee,, YyGT7, (4.64)

then (4.57) occurs as a result of integration of the homogenized equations (4.21)
3
B3 =y N(Visjy))y-s e, (4.65)
i=1
with respect to time, where m|1—£>3 is a symmetric positive definite matrix (see [8].
Ch. 8).
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