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INTRODUCTION

Analytic functions of complex variable ¢(z) = u(z,y) + iv(z,y) are defined as
solutions to Cauchy-Riemann equation

op 09
Z _iZZ 0. 1
oy "ox 0 (0.1)
Substituting it by a more general equation
dp  0¢ —
hak Sk b
ay ) pe ap + bo

one is led to the theory of generalized analytic functions which was developed by
[.N.Vekua, M.A.Lavrentiev, and L.Bers in fifties.
Another natural generalization of equation (0.1) is provided by the system

¢ 0¢

——J—=0 0.2

dy ox (02)
for vector-function ¢ = (¢1,...,¢s), where J is a constant (s X s) matrix having

no real eigenvalues.

From this point of view equation (0.2) was investigated by A.Douglis under
assumption that matrix J is a triangular Toplitz matrix, i.e. its elements only
depend on the difference of indices.

Functions ¢ satisfying equation (0.2) were called hyperanalytic by A.Douglis
[2]. This topic was further developed in [3], [4], [5], [6]. [7], 8], [34] and so on. In
particular, an analogue of the classical theory of analytic (holomorphic) functions
was developed for solutions of equation (2), so they are sometimes called analytic
functions in the sense of Douglis.

As is well known, solutions to Laplace equation
Pu  u
02 + oy?
can be described as the real parts of analytic functions. Analytic functions are
also helpful for representing solutions of more general equations with real analytic

coefficients.

A unified approach to the study of such representations was suggested by I.Vekua
[10]. Later on A.Bitsadze [11] obtained representations of general solutions to
elliptic systems through analytic vector-functions and their derivatives.

Recently, it turned out [12], [13] that the representations obtained by Bitsadze
can be substantially simplified using hyperanalytic functions. One can say that
hyperanalytic functions play the same role with respect to elliptic systems with
constant coefficients as analytic functions do with respect to Laplace equation (3).
Analogous statements were obtained by N.Zhura [14] for systems which are elliptic
in the sense of Douglis-Nirenberg, and for systems which are hyperbolic in the
sense of Leray and Petrovsky.

In the present paper we give an updated review of results in this direction. For
reader’s convenience, necessary results from the theory of matrices are included
in §1. In §2 we develop an analog of analytic functions theory for equation (0.2).
Elliptic systems and equations of arbitrary order are considered in §3. Main attention
is given to representation of general solution to such systems in terms of hyperanalytic

Au 0 (0.3)
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functions. At the end on this section some applications to boundary value problems
are described. In §4 we study various concepts of ellipticity for elliptic systems
of second order which are most important for the applications. The case of two
equations of second order is considered in some detail in §5. The last section
contains results of N.Zhura [15] on representation of general solution to elliptic
system s in the sense of Douglis-Nirenberg. As an illustration we present an application
to the linearized Stokes system of hydrodynamics.

1. PRELIMINARIES FROM LINEAR ALGEBRA

1.1. Functions of matrices. Let C*1*%2 be the set of all complex s; X sy matrices
and let R®1*°2 have the same sense for real matrices. Algebraic properties of
matrices and determinants are well-known, in particular, C*** is a C-algebra [16].
Matrices can be written in block form: for A € C>** and | = I} + ... + lx,
s = 8 + ...+ s, notation A = (A;;) means that A;; € Ci*%. For k = 1
and r = 1 we get block-row and block-column, respectively, in which cases we
write A = (Ay,...,4,), with A; € C*%, or A =| (Ay,...,A,), with 4; € Cl>s,
respectively. For k& = r block-matrix (4;;) is a square-matrix. If [; = s; for all
i and A;; = 0 for i > j (i < j), one gets upper(lower)-triangular matrix. If
A;; = 0 for i # j this matrix is block-diagonal and we write A = diag(Ai1, ..., Akk)
(analogously to usual diagonal matrix). The determinant det A of a block-triangular
matrix A is equal to det A;, ¢ = 1,...,n. By 0 and 1 we denote, respectively,
the zero and identity matrix. Number z € C is identified with the scalar matrix
z-1 € C*** . If det A # 0, then there exists the inverse matrix B = A~! such that
AB=BA=1.
Polynomial of degree s

det (z — A) = H:Zl (z —v;)¥ (1.1)

is called the characteristic polynomial of A. In (1.1) is supposed that v; # v; for
i # 7. Complex numbers v; are called eigenvalues of and constitute the spectrum
o(A). Natural number s; is called the multiplicity of eigenvalue v;.

Each polynomial p(z) = ag + a1z + - - - + axz* with a; € C defines a matrix

p(A) =ag +a; A+ +a A" (1.2)

which is called the value of p at A.
From (1.2) immediately follows that for arbitrary polynomials p;, ps one has

(p1 +p2) (A) = p1(A) + p2(A),
(p1p2) (A) = p1(A)p2(A), (1.3)
p1lp2(A)] = p(A), p(2) = pr[p2(2)].
This, in particular, implies that
o(p(A)) ={p(v),v € o(A)}, (1.4)

which is well known [16].



One has also
Bp(A)B = p(B~'AB),

p(diag (A1, ..., 4,)) = diag (p(A1), - .., p(4y)).

It is said that p(z) annihilates A if p(A) = 0. A famous example of such
polynomial is provided by Hamilton-Cayley theorem [16].

(1.5)

Theorem 1.1. The characteristic polynomial of A annihilates A.

Proof can be easily obtained by considering matrix R(z) consisting of algebraic
complements to elements of z— A, z € C. Indeed, by Cramer’s rule, for each z € C,
one has

(z—A)R(z) = R(2)(z — A) = X(2), (1.6)
where X (z) is the determinant of z — A, i.e. the characteristic polynomial of A.
Moreover, one can write

R(2) = Ry + Roz + ...+ Ryz" 1,

where R; commute with A in virtue of (1.6): R;A = AR;. Hence the second equality
in (1.6), which reads

X(2) = (Ri+ Roz + ...+ Rz (2 — A),

remains true if one substitutes A instead of z and the theorem is proven.

Among all polynomials which annihilate A consider a monic (i.e. with the highest
order coefficient equal to 1) polynomial M (z) of the minimal possible degree r. If
p(2) annihilates A then p is divisible by M, in particular, polynomial M is uniquely
defined and called the minimal polynomial of A.

By Theorem 1.1 polynomial (1.1) is divisible by M, and by (1.4) the set {M (v), v €
0(A)} consists of a single point z = 0 for each j. Hence

M(2) = szl(z —v), 1<r; <sj, (1.7)

so that 7 = r; +...7,. The number r; is called the multiplicity of eigenvalue v;.

Using the minimal polynomial, formula (1.2) can be extended to functions f(z)
which are analytic in the neighbourhood of o(A). To this end with function f we
associate vector ¢ = Lf € C¥ by formula

Lf=(fP%), 0<i<k;j—1,5=1,...,n). (1.8)

Obviously, Lf = 0 means that f(z) has zero of order not less than r; in each
point z = v, 5 = 1,...,n. This is equivalent to f(z) = f(2)M(z), where f is
analytic in a neighbourhood of o(A).

Lemma 1.1. On the set P,_1 of polynomials of degree not exceeding r — 1
mapping L is one-to-one and has an inverse LY : C" — P._;.

Proof. If Lp =0, p € Py, then p(2) is divisible by (2 — v;)"7 for each j, hence
divisible by M (z). Since p does not exceed k — 1 this is only possible if p = 0. Thus
L: P._; — C" is one-to-one. Since dimension of P,_; is r this mapping has an
inverse LY : C — P_;.

For a given family ¢ = (¢;;, 0 < i <r; —1, j = 1,...,n) € CF, polynomial
L=Y¢ € P, is called the interpolating polynomial (with respect to (vj,7;), j =
L,...,n)).



The lemma implies that for each function f analytic on o(A) there exists a
function f, such that

f(2) = f(z)M(2) +q(2), ¢=LUVLS. (1.9)
Correspondingly, the value f(A) is defined as f(A) = ¢(A). The following result
shows that this is a reasonable definition.

Theorem 1.2. (a) Let sequence of analytic functions f,(z) — f(z) converge
uniformly in a neighbourhood of o(A). Then f,(A) — f(A) in the sense of
convergence of each matriz entry. In particular, (1.3), (1.5) hold for analytic
functions.

(b) Let g(z,t) be continuous on G X I', where G is some neighbourhood of o(A),
and I is some continuous curve. If g(z,t) is analytic in G then the matriz-function
g(A,t) is continuous T u

g(A) = /r (A t)d /f z,t)d (1.10)

Proof. (a) Let g, be defined by f, as in (1.9). Then ¢, — ¢ coefficientwise.
Hence ¢,(A) — q(A) as n — oo. To show (1.3), (1.5) for analytic functions it
suffices to write them for approximating polynomials and pass to the limit.

(b) Denote by ¢ (z,t) the ith derivative with respect to z of function g(z,t). As
is known it is continuous on G x I'" and

£90) = [ 9ty
r
Hence if p(z,t) and ¢(z) are defined by, respectively, g(z,t) u f(2) as in (1.9) then

a(z) = / Pz, t)dt.

This in turn implies (1.10).

Some corollaries are immediate. If function f develops in power series in a
neighbourhood of o(A) as ag+ a1z +-- -, then by (a) we have a convergent matrix
series

flA) =ap+a A+,
which gives a natural generalization of (1.2). In particular, the series

2

A
eXpA—l—l-A-i-?-i-

converges for any matrix A and defines the value of e* = exp z at A. Analogously,
if the absolute values of eigenvalues of A are less than 1, then the series
1-A)'=1+A+ 4%+

converges and defines the inverse of 1 — A.
From (1.3) follows that A~! coincides with f(A) for f(z) = 2~'. One just notices
that zf(z) = f(z)z = 1. By the same reasoning matrix f(A) commutes with A for

any f.
From Theorem 1.2(b) follows an analog of Cauchy formula

:%/Ff(t)(t—fl)‘ldt, (1.11)
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where contour I' contains o(A) in its interior and is oriented so that o(A) lies on
the left of it. For the proof it is sufficient to notice that

16) = g [ 40— 2) e

and apply (b) to g(z,t) = f(£)(t —2) .

We present one more corollary which is important in the sequel.

Lemma 1.2. Let A(T) be a continuously differentiable matriz-function on [0, 1]
and

Al(T)A(T) = A(n)A' (1), 0<7<1. (1.12)

Let function f be analytic in an open set containing o(A(1)) for all 7. Then matriz-
function B(t) = f(A(7)) is continuously differentiable and

B'(1) = f'(A(T)A'(7). (1.13)

Proof. Consider matrix-function (t — A(7))™, t € T, 0 < 7 < 1, where I is
from (1.11). It is continuously differentiable with respect to7 and by (1.12) its
derivativeis

[(t = A(m)7'] = (t = A(7)) A'(7).
Hence we can differentiate (1.11) and get
B' = [%Af(t)(t—A)zdt} A

In remains to notice that by theorem 1.2(b) applied to equality

£ =5 [ £ =)

expression in square brackets coincides with f'(A).
If has a single eigenvalue v then (1.1) and (1.7) take the form

det (z—A)=(z—v)°, M(z)=(z—1v)",
so that (A — v)¥ = 0 and according to (1.8)

=1 () y ‘
f(A) = Z / ,( )(A — V)L (1.14)

1

If v = 0 matrix is called nilpotent and satisfies A™ = 0.
As an illustration consider triangular matrix

v 1 0 ... 0
O v 1 ...0

A= L . , (1.15)
000 ... v

which is called Jordan block (or Jordan w-block if one wishes to indicate its
dependence on v). Obviously, all elements of matrix A — v vanish except the



subdiagonal ones which are equal to 1. Thus according to (1.14)

W) fw) ... £8) ) /!
=] 0 s o fET D) (1.16)
0 0 .. F)

1.2. Jordan normal form. As usual matrix A = (A4;;); € C*** can be considered
as linear transformation of X = C® which is denoted by the same letter and acts
by formula

(Ax>i:ZAijxja Z:1, , S.
i=1

This correspondence is a homomorphism. Moreover,

(AB)@) = ABg), (BC)w) = ZCjiB(j); (1.17)
j=1
where C' = (Cj;); and By is the ith column of B considered as an element

(BM‘7 ey Bsz) of C».

Subspace Xy C C* is called A-invariant if Ax € X, for x € X,. Such are the
image Im A = A(X) and kernel Ker A = {z, Az = 0} of . Spectrum o(A) =
{v1,...,vs} is defined as the set of all v, for which v — A is not invertible or,
equivalently, Ker (v — A) # 0.

Transformation P is called projector if P? = P or, equivalently, if P is identical
on Xy = Im P. This subspace is A-invariant if and only if A commutes with P,
ie. if AP = PA. Let xz;,i = 1,..., 50, be a basis in Xy. Then A-invariance of X
means that

S0
j=1

Matrix Ay = (ay;);° is called the matrix of linear transformation A : Xy — Xj in
basis (z;).

By (1.17) equations (18) can be written in matrix form ABy = ByA,, where
columns of By € C**% are x;.

Lemma 1.3. Let C° = X, @ ... ® X,, and each X; is A-invariant. Let matriz
B; € C**% have columns X; and J; be the matrixz of A in this basis. Then

AB = Bdiag(J1,...,Jn), B=(Bi,...,By). (1.19)

Proof. As mentioned above, AB; = B;J; for each i. These relations in turn
equivalent to (19).

Matrices A and A = B~*AB are called similar. Lemma 1.3 can be reversed: if
B7'AB = diag(Jy,...,J,), B = (By,...,B,), where B; € C%*¢ and J; € C%*%i,
then columns of B; give a basis of an A-invariant subspace X;. This implies the
following spectral decomposition result [16].
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Theorem 1.3. To each eigenvalue v; of A corresponds an invariant subspace X;,
1 = 1,...,n, such that, for each i, transformation A : X; — X; has a single
eigenvalue v; and C® decomposes in direct sum of these subspaces. In particular, we
have (19) with o(J;) = {v;}.

Subspace X; is called the eigenspace of A corresponding to v;. Its dimension
is equal to the multiplicity s; of eigenvalue v; in (1.1). Indeed by (1.19) we have
B (2 — A)B =diag(z — J1,...,2 — J,), from where

det (2 —A) = 1_[Z det (2 —J;), det (z—J;)=(z—w)™,

where s; is the dimension of X;.

If Aisreal then polynomial (1.1) takes real values at real points z. In particular, to
each eigenvalue v corresponds the complex conjugate eigenvalue 7 of the same
multiplicity.

Lemma 1.4. If A € R*** then matrix B in theorem1.3 can be chosen so that
Bi:ijOTVi:l/_j.

Proof. It suffices to show that v; = 7; implies

To this end put f*(z) = f(2). If f is defined in a neighbourhoodof o(A) then
f* is defined in a neighbourhoodof o(A). If M is the minimal polynomial of A
then M* is the minimal polynomialof A. Applying ” *” to (1.8) one derives that
f(A) = f*(A). In particular, f(A) = f*(A) for real matrix A. Since (p;)* = p; for
v; = U; we get P; = P;, which completes proof of (1.20) and lemma.

A non-zero vector z € X satisfying equation (A — Vi)H—l x = 0is called eigenvector
(for (r = 0)) or adjoint vector (for (r > 1)) associated with v;. Putting z; = (A — 1;)" 7,
7=0,1,...,r, we get a chain of eigenvectors and adjoint vectors satisfying

(A—vi)zo=0, (A—v)x1=20,...,(A—1v))x, =2,_1. (1.21)

It is easy to see that vectors x; are linearly independent and generate an A-invariant
subspace. Comparing (1.15) and (1.27) gives that the matrix of A in basis (z;) is
Jordan v;-block. The following fundamental theorem belongs to C.Jordan [16].

Theorem 1.4. (C.Jordan) Each eigenspace X; of A has a basis consisting of chains
of eigenvectors and adjoint vectors. In particular, matrix B in theorem1.3 can be
chosen so that each J; is a direct sum of Jordan v;-blocks. These blocks are uniquely
determined up to a permutation.

Matrix J = diag(.Jy,. .., J,) is called the Jordan (normal) form of A. It is also
said that B brings A to Jordan form.

Equality (1.19) can be written as AB; = B;J;,i = 1, ... ,n. Obviously, columns
of B; are automatically linearly independent if J; consists of one block. In such case
eigenvalue v; is called simple. In terms of (1.1), (1.7), simplicity of v; is equivalent
to equality s; = 7;.

1.3. Matrix polynomials. Expression z—A playing an important role in subsection 1.2,
can be considered as first degree polynomial with matrix coefficient A. Consider
more general matrix polynomial of such type:

n—1 .
P(z)=2"— ijo a;z?, a; € C™, (1.22)
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which already appeared in the proof of theorem 1.1. Matrix polynomials are also
called z-matrices [17]. They are usually investigated using so-called elementary
transformations preserving the characteristic equation

det P(2) = 0. (1.23)

Following [18] let us consider these polynomials from the spectral point of view.
Namely, let us refer to roots v; of equation (1.23) as eigenvalues (of multiplicity
s;) of polynomial P(z). Matrix P~!(z) is a rational function with elements possibly
having poles at v;. The highest order of those poles is called the order of v;. Finally,
with polynomial P(z) associate matrix A € C™"*™ written in the n x n-block form

0o 1 0 ... O
0 0 1 ... 0

A= L , : (1.24)
ap a1 Ay ... QAp—1

For n = 1 this matrix coincides with ag.

Lemma 1.5. Matriz A and matriz polynomial P(z) have the same eigenvalues
and the corresponding multiplicities and orders (for v # 0) coincide.

Proof. For n = 1 it suffices to show that orders of eigenvalues of polynomial z— A
and matrix A = aq¢ coincide. By (1.5), (1.19)

B'(z— A)7'IB =diag[f(1),. .., ()],

where f(u) = (2 — u)™'. Applying formula (1.14) to f(J;), with » = r; being
the order of eigenvalue v;, we come to conclusion that r; is equal to the order of
eigenvalue of polynomial z — A.

For n > 1, everything follows from the matrix identity

11 1 ... 1 z 0 0 ... 0
0 z =z ... =z 0 22 0 ... 0

(z—=A) 1| . . . . . = . . |, (1.25)
00 0 ... Zn_l PO Pl P2 ... P

where Py(2) = ag+ a1z +...+ai2®, k=0,1,... k. Correctness of this equality is
verified by direct check.
If v is an eigenvalue of P(z) then, as in (1.21), vectors g, 1, . .., x, € C' defined
by equalities
P(v)xg =0, P)x1+ P'(v)xg=0,...,
PO (1.26)
7!

P(w)x, + P'(W)x,—1 + -+ zo =0,

are called a chain of eigenvectors and adjoint vectors of polynomial P(z) corresponding
to eigenvalue v.

Theorem 1.5. Adopting notation (24), equality AB = ByJy, where By € C***_ J, €
Coox%0 45 equivalent to

n—1 .
By =1 (bo,boJ, ..., boJ" ), boJ" = Zizo azboJi. (1.27)
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Here matriz Jy is a Jordan block if and only if columns of by € C**° form a chain
of eigenvectors and adjoint vectors of polynomialp(z).

Proof. In one direction this follows from the product rule for block matrices
(1.24) and (1.27). Conversely, let
ABO = BOJOJ BO :\l/ (b07 b17 R bn71)~
Then by (1.24)

n—1

biv1=0bjdo, j=0.1,..n—=1 Y aib;=bu1o,

which implies (1.27).
Let Jy = J be Jordan block (1.15) and x, ..., z, be columns of by. According
to (1.16)

=) (1) /(i — j)! 1>
(), = { L W)=t 2, (1.28)
0 y 1<
where f,(u) =u?, 1,7 =0,1,...,r. Applying (1.17) to (1.27), one obtains:
n—1
Z (‘]n)ji Tj = Z%Z (Jp)ji Lj-
J p=0 J
Substituting here expressions (1.28) and remembering that
n—1
P(z) = fu(z) — szo apfp(2)
we arrive to (1.26):
i ) : y (i—j)(V)$]:O7 ZZO? T
= (=)
Since these considerations can be reversed, the theorem is proven.
If | =1 write
P(z) :szl (z—v)”, s14+...4+sn=n, (1.29)
where v; # v; for © # j, and let J; denote Jordan v;-block of order s;. Put
bi = (1, O, ce ,O) € (Clxsi, Bz :\l, (bl, sz, ce ,biJn_1> S CnXSi,
(1.30)

B=(B,...,By) € Cv,

As PY(y;) =0, j=0,1,...,8 — 1, according to (1.26) matrix b; is composed of
a chain of eigenvectors and adjoint vectors z;R. Hence by theorem 1.5 and remark
at the end of subsection 1.2, matrix B is invertible and brings A to Jordan form

B'AB =, J=diag(Ji,...,J,). (1.31)

It is clear that eigenvalues v; of matrix A are simple. This follows from lemma
1.5 since for [ = 1 the order and multiplicity of eigenvalue v; of polynomial (1.29)
coincide and are equal to s;.

Notice that by (1.28) matrix B; in (1.30) is composed of columns

WO w)/jl, =01, 8 =1,
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where h(z) =] (1,z,...,2"1).

2. HYPERANALYTICITY IN THE SENSE OF DOUGLIS

2.1. Basic concepts. Suppose that matrix J € C**® is invertible and all its
eigenvalues v have positive imaginary parts, i.e. lie in the upper half-plane. Consider

in a domain D C C a continuously differentiable vector-function ¢(z) = (¢1(2), ..., ¢s(2))
of complex variable z = z + dy. This function is called hyperanalytic (or analytic

in the sense of Douglis) if its partial derivatives satisfy

99 _ ;00 _,
Jy Ox
For J = i this relation coincides with Cauchy-Riemann equations so this definition
gives the usual analyticity. In general case, in order to emphasize dependence on
J, function ¢ is called a J-analytic function. 3
If matrix B € C**® is invertible then substitution ¢ = B¢ transforms (2.1) into

06 -0p
dy B Jax N

with a conjugate matrix J = B~'JB. In other words, vector-function ¢ is J-
analytic in D.
By Theorem 1.3 matrix B = (By, ..., B,), Br € C***t can be chosen so that

J =diag(Jy,...,Jm), o(Jx) ={v}. (2.2)

In this case by introducing the block form (¢, ..., @) of vector ¢ system (2.1)
splits into collection of systems

00 0
R St 2

oy Ox
In other words, block components ¢, are Ji-analytic functions.

By Theorem 1.4 one can also achieve that all matrices Jj in (2.2) are Jordan
blocks (in this case v may repeat and n is the total number of blocks in Jordan
normal form of J). However in the sequel we do not impose on J additional
conditions of the form (2.2).

As was mentioned, (2.1) can be considered as an analogue of Cauchy-Riemann
equations. In the same spirit one can introduce the notion of monogeneity equivalent
to the existence of complex derivative. To each complex number ¢ = t; + ity € C
assoclate s X s -matrix

(2.1)

0. (2.17)

=0, k=1,...,m.

[t] =11+ tQJ, tj € R. (23)
Its eigenvalues are t; + v, v € o(J). In particular, [¢] is invertible for ¢ # 0. The
inverse [t]7! as a function of ¢ is homogeneous of order —1, hence its norm in C***
can be estimated as
[~ < Cle . (2.4)
If ¢ is hyperanalytic in D then for fixed z € D the condition of differentiability
reads

Pz +ty) — d(z) = tiga(2) + tady(z) +o(t) as t — 0.
Taking into account (2.1), (2.3), (2.4) we get

[t (2 +1) — d(2)} = ¢u(2) + 0(1) ast — 0.
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Thus at each z € D there exists limit

lim(t]~ {6() — ()} = ¢/(2). (25)
which coincides with the partial derivative ¢, at z. Conversely: suppose the limit
(2.5) exists for each z € D and the resulting function ¢’ is continuous. Then putting
ty = 0 and t = 0 in (2.4) we get ¢, = ¢', ¢, = J¢' for partial derivatives of ¢,
which means J-analyticity of ¢.

Thus the concept of J-analyticity may be defined by the monogeneity condition
(2.5). If ¢ € C"*1(D) then from its hyperanalyticity follows that all of its partial
derivatives up to order n are also hyperanalytic. Moreover,

¢(k) — @
oxk
may be considered as consequent "complex"derivatives ¢(0 = ¢, o) = ¢/, ¢ =
(¢') and so on. The rest partial derivatives according to (2.1) are given by
[o4d0)
oxk=royr
In subsection 2.2 will be shown that J-analytic functions are indeed infinitely
differentiable in their domains.

Along with s-vector functions ¢ equation (2.1) is considered for s x s-matrix
functions F'(z) under additional commutation condition: F'(z).J = JF(z) for all z.
The last requirement guarantees invariance of ¢ — F'¢ in the class of hyperanalytic
functions ¢. Then one also has (F¢)' = F'o + F¢'.

Basic examples of hyperanalytic functions are constructed using functions of
matrices. Let function f be analytic in an open set which, for each v € o(J),
contains the image of D under affine transformation

=JoW  0<r<k. (2.6)

2 =T +1iy = T+ vy. (2.7)

Then by (1.2) we get a matrix-function F'(z) = f([z]) defined for all z € D. Its
values commute with J and by Lemma 1.2 its partial derivatives are F, = f'([z]),
F, = Jf'([z]). Hence this function is hyperanalytic and

{F([zDY = r(lzD)- (2.8)

Obviously [z] can be substituted by [z — 2] with fixed zy. In particular, for each
integer k, matrix [z — 2]® and vector [z — 2]*c, ¢ € C?, are hyperanalytic. Thus
the finite sums

Zk[z — zo)Fcr, ¢ € C* (2.9)
are rational J-analytic functions. For £ > 0, these sums provide J-analytic polynomials.

There exists an invertible linear transformation sending analytic functions to
J-analytic functions.

Theorem 2.1. Let J have block-diagonal form (2.2) and correspondingly s-vectors
have the form f = (fi1,..., fm) with sg-vector functions fy. Let ¢ be a J—analytic
function in D with ¢ = (¢1,...,¢m) € C®°(D) and Dy, be the image of D under
affine transformation x = x + iy — x + vxy. Then the formula

s—1

or(x +1y) =

r

T

| <

rl (Jk—vk)T¢,gr)(x+yky), E=1,...,m (2.10)

Il
o
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gives a one-to-one correspondence between ¢ and s-vector 1 = (Y1, ..., 1y, where
sg-vector function Yy is analytic in Dy, k=1,...,m.

Proof. It suffices to consider the case when m = 1, i.e. when matrix J has a
single eigenvalue v. In such case matrix J = v is nilpotent:

(J—v)° =0. (2.11)

Introduce a linear operation in C*°(D) by

exp {y(J - ”)a%} = yi(J - ”)ia(?;' (2.12)

il

By (2.11) this sum is finite, it terminates at i = s — 1.
—Z 2

Writing relation e e = 1 in the form of series shows that this operation is
invertible and the inverse is exp(—yJy0/0x), Jo = J — v. By definition (2.12) we

have:
d d 9\ Ykl a\"
(G = 7a) o () = Tt () +

which gives

0 0 0 0 0 0
(a—y - Ja?) P (y‘f%) e (yJOa—x) (a—y - ”%) |

Hence ¢ satisfies equation (2.1) if and only if vector-function v = exp(—yJyd/0x)
satisfies equation

ou ou

3y Vo = 0. (2.13)
Under transformation (2.7) this equationturns into Cauchy-Riemann equation .
In other words, function® defined by wu(z,y) = ¢ (z 4+ vy) is analyticin domain
{z +vy|x+iy € D}. Combined with relation ¢ = exp(yJo0/0z)u this completes
the proof.

Notice that summation in (2.12) is actually over 0 <
the order of eigenvalue v. Correspondingly, in formula (2.1
0 <r <rp—1, where r; is the order of v.

If f = 1 is a scalar functionthen formula (2.10) defines a J-analytic matrix-
function I = ¢. Taking into account (1.14) this matrix-function coincides with
f([2]) introduced above.

As an illustration consider function f(t) = t*p(Int) in some sector of complex
plane with vertex ¢t = 0, where ( € C and p is a scalar polynomial. Write

{t'p(Int)}® = tSF*p(Int), k=0,1,..., (2.14)

i < r — 1, where r is
0) summation goes over

where polynomial p, has the same degree as p and is defined by

pu(t) = [ (C i+ dfdop(t).
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Substituting this into (2.10) we get
k(g + v C—k
AP = 3= e ) )"
k>0 :

In polar coordinates x = rcosf, y = rsin € this takes the form

pnf]) = ¢ 3B o),

-k Lk
R;(6) = Z sin” 0 (cos + vsin ) h,(f) [In(cos § + vsin )] (J — v)¥.

k!
k>0

All sums above are finite since h; has the same degree as h. Thus R; = 0 for ¢
bigger than this degree.

Notice also the following relation between analytic and J-analytic functions. Let
X (D) be a R-linear space of functions continuous in D. Let us say that X (D) is a
uniqueness class for equation (2.13) if each solution from this class is constant.

For example, the class of functions u € C'(D) vanishing on some arc I' C D is a
uniqueness class. Indeed, transformation (2.7) sends solutions of (2.13) into analytic
functions in {z 4+ vy,z + iy € D} so this follows from the classical uniqueness
theorem for analytic functions.

Another example is as follows. Suppose D has piecewise-smooth boundary and
X (D) consists of continuous and bounded functions in D with the real parts
vanishing on the boundary. Then X (D) is a uniqueness class for (2.1), which can
be shown in the same way as above. The following lemma is also proved along these
lines.

Lemma 2.1. Let J be triangular and X (D) be a uniqueness class for equation
(2.7) for each v € o(J). Then X (D) is a uniqueness class for equation (2.10) as
well. In other words, if ¢ = (¢1,...,¢s) is J-analytic with all components ¢y €
X(D), then it is constant in D.

Proof. Let matrix J be lower triangular, i.e. Ji,. = 0 for £ < r. Then diagonal
elements v, = Jy, are eigenvalues of J and (2.1) can be written as

0oy 0p1 0 [oJ% d9 091
Y ay P

2
= J21

dy Y ox

y "Vor T

s—1

a¢s a¢s Z J agbk

dy Y0 T oy

k=1

By assumption ¢; € X (D), so that from the first equation follows that ¢; =
const. Hence the second equation transforms into (2.7) with v = v, and by the
same argument ¢, = const. Repeating this procedure we get ¢ = const in domain
D.

It is often convenient to use complex derivatives

0 0 o, 0 0 o,

5 =0 oy 20 = 5o+ 5y (2.15)
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In this notation system (2.1) is written as

9¢ O
=~ Yo
Obviously, eigenvalues ¢ of matrix @ satisfy |¢| < 1.
Since z +z Q = 2(1 — iJ)(z + Jy), all considerations can be made for this
system by substituting everywhere [z] by matrix zg = z + Z Q). In particular, (2.14)
becomes

Q= (1—4i)) Y1 +iJ). (2.16)

=k
Z _
0z) = 3@ -0 v+ a2, 0@ = {ah
k>0
The picture is especially simple when o(J) = {i} and matrix @ is nilpotent.
For example, the preceding formula takes the form

6 = 3= Q@ M), (@) = {0 217)

k>0

2.2. Cauchy integral. To get Cauchy integral for hyperanalytic functions it is
sufficient to substitute dt/(t — z) by its matrix analogue [t — z]7![dt], where the
matrix differential [dt] = d¢ + J dn has the same sense as in (2.3).

Let ¢ be continuous in a compact domain D with piecewise-smooth boundary
[' and J-analytic inside. Then applying the Green’s formula to the left hand side
of (2.1) we get

/F [dt]e(t) = 0, (2.18)

which is an analogue of Cauchy theorem. Contour I' is oriented so that D lies on
the left of it.
Further, for each integer k and z € D, one has

1 —1 _ 07 k # _17
Indeed, consider in Imwu > 0 analytic function
1
F0) = 5z [ (€= uln = )" + ud) (220)
i Jr,

where z = x + iy,t = £ + in. Obviously, for a fixed v = v, transformation (2.7)
leaves the real axis and upper half-plane invariant. Applying it to integral (2.20)

we get
_ 1 Foon\kF g 0 ) k 7& _17
f(“>_2_m/r~0(t_z) dt = { 1 k=1
By Theorem 1.2(b) this implies (2.19).
Using (2.19) it is easy to get Cauchy formula

b(z) = —— /F[t — 2] dt)é(t), =€ D. (2.21)

2w

Indeed, by (2.19) it suffices to show this assuming that ¢(z) = 0 (point 2 €
D is fixed). Applying formula (2.18) to function ®(t) = [t — 2]7'®(¢) in domain
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D N {t,|t — z| > €}, where € > 0 is sufficiently small, one gets:

Qﬁw—erM¢@::/ t— 2] dr) o (t) =

[t—z|=¢
271— . . .
= / (€] [i ) (2 + ™) db.
0

The right hand side of this equality continuously depends on 6 and vanishes for
e — 0 since by assumption ®(z) = 0. This completes the proof of (2.21).

The integral in (2.21) defines a function in D which can be differentiated under
the sign of integral using (2.8). Thus ¢ is infinitely differentiable and its complex
derivatives ¢(™ are expressed as

|
M (2) = —— [ [t — 2" [dt]o(t 2.22
0(:) = g [ =2 o) (2.22)
Cauchy formula has a number of corollaries some of which we delay till subsection
2.3 and the others are collected in the following statement which can be proven in

a standard way.

Theorem 2.2. (a) Let ¢r(2) be hyperanalytic in D and converge to ¢ uniformly

on compact subsets of D. Then function ¢ is also hyperanalytic and gb,(cn) — o™ in
the same sense.

(b) Let function ¢ be continuous in D and hyperanalytic in D\y, where v is a
smooth arc. Then ¢ is hyperanalytic in the whole of D.

Proof. (a) Without restricting generality we may assume that domain D is
bounded and its boundary I' is piecewise smooth and function ¢ is continuous in
D.

Applying (2.21) to ¢ and taking the limit as k — oo, we see that ¢ is a
hyperanalytic functionin D. Using (2.22) we can analogously show that qb,(cn) —
™ uniformly on compact subsets of Dy.

(b) Without restring generality we can assume that 7 connects two points of
I' and entirely lies in D except its endpoints. It is sufficient to show that ¢ is
a hyperanalytic functionin D. Let Dy, D; be the two domains on which D is
decomposed by arc . Then applying (2.18) and (2.21) to Dy, k = 0,1, we have:

1 - o(2) z € Dy

— t— 2] M dte(t) = ’ ’

s = ety = { §F 0 2EDe

Adding these equalities together and taking into account that the integrals over
the common arc cancel, we come to formula (2.21) which holds for all z € D. This

implies that ¢ is J-analyticin D.

2.3. Taylor and Laurent series. By analogy with the classical case series (2.9)
over all integer k can be called Laurent series while its part with £ > 0 can be
called Taylor series. If its partial sums converge uniformly on compact subsets then
the sum is hyperanalytic.

For studying convergence it is convenient to define norms in C* and C**¢ as the
sum of absolute values of all components. Then

|Ax| < [Allz], [AB| <|A]|B] (2.23)



19

forall z € C°, A, B € C***.
Transformation (2.7) sends the unit circle onto ellipse with half-axes a, and b,.
Thus

b, < |lv+vyl <a, 2°+y*=1 (2.24)
Taking x = 1, y = 0 we get inequalities b, < 1 < q,. Put
a4 urgﬁ}f) Gus veol(d) =%

Lemma 2.2. One has the estimates
[2]"] < Calef*, k>0,
[2"] < CVHl, k<o,
where constant C' > 0 only depends on J. .
Proof. Let B"'JB = J and [Z] is determined by J as in (2.1). Then B~![z]*B =
[Z]*. From this and (2.23) we get
12" < BI1B7Y|[2]"]-

Hence without restricting generality matrix J can be taken in the form (2.2) with
Jordan blocks Ji.. Working blockwise we can assume that J is a Jordan block (1.15).
In this case explicit expression for matrix [z]* = fi(J), fi(u) = (z+ uy)*, is
given by (1.16). Combining this with (2.24) we get estimates (2.25).

(2.25)

Theorem 2.3. (a) Let ¢ be hyperanalyticin domain D which contains the circle
{|z = 20| < qR}. Then in {|z — 20| < R} function ¢ is developable in an absolutely
and uniformly convergent Taylor series
=1
$(z) = ) Pl 20]" 6™ (). (2.26)
k=0
(b) Let functiond be hyperanalyticin domain D which contains the annulus
{g7'Ro < |z — 20| < qR1}. Then in {Ry < |z — 20| < Ry} function¢ is developable
in Laurent series

+o00
1
¢(z) = kz_oo[z — 2/ er, o = 5 r[t — 2] *Hdt] o (1), (2.27)
where T' is the circle {|z — 29| = R}, Ry < R < Ry, oriented counterclockwise.

Series Y 5o and )., converge absolutely and uniformly in domains |z| < Ry
and |z| > Ry, respectively.
Proof. (a) For small € > 0, the circle I' : {|z — 29| = q(R + ¢)} lies in D so by
Cauchy formula
1
o) = o= [1t= A7l 60. =zl < R (2.28)
i Jp
Write [t — 2] = [t — 20) (1 — [t — 20] '[2 — 20]) and use Lemma 2.2 to get that

e O S SN R R

converges absolutely and uniformly with respect tot € ', |z—29| < R. Substituting
this into (2.28) we get (2.27), where & > 0. Applying formula (2.22) to the integrals
defining ¢, one gets (2.26).
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(b) Let € > 0 be so small that T'y : |z — 2| = ¢(R1 +¢) and Iy : |z — 2| =
q¢ '(Ro — ¢€) lie in D. Then by Cauchy formula

o) = 5 [ =700 - oo [ B-aae.  (229)
where Ry < |z — 29| < Ry. Acting as in (a) we come to
0(2) = 55 [ =27 ol) = Yl =l

k>0

where ¢y, is defined as in (2.27) for I';. By cauchy theorem the latter circle can be
changed to I'.
For the second integral use

[t — 2]t = [z —2)7" Zkgo[t — 2] [z — 2",

which converges absolutely and uniformly for ¢t € Ty, |z — 29| > Ro. As above we
get
1 _
Bul) = 5 [ -2 60 = =3, -l

27t Jr,

where ¢y, is defined as in (2.27) for I'y, which again can be changed by I'. Substituting
this into (2.29) we get (2.27).

Point zj is called an isolated singular point of function ¢, if domain D contains
some punctured neighbourhood {z, 0 < |z — zy| < R}. We say that ¢ is of order r
in zg if function |¢(z)||z — 20| ™" is bounded in a neighbourhood of z.

Theorem 2.3 permits to give another version of this definition. Namely, function ¢
is of order r at zy if and only if ¢, = 0 for k¥ < r in (2.17) or, equivalently,
function [z — 2] "¢(z) is hyperanalyticin a neighbourhood of zy. In particular, for
r > 0 the singular point zy is removable. Indeed, if ¢ has order r at zy, then by
(2.25), (2.27) we have estimate

lex] < MRF, (2.30)

where constant M > 0 depends only on k£ and Ry < R < R;. Since Ry can be
taken arbitrarily small this implies that ¢, = 0 for k£ < r. The converse is evident.

Another corollary of Theorem 2.3 is the following uniqueness result: if ¢(z,) =0
and sequence {z,} has an accumulation point in D then ¢ = 0 in D. Combined with
Theorem 2.2(b) this gives another version of uniqueness theorem: if function ¢ €
C(D) is hyperanalyticin D and vanishes on a sub-arc of the boundary then ¢ = 0
in D. The proof is the same as in the analytic case [19].

As usual one may add oo to C and get the Riemann sphere C = C U {oo} with
the natural topology. The concept of isolated singular point is also applicable for
zo = 00. The order r at oo is determined by the boundedness at oo of the function
|2]7"|¢(2)]. Taking in (2.30) the radius R to tend to oo we see that this is equivalent
to ¢x = 0in (2.27). If » < 0 point oo is called a removable singularity. For r = —1,
it is usually said that ¢ vanishes at co as in the case of analytic functions.

Similarly, one gets the Liouville theorem: if ¢ is hyperanalyticand bounded in
the whole plane then ¢ is constant. Indeed, one has the estimate (2.20) with » = 0.
Taking R — 0 for £ < 0 and R — oo for k > 0, we get ¢, =0, k # 0.
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As a corollary we get decomposition into simple fractions. Namely, if ¢ is

hyperanalytic on the Riemann sphere except the points z;, j =1, ... ,n—1, z, =
oo, where it has finite orders r; <0, j =1, ... ,n—1, r, >0, then

-3 Y- e

7j=1 k=0

In conclusion we remark that estimates for the radii in Theorem 2.3 are not
exact. Suppose J has a single eigenvalue v. If v =i then a = b =1 in (2.24) and
situation with the convergence radii is analogous to the analytic case.

In general, put ¢(2) = ¢(z), 2 = x+wvy. Function ¢ is defined and J-analytic
in D which is the image of D under transformation z — %, where J = iv~'.J. Taking
into account (2.24) we conclude that exact conditions on radii are that the circle
{|Z = 2] < Ra} in Theorem 2.3(a) and the annulus {Rob < |2 — 2| < Rya} in
Theorem 2.3(b) are contained in D.

2.4. Indefinite integral. In the class of functions hyperanalyticin D consider
equation

o™ = 4, (2.31)
defined by the operator of k-th derivative. For 1) = 0, all solutions are J-analytic

polynomials
k—1

p(z) = [ ¢
j=0
of degree not exceeding k—1 as follows from Theorem 2.3(a). This set of polynomials
is denoted by P_1.
Theorem 2.4. If D is simply connected then the integral
1 z
= — "t (t 2.32
o) = oy e~ o) (2.32)

does not depend on the integration path and defines a solution of (2.31). For an
arbitrary D, function$(z) does not depend on the integration path if and only if

/[t]i[dt]z/}(t) =0, i=0,1,....,k—1, (2.33)

for any contour I' C D.

Proof. We prove first the second part of the theorem . For k = 1, this statement
is nearly evident. Indeed, according to (2.1), (2.3) for t = £ + in, expression

g _ 90 06
d d —d
1] /(1) = G de + 5 dn

is a full differential of function ¢ so that

/ﬂmwwzmw—¢@)
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In particular, closing the arc Z1z; we get that (2.24) is valid for ¢» = ¢’. Conversely,
let 9 satisfy this condition. Let ;, 7 = 1,2, be two arcs joining points 2y and z in
domain D. Choose a similar curve «y, so that the curves I'; = v; U7y, j = 1,2, are
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contours, i.e. homeomorphic to the circle. Putting in (2.26) I'' = I';, we conclude
that integral

¢@=fwww

20
does not depend on integration path. The fact that ¢/(¢) = W(¢) in the sense of
definition (2.2) permits direct verification.

The general case k > 2 reduces to the preceding one. For 1 < j < k—1, we have

[t]j ¢(k) — ([t]j ¢(k—1))/ _; [t]j_l qﬁ(k_l)‘

Repeating this procedure we see that, for ¢ = ¢®), functions [t]’¢ are full derivatives.
Thus conditions (2.24) are necessary for solvability of equation (2.21) in the class
of single-valued functions. Conversely, assume that these conditions are satisfied.
Writing out expression [z — t]¥1 = ([z] — [¢])" " rewrite (2.23) in the form
k—1 1 .
o) = 3 = [ e,

.0] _1_.7' 20

j—
As was shown, here integrals do not depend on integration path. As above, direct
verification shows that function (2.23) is differentiable in the sense of (2.1) and
derivative ¢’ is defined by the same expression where k is substituted by & — 1.
Repeating this procedure we finish the proof.

As to the first part of the theorem , by Jordan’s famous theorem a simple contour
I' decomposes the plane in two parts one of which is bounded and the second is a
neighbourhood of co. Hence, if D is simply connected and I' C D, then the domain
inside I entirely lies in D so by Cauchy theorem condition (2.33) is automatically
fulfilled.

If condition (2.33) is not fulfilled then integral (2.32) depends on the integration
path and defines a multi-valued function. An example of such kind in domain
C\ {0} gives function

&(z) =In[z] p(2), p € Pp_1, (2.34)
first factor of which was already considered in subsection 2.1. Under a turn around
z = 0 counterclockwise its element ¢(z) = ¢o(z) considered in a neighbourhood

of z = 1, transforms into ¢(z) = ¢o(z) + 2mip(z). On the other hand, the k-th
derivative ¢ = ¢ of this functionis given by equality

P(z) = ; E;l—) 1_)! (k) [2]7*p* ) (2),

S

which defines a single-valued function .

Thus by Theorem 2.4 one of conditions (2.33) for a circle I around z = 0 should
fail.

Functions of the form (2.34) enable one to describe the branching of integral
(2.32) in a multiply-connected domain. Recall that domain D C C is called m-
connected if its boundary on the Riemann sphere C = C U {co} consists of m
connected components. For example, the boundary of C in this sense consists of
one point {oo} while the boundary of C\ {0} consists of two points z = 0 and
Z = 00.
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Theorem 2.5. Suppose D is m-connected, m > 2, and points z;, 1 < j <m —1,
lie in different components of C\ D. Then integral (2.32) is uniquely representable
in the form

d(z) = do(z) + Z_ In[z — z;]p;(2), (2.35)

where ¢o(2) is single-valued and p; € Py_q.

Proof. Suppose I'; € D, j = 1,...,m — 1, surrounds z; and leaves outside
points zg, k # j. Write (2.35) as ¢ = ¢¢ + ¢1 and let b = 1pg + 91 correspond to
kth derivatives of these functions.

By Cauchy theorem condition (2.33) of single-valuedness of (2.32) reduces to

/ [t)[dt]p(t) =0, i=0,1,....k—1, j=1,....,m—1. (2.36)
G
The space Py of vectors p = (pi, . . ., pm_1) With p; € P,_; has dimension ks(m—
1). Toeach p € PJ";" associate avector Lp = (Liyp € C°, 0<i<k—1, 1<j<m—1),
where L;;p is defined by left hand side of (2.36) with respect to ¢ = ;. Thus we
get a linear mapping L : P,:”:ll — Csklm=1),

By Theorem 2.4, equality Lp = 0 means that function ¢;(z) is single-valued.
As in the case of function (2.34) we verify that increment of element ¢; along I';
equals 2mip;. Hence function ¢, is single-valued if and only if p = 0. Thus L is a
one-to-one, hence invertible, mapping Pk”fll — CokOm=1),

Thus for a given right hand side ¢ of (2.31) there exists unique p € Pgﬁ‘ll such
that L;;p coincides with the left hand side of (2.36). By Theorem 2.4 function ¢y
from (2.35) is single-valued, which completes the proof.

As is clear from the proof, p; = 0 in (2.35) if and only ify) = ¢*) satisfies
(2.36) for considered j. In such case we say that function ¢ had no branching in
the component of D" defined by z;.

Let us consider the case when this component is {oo}. Let D be a neighbourhood
of 0o, so that D’ consists of m — 1 bounded components containing points z;, and
of co. Then, obviously, the following conditions are equivalent:

1) ¢ has no branching at oo;

2) > pj =01in (2.35);

3) in Laurent series of functiony = #* do not appear members with degrees
[} 1<) <k

Hence if ¢ has order —k — 1 at oo, then ¢ has order k — 1 and in (2.32) one can
take zp = o0.

3. ELLIPTIC SYSTEMS OF ARBITRARY ORDER

3.1. Representation of solutions. Consider in domain D a system of partial
differential equations of order n

Iy = O
_ ,——— =0 3.1
Dy ; O oy (3-1)

with constant real coefficients a, € R™!. Under its solution is understood a real
vector-function w = (uy, ..., ;) which satisfies (3.1) everywhere.
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Consider also matrix polynomial
Pz)=2"->» a.2" (3.2)

of degree n and scalar polynomial
X(z) = det P(2) (3.3)

of degree nl. By definition system (3.1) is elliptic if equation x(z) = 0 has no real
roots. Since coefficients of y are real its roots come in complex conjugate pairs so
that the number

nl = 2s (3.4)

is even and the upper half-plane contains exactly s roots.
Equation (3.1) is a canonical form of a more general equation

- o™u
P
Tz; ( )axrfnyr
Its ellipticity means that x(z) = det ) a¢)2" has degree nl and its roots are non-

real. In particular, matrices a() and a(,) are invertible and this equation can be
reduced to the canonical form (3.1). The ellipticity condition is equivalent to

det (D" NN ) £0

for all non-zero A = (A\j, \y) € R?.
The general solution of elliptic system (3.1) can be expressed through hyperanalytic
functions. This is especially visual for elliptic system

ou ou

— —— =

oy ox
of first order. Then polynomial (3.4) reduces to P(z) = z — a so that ellipticity
means that a € R™! has no real eigenvalues. In particular, | = 2s is even. By

Theorem 1.3 and lemmas 1.3, 1.4, matrix a can be transformed to a block-diagonal
form

0 (3.5)

B7'aB = diag(J,J), B = (b,b); J € C™* becC™, (3.6)
where eigenvalues of J lie in the upper half-plane. Putting u = bU transforms (3.5)
into
oU |0y — diag(J, J)OU |0z = 0.
By (3.6) this substitution sends real vector u into a complex vector U of block

structure (¢, ¢), where s-vector function ¢ satisfies (2.1) and ¢ satisfies the complex
conjugate equation. Changing now ¢ to ¢/2, we get the following result.

Theorem 3.1. In notation (3.6), each solution u = (uy, ..., w) of (3.5) is uniquely
representable as

u = Reb¢ (3.7)

with some J-analytic functiong. This functionis related to u by ¢ = 2cu, where
ceCs (¢,c) =B
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By theorem 1.3 matrix B from (3.6) can be chosen so that (2.2) is fulfilled for
matrix J. In accordance with theorem 1.4 J, can be taken as Jordan blocks. If
Jpy € Co*%k kb =1,...,m and b € C™* is written as b = (by,...,by), b € C>%k,
then (3.7) is transformed into representation

u= ZZ; Re by, (3.8)

with Ji-analytic functions ¢y.
Consider now an elliptic system of order n > 2. By subsection 1.3, with polynomial
(3.2) is associated the matrix A € R™*™ written as in (1.24):

o 1 0 ... O
A o o0 1 ... 0 ' (3.9)
ag Qap Ay ... QAp—1

By theorem 1.5 it can be brought to a block-diagonal form

B7'AB = diag(J,J), B = (B, By),
(3.10)
By =) (b,bJ,... . bJ"Y), beCx.

As shows lemma 1.5, in notation (3.3), (3.4) eigenvalues of J € C*** are the
roots of characteristic equation x(v) = 0 in upper half-plane and their multiplicities
and orders coincide. From theorem 1.5 it follows also that matrices b € C*** and
J € C*** can be considered as solutions of

bJ" = Zn:; a,bJ". (3.11)

If s-vector-function ¢(z) satisfies (2.1) then from (2.6) and (3.11) follows that
[-vector-function u = Re b is a solution of (3.1). As the following theorem shows,
the converse is also true but, unlike to theorem 3.1, function ¢ is in general multi-
valued.

Consider the class P, of those polynomials p(z) = ¢y + [2]c1 + . .. + [2]"2¢, o,
cr € C® which are J-analytic functions. The following decomposition is standard
[5].

Lemma 3.1. (a) The space P,_5 decomposes into direct sum of two subspaces
P’={pe P, 5| RebJp"(0) =0, 0<k<r<n-1},

(3.12)
P'={p€ P, 5| RebJp"(0)=0, 0<r<k<n-—1},

having the same dimension (n — 1)s (over R).

(b) For p € P,_5, functionRebp = 0 if and only ifp € P°. In particular, each
polynomial

q(z,y) = Z cijv'y’, ¢y € R (3.13)
i+j<n—2

is uniquely representable in the form g = Rebp, p € P

Proof. (a) Put Ly ,.p = RebJ"p")(0) and consider linear mappings L° = (Ly,., 0 <
k<r<n-1}and L' = (Ly,, 0 <7 <k <n—1}. As 25 = nl they both act as
P,_y — R™ Vs Hence L = (L°, L") acts between spaces of dimension 2(n — 1).
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Let Lp = 0 for some p € P,_5. Then we have
RebJ’"p(k)(O) =0, 0<r<n-—1,
for all £ =0,1,...,n — 2. Using notation (3.6) this can be rewritten in the form
Bry =0, xp = (p™(0),p®(0) € C™.

Since B is invertible x; = 0, hence p = 0.
Thus L is an isomorphism between P,_, and R~ D5 x R(®=Ds In particular,
P°NP'=0udimP’ = (n—1)sso that P, , = P @ P
(b) Condition Rebp = 0 is equivalent to
i

axk—rayr

By (2.6) and (3.12) they are in turn equivalent to p € P°. Since the space X
of polynomials (3.14) has dimension (n — 1)s this implies that mapping p — Re bp
gives an isomorphism between P! and X.

(Rebp)(0) =0, 0<r<k<n-—2.

Theorem 3.2. (a) In notation (3.10) each solution u(x,y) of (3.1) in simply
connected domain D is representable in the form (3.7) with some J-analytic function ¢
and uw =0 implies ¢ € P,_s. Function ¢ can be recovered from u by

o)) o\, O
) 9N e T 3.14
¢ ng axnflfrayr ( )
where for B~' =] (Cy, Cy), matrices ¢, € C*! are defined by Cy = (co, ..., Cn1).
This functionis uniquely representable as ¢o + po, where py € P! and ¢ satisfies
conditions

6N(2) =0, 0<r<n-—2 (3.15)
at a fived point zy € D.
(b) Let D be m-connected, m > 2, and points z;, j = 1,...,m — 1 belong to
different components of C\ D. Then in (3.7) function ¢ is multi-valued and uniquely
representable in the form

d(2) = ¢o(2) + po(2) + Z In[z — z;]p,(2), (3.16)

where function ¢g is single-valued and satisfies (3.15), and
peEP, peP j=1,...,m—1 (3.17)
Proof. (a) Let [-vector-functionu € C™(D) satisfy (3.1). Set

oy

U=Us,....Upy), U =—2""
( 05 ) 1) 8n—1—rxary

(3.18)

In this notation (3.1) takes the form
OU,1 < U,
dy B Z a’“%

r=0

=0.
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Adding n — 1 evident relations

aUr aUT+1
ay ax r Y Y ) n Y
in accordance with (3.9) for function U we get the system
ou
[ Aa_U = 0‘
y ox

Applying theorem 3.1 with notation (3.11) we arrive to U = Re By with some
J-analytic function¢. Taking into account (3.10), (3.17) this representation can be
rewritten as
oty
axnflfrary
Let a J-analytic function ¢ be a solution of equation 1) = ), considered in
subsection 2.4. Then by (2.6) we have

8n—1u an—lu

al.n—l—rayr (Re b¢) - al.n—l—rayr

hence u — Rebg is a polynomial of the form (3.14). Applying lemma 1(b) we get
the following conclusion.

Each solution u of system (3.1) is representable in the form (3.7) with some
multi-valued J-analytic function ¢ and its (n—1)th derivative (18) is single-valued and
related via (3.14) with the vector (3.18). In particular, if u = 0 then U = ¢ =0
hence ¢ = p € P, 5. In fact, by lemma 1(b) one gets p € P! ,.

(b) By theorem 2.5 function ¢ can be uniquely represented in the form (2.35).
It is convenient to decompose ¢y in two summands one of which satisfies (3.15)
and is again denoted ¢y while the second belongs to P, . Then for u we get
representation (3.16) where ¢q is single-valued and satisfies (3.15) and p; € P,_o,
0<;<m-—1.

Let contours I';, j = 1,...,m — 1 be the same as in the proof of theorem 2.5.
Along T'; element ¢ gets the increment p;(z). As functionwu is single-valuedin
multiply connected domain D we have relations Rebp; = 0, j = 1,...,m — 1.
By lemma 1(b) they are equivalent to p; € PY. As to polynomial py € P,_5 in
(3.16), by lemma 2.1(b) it can be chosen to satisfy py € P*.

It remains to show that representation (3.16) with additional conditions (3.15),
(3.17) is unique. If v = 0 then as mentioned above we have ¢ = p € P, 5. In
particular, function

=RebJ"Y, r=0,1,...,n— 1.

m—1
p—do—po=> Infz—zlp
j=1

is single-valued which is only possible if p; = ... = p,,_1 = 0. Thus p = ¢+ py and
by (3.15) we get p = po, ¢o = 0 so that Rebpy = 0, py € P'. By lemma 3.1 this
implies py € P° N P!, i.e. py = 0. Hence v = 0 in (3.16) implies ¢p = 0 and p; = 0,
0<;<m-—1.

Suppose that D is a neighbourhood of co and partial derivatives of (n—1)th order
of solution u(z,y) to (3.1) satisfy the following estimate in a neighbourhood oo:

oty

Fr— <COlz[™ 0<r<n-—1 (3.19)
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with a constant C' > 0. In virtue of (3.14) functiont satisfies ana analogous
estimate, i.e. is of order —n at co. As was mentioned in subsection 2.4, in this case
¢ is of order n— 1 at oo and has no branching at co. This is equivalent to > p; =0
in (3.16). Correspondingly, conditions (3.15) can be changed to ¢q(0c0) = 0.

As in the case of first order systems, the choice of matrix B in (3.6) can be made
so that (2.2) is satisfied. Then assuming J;, € C**%% b = (by,...,by,), by € C>*%k,
representation (3.16) can be written in the form (3.8) with Ji-analytic matrices ¢.
Expression for ¢, in (3.16) is written with respect toJ, and conditions (3.15),
(3.17) are understood in this sense.

Substituting representation (2.10) instead of ¢ in (3.7), with s;-vector-function s

Uk, k=1,...,m, we get a representation
m s—1 yr
u(z,y) = Re Z Z bkﬁ(Jk — yk)’"w,gf) (x + vpy) (3.20)
k=1 r=1

of the general solution to (3.1) in terms of s-vector b = (¢1,...,1y,), with the
components 1, which are analytic in Dy = {x+1y | x+iy € D}. This representation was
obtained by A.Bitsadze [11].

3.2. Complex systems. Let coefficients of (3.1) be complex: a, € C™*!. Then
solution u is a complex [-vector-function . Ellipticity condition is defined analogously

but the number nl is not necessarily even and the roots of characteristic equation

can be arbitrarily distributed in upper half-plane and lower half-plane . The corresponding
amounts of roots are denoted s*. Instead of (3.4) here one has s* + s~ = nl. Cases
when s™ = 0 or s = 0 are not excluded. If st = s~ then equation (3.1) is called
correctly elliptic.

For a first order elliptic system (3.50), ellipticity again means that a € C*** does
not have real eigenvalues. In particular, equation (2.1) defining J-analytic function s
is elliptic with s™ = s, s7 = 0.

By theorem 1.3 matrix a can be reduced to a block-diagonal form analogous to
(3.6)

B~'aB = diag(J*,J-), B = (b",b),

(3.20)
JE e CsExst  pE c Clxst
As a result we arrive at representation
u=">b"¢" +b ¢ (3.21)

of the general solution to system (3.5) via a pair of J*-analytic functions ¢*.
Matrix B in (3.20) can be chosen so that J* satisfy condition

JE =diag(J7,..., o), o(Jy) = v (3.22)

Then (3.21) changes to

u=y bl Y bop. (3.23)
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The same takes place for systems of order n > 2. In this case matrix (3.9) is
complex and (3.10) is substituted by
B'AB = diag(J*,J-), B = (B*,B"),
(3.24)
BE =] (b%,bEJ%, . bE(JE)Y), b e Ol
Let [2]* be defined by J* as in (2.3) and P, _» be the space of all pairs p =

(p*,p7), of JE-analytic polynomials p* of degree n — 2. Correspondingly, consider
in P,_, subspaces P7, j = 0, 1, changing Re bJ"p™ in (12) by expression

br It ()P 4+ b g (p)®)
Then analogously to subsection 3.1 we get the followmg analog of theorem 3.2.

Theorem 3.3. In conditions of theorem3.2, each solution u(x,y) of a complex
equation (3.1) is uniquely representable in the form (3.21) with J*-analytic function s

o*(2) = o7 (2) + pi(2) + Z In[z — z] pj[(z), (3.25)

where ¢g and p; = (p),p;) satisfy condztzons (3.15), (3.16).

If matrix B in (3.24) is chosen so that J* are block-diagonal of the form (3.22)
then representation (3.21) transforms into (3.230 with representations (3.25) for
¢f. For real systems we have s* = s, J* = J, b* = b, so that up to the factor 2
representation (3.21) transforms into (3.16).

Each complex system can be reduced to a real one with respect to 2[-vector
@ = (Rew, Im u). The easiest way to do that, is to add the complex conjugate of
equation (3.1) and take into account the connection

A A

between 4 and @ = (u,w). Then we come to a system

o _ i 6,28 (3.26)
oyn — " Oz Oy '

with real coefficients
P Rea, —Ima,
"\ Rea, Rea, '
Let P and A are, respectively , the characteristic polynomial (3.2) and associated
matrix (3.9) for this system. Since

. (1 i\ '[a 0 1 i
@ =11 = 0 a 1 —i )’

we have
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In particular, the characteristic equation of system (3.26) transforms into det P(z) det P(z) =
0 and matrix A can be reduced to the form (10), where J = diag (J*,.J7).

3.3. The case of one equation. For [ = 1, system (3.1) transforms into a scalar
equation with coefficients a, € C. In this case it is completely determined by its
characteristic equation det P(z) = 0 which can be written as

mt + m- s
szl(z — )% szl(z — v )% =0, (3.27)

where Im V,f > 0and st +5 =n, sT = Zsf Denote by J,;t the Jordan block
of order sf with eigenvalue V,::. According to subsection 1.3 in this case matrix
B from (3.24) can be chosen so that J* have Jordan normal form (3.22). Then
bt = (bf,...,b-.) with row-matrices b = (1,0,...,0) € C*s% . Correspondingly,
representation (3.23) for solution of scalar equation (3.1) in the formulation of
theorem 3.3 transforms to

u=Y" 6+ Y o (3.28)

where (gbf)l denotes the first component of sf-vector gbf
As an example consider equation

st s

(adopting complex notation (2.15) for derivatives). Solutions of this equation are
called (sT, s~ )—polyanalytic functions. They were thoroughly studied in [20]. For
sT = s, we get equation
02 0?
ANu=0 A=—+ —.
“ ’ ox?2  Oy?
Its solutions are called s-polyharmonic functions (harmonic for s = 1).
Let J* be Jordan cells of order s* with eigenvalues v = i. Then representation (3.28)

for equation (3.29) transforms into

u= (¢ + (671 (3.30)
with J* —analytic sT —vector-function s ¢*. In the case of polyharmonic equation matrices
J* = J coincide and (3.30) reduces to

u = Re(¢); (3.31)

with a J-analytic function ¢.

By a remark at the end of subsection 2.1 function ¢ can be expressed via an
analytic vector-function ¢y by the formula (2.17) with nilpotent matrix @ = (1 —
iJ)71(1 + iJ). Evidently, this matrix is triangular with zeroes on the diagonal.
Consider the first component of vector equality (2.17):

s—1

@ =3 70 (2) (3.32)

r=0

with scalar analytic functions ¢, = (1/7!)(Q"¢™),. For s = 2, substitution of
(3.32) into (3.31) gives the well known formulas of Goursat [10]| for solutions
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of biharmonic equation. Analogously, combining (3.32) with (3.30) one gets a
representation for (s, s7)-polyanalytic functions

st—1 sT—1

u(z) = D FU () + DY (2)

using a family (¢F) of analytic functions. This representation can be obtained by
a direct integration of equation (3.29) if one considers z and Z as independent
variables, which is admissible in the case of real analytic functions.

3.4. Application to boundary value problems. Results of subsection 3.1 enable
one to reduce the general boundary value problem for equation (3.1) to a boundary
value problem for J-analytic functions. Using Cauchy integral from subsection 2.2
one can further reduce the latter problem to a system of singular integral equation s.
This program was realized in [21], [22] for domains with smooth and piecewise
smooth boundaries, respectively . For this reason below we only outline the reduction
scheme. Details can be found in [21].

Consider equation (3.1) in domain D C C with sufficiently smooth boundary
I' = 0D. Define in I' differential operators

8k+r

Bi: Z Bikraxk—ayr, izl,...S

k+r<n;

of orders 0 < n; < ny,... <ng=mnr (nr > n is not excluded). Here B, (t),t € T
denote sufficiently smooth 1 X [-matrix-functions on I'.
We seek for a solution u € C"(D) to (3.1) satisfying boundary conditions

(Biu)|. = fi, i=1,...,s, (3.33)

where f; are given [-vector-functions on I'.

Problem (3.1), (3.33) is called Fredholm (elliptic) if

(a) the homogeneous problem has a finite number k of linearly independent
solutions (in the chosen class);

(B) there exist &’ < oo linearly independent functionals on the given space of
right hand sides such that their vanishing on f = (fi,..., fs) is necessary and
sufficient for the solvability of the problem.

The difference A = k — k' is as usual called the index of the problem.

Substituting the representation (3.7), (3.16) of the general solution to (3.1)
into the boundary condition this problem can be equivalently reduced to the
corresponding problem for pairs (¢, p) consisting of a J-analytic function ¢ € C™(D)
and a family p = (p;, 0 < j < m — 1) of polynomials py € P and p; € P°,
j=1,....m—1.

Summands with p; in the boundary condition do not influence ellipticity of the
problem. For this reason the problem (3.1), (3.33) is Fredholm equivalent to the
problem

Re Y  [BusbJ"¢")| = fi, i=1...s

k4+r<n;

for J-analytic function ¢ € C™ (D).
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Let d/ds denote the differentiation operator on I' with respect toarclength.
Action of this operator does not influence ellipticity. Thus we can pass to a Fredholm
equivalent problem

d nr—mn;
Re Y <£> [BitrbJ"¢* 7]

k+r<n;

d

=fi, fi= <%> fi (3.34)

r

with homogenized orders of differentiations.

Let s = (s1,$2) denote the unit tangent vector on I' oriented positively with
respect to D. It is a sufficiently smooth 2-vector-function . If the differential operator
d/ds is considered as a boundary operator s,0/0x + $50/0y then

AN A
ds = Slal‘ Sgay ey

where dots denote lower order terms depending only on derivatives of functions
s1, So with respect toarclength. For (3.34) this gives a relation

Re Z [BikaJT(sl + SQJ)nr_nigb(nF) + .. ] = f;

k+r<n;

Presence of the lower order terms in this boundary condition does not influence
ellipticity of the problem. Hence the original problem (3.10), (3.33) is Fredholm
equivalent to Riemann-Hilbert problem

ReGo|.=f, f=(fi,....[s) (3.35)

for J-analytic vector-function ¢ = ¢("r). Here an s X s-matrix-function G is defined
by

G=l(Gi,....G.), Gi= > Bi,bJ (s1+s2J)"" ™. (3.36)

k+r<n,

For analytic vector-function s, there exists a well-known method of investigating
boundary value problem (3.35) based on the use of Cauchy integrals and singular
integral equations [23]. As was already mentioned, this method can be extended
to J-analytic functions [21]|. The condition

detG(t) £0, teTl, (3.37)

is equivalent to the ellipticity of the problem. For matrix-function (3.36), this
condition is just a different form of the famous Shapiro-Lopatinski condition for
boundary value problem (3.1), (3.33). As a rule, problem (3.35) is considered in
the class C*(D) of functions satisfying Hélder condition in D (i.e. belonging to
C* with some 0 < p < 1). Correspondingly, the initial problem (3.1), (3.33) may
be naturally considered in the class C"*0(D).

If D coincides with the upper half-plane the affine transformation (3.7) preserves
D so that in the conditions of theorem 2.1 analytic functions v, are defined in the
whole D.

Let us check that for ¢ € C*°(D) the analytic function 1 in representation (2.10)
belongs to the same class and coincides with ¢ on the boundary y = 0 of D.
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Lemma 3.2. Let functiony(z), z = x + iy be analyticin D and satisfy Holder

condition
W) = sup EV V@A (3.38)

ntzm |71 — 2t

with some 0 < p < 1. Then J-analytic function ¢ in representation (2.10) satisfies
an analogous condition {¢}, < oo and coincides with 1 on the boundary y = 0 of
the half-plane D. The converse is also true.

Proof. Applying Cauchy formula for to the hemi-circle {|z] < R, Imz > 0},
differentiating it, and taking the limit as R — oo we get

Y(t) — (o)
2m/ t_zm Lor—12,.. (3.39)
for each ty € R. Hence

with some constant C)., depending only on r and .

In particular, |y (2)] < C{1},y*, r > 1. Hence function ¢ from (2.10) is
continuous in D and coincides with 1) on the boundary. Differentiating (2.10) and
taking into account (3.40) we get the estimate |¢/(2)| < Cy#~! which implies that
{¢}, < 0.

The converse is proved analogously. Let {¢}, < oo and analytic function is
given by (2.10), where 3" is changed by (—y)". By Cauchy theorem from subsection 2.2,
for derivatives of J-analytic functions ¢ we have representation

60(2) = g [ 16— 27 ott) - ot
i Jg

From this we get an estimate analogous to (3.40) for ¢("). The rest of the argument
remains unchanged.

We turn now to the Riemann-Hilbert problem (3.35) in half-plane D (the wave
in notations is omitted). From lemma 3.2 follows that it is sufficient to solve this
problem for analytic vector-function ¢ and then return to ¢ using representation (2.10).

The situation is especially simple if GG is constant. Let a real s-vector-function f
be defined on R and {f}, < +oc. Then solution of problem Re Gy = f(t), t € Rin
the class of functions x(2), {1}, < oo, analytic on D is given by Schwarz formula

23]
vty =4 [ 98,

Strictly speaking, this formula is only applicable to functions f which are

O(|t|™!) at oo. In general case it is sufficient to approximate f by functions of
such type. From (3.41), in particular, follows that

@D(Z):i./R{ Lo ]G‘lf(t)dt+w(20)-

™ t—z t—2

Substituting this expression in (2.10) we come to an explicit solution of problem
(3.35) with constant matrix G € C*** for J-analytic functions ¢ from {¢}n < oc.
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If det G = 0 then there exists an infinite set of linearly independent analytic vector-
functions ¢ € C*°(D) for which Gi» = 0 on the boundary of half-plane D. These
functions can be chosen to satisfy

()] < C(+2))", r=0,1,...,s. (3.42)

In this case formula (2.10) gives an infinity of linearly independent J-analytic function s
¢ satisfying (3.42) and boundary condition G¢ = 0 on the boundary of half-
plane considered.

4. ELLIPTIC SYSTEMS OF SECOND ORDER

4.1. Strongly and weakly coupled systems. For applications, especially important
appear second order real elliptic system s

0%u 0%u 0%u

— == + 41— 4.1
oy? 052 ! oy? (4.1)
For such a system, the characteristic polynomial (3.2) is a matrix quadratic trinomial
P(z2) = 2? — a1z — ag, quantity s = nl/2 from (3.4) coincides with [ and expressions
(3.9) — (3.11) take the form

. 0 1 . B= b ﬁ ’
ap aq bJ bJ (4.2)

B7'AB = diag(J,J), b,J e C™.
Matrices b and J can be considered as solutions to equation
J? = apb + a,bJ, (4.3)

where

b b
det(bJ W) # 0. (4.4)

For n = 2, the space P,_, coincides with C so that (3.12) reduces to P° = {¢ €
C!| Rebé =0} and P! = {¢ € C'| RebJ¢ = 0}.

One of the basic boundary value problems for such system is the Dirichlet
problem which consists in finding a solution u to (3.33) in domain D satisfying
boundary condition

u‘r =f (4.5)
on its boundary I' = dD. Unlike to the case [ = 1 for systems this problem can

appear not well-posed. This fact was discovered by A.Bitsadze. In [24] was indicated
an elliptic 2 x 2—system with coefficients

ap =1, a1:i<(2) _02), (4.6)

for which the Dirichlet problem in the unit circle has an infinity of linearly independent
solutions. Later on A.Bitsadze [24] introduced a class of elliptic systems for which
Dirichlet problem is Fredholm. Such systems are called weakly coupled. In notation
(2.34) this class is defined by condition

detb # 0. (4.7)
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Correspondingly, the systems for which this condition is not fulfilled are called
strongly coupled.

Using (3.7) Dirichlet problem can be reduced to Riemann-Hilbert problem (3.35)
with constant coefficient G = b. For this reason condition (4.7) determining the
normal solvability of the latter problem is simultaneously an ellipticity criterion
for Dirichlet problem . Acting within the scheme of subsection 3.4 it is not difficult
to show that the index is equal to zero [21].

As shows a remark at the end of subsection 3.4, for strongly coupled systems the
homogeneous Dirichlet problemin the upper half-plane has an infinity of linearly
independent solutions. The following lemma shows that the concept of weakly
coupled system is well-defined, i.e. does not depend of the choice of block matrix
B in (4.2). This lemma gives an answer to a question posed by A.Bitsadze in [11].

Lemma 4.1. System (4.1) is weakly coupledif and only if the real matrix

A= /()\2 — CLl)\ — ao)_ld)\ (48)

is 1nvertible.

Notice that due to ellipticity, matrix-function P(\) = A\? — a; A — qy is invertible
for A € R and elements of its inverse have order —2 at oo. Thus the integral (4.8)
makes sense.

Proof. For n = 2, identity (1.25) takes the form

@-A)(é i):(_zao P(()Z ) P(2) = 2* — a1z — ap.

Passing to inverse matrices and applying (3.34) we get

( Z‘lPi;OP—l p91 ) = :Ej ) (= Ayt =
( (1) 8 ) B ( (2 —OJ)‘1 , _0J>_1 > B+ (4.9)

(07 )27 et )me

Consider a contour I' in upper half-plane Im z > 0 which embraces all eigenvalues
of A. Then relations

Lk_l_k/k_—1_
57 Fz(z J)dz = J, Fz(z J)dz=0

hold for each k = 0,£1,... . The first one follows from (1.11) while the second
follows from Cauchy theorem since matrix-function (z — J)~! is analyticinside T
Integrating (4.9) along I' and using the above relations we get

1 2L 0 10 10Y .,
2mi F(z_lP‘l(Z)al P‘l(z))dz_(o O)B(O 0>B i

0 —1 JUVOoN . (00 .,
(o) 2)er-(i0) e
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where the block structure of B from (4.2) is taken into account. Hence

/Po_l(z)dz = 27ibcy,, Bl = < cin Ci2 ) ‘
r

C21 C22

By Cauchy theorem contour I' can be replaced by the real axis, which gives the
expression
A= 27T’ib012 (410)

for integral (4.8).

The last relation shows that det A # 0 implies det b # 0. Conversely, let det b #
0. According to (2.34) equation BE = 1 can be rewritten as the system b&; + by =
M, bJ&+bJE = ny. From this we get & = 1_971(?71 — ;) hence ¢, = —bJZ_)flm +12,
q=>bJ— 5Jb 'b. Since B is invertible the factor q is also invertible so that the
block ci5 of B~! coincides with ¢~!. Thus all matrices in the right hand side of
(4.10) are invertible hence det A # 0.

For Bitsadze system with coefficients (4.6), characteristic polynomial P(z) =
2% — a1z — ag and rational function P~1(z) are given by

-1 £22 1 1 -1 F22
P<Z):< F2z 22—1)’ F (2)222_1( +22 22—1)'
Thus integral (4.8) is equal to the zero-matrix hence this system is strongly coupled .

As was mentioned, (4.3) together with (4.4) are decisive for (4.2). Namely, if
(b, J) satisfies (4.3), (4.4) then (4.2) is automatically fulfilled. This can be also
checked by a direct verification.

Pair (b, J) is not uniquely defined by equation (4.8). For example, the same
property has a pair (b1, J;), where by = bd, J; = d~'Jd, and matrix d € C*! is
invertible. The corresponding matrices B and B are related by B = B, diag(d, d)
so that condition (4.9) is fulfilled.

In particular, if (4.7) is fulfilled one can put d = b~! and then (4.8) transforms
into equation J? = ag+a;J; with respect to J;. Thus for weakly coupled systems in
(4.2) one can always put b = 1. In this case det B # 0 is equivalent to det(Im J) = 0
and the following analog of theorem 1.1 holds (cf. [16]): if J*> = ag + a;J then
matrix J satisfies equation x(J) = 0, x(z) = det (2% — a1z — ap). This result shows,
in particular, that the order of Jordan v-block in the Jordan normal form of J does
not exceed the multiplicity of v as the root of characteristic equation x(z) = 0.

In general case, bringing matrix A in (4.2) to Jordan form we can choose matrix
J in (4.3) to be block-diagonal consisting of Jordan blocks. Then by theorem 1.5
columns of matrix b can be distributed into groups consisting of chains of eigenvectors
and associated vectors g, ..., z, € C' of polynomial P(2) = 2% — a;2 — ay. In the
case considered, relations (1.26) defining this chain take the form

P(w)zy =0, P(v)zy + P'(v)zo = 0,
P(w)xy + P'(v)xy + 210 =0,..., (4.11)
Pw)x, + P'(v)x,—1 + 22,9 = 0.

Thus if J = diag(Jy, ..., J,), where Ji is a Jordan v;-block of order 7, (numbers
Vg, as well as numbers 7, may coincide for different k), then matrix b has block
structure (by,...,b,), where by for v, = v and 1, = r + 1 is given by matrix
1 (20,...,x,) constituted by the chain of vectors o, ..., z, € C.
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Precisely this structure of matrix b was described in [11] with respect to representation (3.20)
for system (4.1). Condition of weak coupling (4.7) means that the totality of above
chains gives a basis in C'. In this sense for the correspoding polynomial holds an
analogue of Jordan theorem.

If detb = 0, i.e. system (4.1) is strongly coupled, then the necessary condition
(4.4) imposes a certain restriction on the rank of matrix b.

Lemma 4.2. For a strongly coupled system, rank of matriz b € C*! is not less
than 1/2.

Proof. As was mentioned, the class of solutions (b, J) to equation (4.3), (4.4)
is invariant under transformation b — bd, J — d~'.Jd. Hence by a proper choice
of d one can achieve that first r columns of b are linearly independent and the last
[ — r columns are equal to zero. Evidently, multiplication of coefficients of (4.1)
by a non-invertible real matrix e gives an equivalent system which is obtained by
a substitution u = eu of the sought solution u. Hence matrix b can be multiplied
from the left by non-invertible real matrices. Thus if det b = 0, matrixy b in (4.3)
can be always brought to the form, where the last [ — r columns are zero and in
the first [ rows and columns stays the identity matrix. According to (4.4) this is
only possible if rang b > /2.

4.2. Strongly and perfectly elliptic systems. Elliptic system (4.1) is often
written in the form
2
0%u
”ZI aijm =0, x1=2x, x2=1y. (4.12)

Then the ellipticity condition is

det <ijzl i) #0 (4.13)

),

for A = (A1, A2) € R% X # 0. In particular, matrices a;; are invertible and (4.12)
may be transformed to a canonical form (4.1) with coefficients

ay = —Qp G11, @1 = —aoy (G12 + ag1). (4.14)
Correspondingly, up to a factor asy the matrix polynomial (3.2) transforms into
P(Z) = a1 + (alg -+ a21>2 -+ a2222. (415)

Obviously, eigenvectors and adjoint vectors which constitute columns of matrix b
in (4.2) (supposing that J is in Jordan form) can be determined with respect to this
polynomial.

Work of A.Bitsadze [24] stimulated introduction of various classes of elliptic
system s for which Dirichlet problem is Fredholm. The most useful appeared introduced
by M.Vishik [25] concept of strong ellipticity. It means the positive definiteness, for
all non-vanishing (A1, A2), of the matrix under the sign of determinant in (4.13).
Let us write d > 0 (d > 0) for a positively (negatively) defined matrix d (this
notation tacitly assumes that d is symmetric). Then the strong ellipticity of (4.12)

is expressed by condition
2

Z aij)\p\j > 0. (416)

ij=1
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Obviously, matrices P£()\), A € R in (4.15) are also positive definite so that
A from (4.8) also has this property. According to lemma 4.1 this implies that
strongly elliptic systems are weakly coupled, i.e. Dirichlet problem for them is
really Fredholm.

An example of strongly elliptic system is given by the self-adjoint (in the sense
of Lagrange) system (4.12) with coefficients

11 = Q92 — 1, 19 = CL21 D, (417)

where p is an orthogonal matrix without real eigenvalues. In particular, the order
[ of the system should be even. For this system P(z) = (2 +p)(z +p)T so that the
condition P(A) > 0 of strong ellipticity (4.16) is fulfilled.

Still more narrow class of elliptic systems is defined by the notion of perfect
ellipticity introduced in [26] which means that the (2] x 2[)-matrix constituted by
the coefficients of the system is non-negatively determined:

a = ( 411 12 > > 0, (4.18)

a1 Q22

and the homogeneous system a{ = 0 has no non-zero solutions £ = (£, &) with
linearly independent vectors &3, &, € R Obviously, (4.18) is equivalent to

2
af =a;, Y (a5&)6 >0 (4.19)

ij=1
for all &;,&; € R!. In particular, this system is self-adjoint. For & = A&, A\ € R,
inequality (4.19) is strict by the second requirement so that for such systems the

strong ellipticity condition is fulfilled.
Notice that system (4.12) with coefficients (4.17) is perfectly elliptic as

> (ai6)6 = & +206)6+ & > & — 26 |6l + & > 0,

where is used that |p&;| = |£;] by orthogonality of matrix p.

If for & # 0 inequality (4.19) is strict, i.e. matrix (4.18) is positively defined,
then system (4.12) is called elliptic in the sense of Somilliano [11]. These notions
are especially useful for dealing with Dirichlet problem [26].

Theorem 4.1. For a perfectly elliptic system, Dirichlet problem is uniquely solvable.

Proof. According to subsection 4.1, for this system Dirichlet problem is Fredholm
and has index zero so that it suffices to establish uniqueness of its solution. Let
u € C*(D) be a solution of homogeneous Dirichlet problem . Then applying to the
left hand side of (4.12) Green’s formula one gets

/ Z <a” 8:70) aq;ld +/ Z (%a )n ds. (4.20)

Hence
/ (aVu)Vudr =0
D

for the gradient Vu = (uy, uy).
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Since a is non-negatively determined, (aVu)Vu = 0 hence aVu = 0 or, in more
detailed form.

Clﬂ% + aigg—; = O, 1= 1, 2. (421)
Since u = 0 on I' vectors u, u u, are linearly dependent at each ¢t € I'. By definition
of perfect ellipticity we see that u, = u, = 0 on the boundary I' of D.
Consider J—analytic function ¢ participating in representation (3.7) of solution
u. By theorem 2.2 its derivative ¢’ is related to u by (3.14) so that it also vanishes on
I'. Applying Cauchy theorem from subsection 2.2 we derive that ¢’ = 0 everywhere
in D hence u is constant. Taking into account the boundary condition (4.5) this is
only possible if u = 0.

4.3. Conjugate and degenerate solutions. With each solution u(z, y) of system
(4.12) one can associate functionv(z,y) defined by

L ORI W T
or a”ax a228y ) (9y_anax alQay-

The necessary condition for existence of this function follows from equation (4.12)
written in the form

ga@—i—a@ +2a%+a@ =0
ox \ Moz T Poy oy \ oz Poy)

Function v is called conjugate to solution u of system (4.12). It is determined up
to additive constant and in the case of multiply connected domain it is in general
multi-valued .

Using matrix

(4.22)

C = —(azlb + aggbj) (423)

the conjugate functionv can be expressed via J-analytic function ¢ analogously to
(3.7).

Theorem 4.2. The function conjugate to u = Rebo is given by the formula
v=Recp+¢ €cRL (4.24)
Proof. Substituting (3.7) into (4.22) we get
vy = — Re(an b+ axnbt)d’, v, = Re(aib + anbJ)¢'.

Writing equation (4.3) for the system (4.12), (4.14) in the forma1b + a12bJ =
—(ag1b 4 agebJ)J (in notation (4.23)), we obtain:

v, = Recd’, v, =RecJd.

Hence partial derivative s of function v—Re ¢¢ vanish, which gives representation (4.23).
Conjugate functionv may appear constant, i.e. the right hand sideof (4.22) is

identically zero. In such case solution u of system (4.12) is called degenerate. Thus

it is determined by an over-determined first order system(4.21). Evident examples

of degenerate solutions give polynomials of first degree

up(x) =n+&x + Exe,  (apné + ain) =0, i=1,2. (4.25)



40

Let us describe systems (4.12) whose degenerate soltuions coincide with these
polynomials. Put for brevity

a1 = ajj a2, Gz = ay; a1,
(4.26)
X = {iIZ' € Rl | r = &1&21’ = &2&11’}.

Theorem 4.3. If X = {0} then each degenerate solution of elliptic system (4.12)
has the form (4.25). Otherwise the class of degenerate solutions is infinite dimensional.

Proof. Adopting notation (4.2), (4.18) let us show that x € X is equivalent to
the system of equations

al =aAl =0 (4.27)

for vector £ = (—ax,r) € R%.
Obviously, a can be changed by

a= ( ;2 &11 ) : (4.28)

It is also clear that a = 0 is equivalent to £ = (—ajx,x), x — ajasx = 0, and also
to & = (y, —asy), y — asay = 0. Hence the statement follows from the equality

A( _15“ ) = ( —1@ ) : (4.29)

which can be checked using (4.14), (4.26).
From (4.29) also follows that (4.27) implies

aAT€E =0, r=0,1,2,... . (4.30)

Indeed, in the space X C R! matrices @; define mutually inverse transformations
so that (x,a92) = (—a1y,y), y = —agx. Thus (4.29) gives relation

- —ax —a1y -\
e = (— >
A ( - ) ( ”, ) , Y= (=ag)x, r>1,

which implies (4.30).

We pass to the statements of the theorem. Let u = 2 Re bg be a solution to (4.12).
Then Vu = (u,, u,) and ¢ = (¢, ¢/) are related by Vu = B, Hence solution u is
degenerate, i.e. satisfies system (4.24) if and only if By = 0. Differentiating this
by = and y and using (2.6) we get

aBJU® =0, 0<r<k, (4.31)

where is put J = diag(J,J). By (4.2), BJ" = A"B and previous relations are
equivalent to

aArgz;(k) =0, 0<r<k.

Hence if (4.28) has only zero solution then ¢’ = 0 and ¢ = ¢' € C'. In other words,
degenerate solution v has the form (4.25).

Conversely, let the space Y C R of all solutions to (4.27) have non-zero
dimension. Then for ¢ € Y are fulfilled all relations (4.30). Choose a bounded
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sequence &, € Y, k = 0,1,... and put 7 = (nk,7) = B, nr € CL. Consider
J-analytic function

1 L xkfr Y ,
¥(z) = ZE[Z’] Mk = Z mj ULE
k=0 0<r<k
An analogous decomposition is valid for 1/; with respect to J and M. Thus
_ xk—ryr . ~
aB = ) mm‘l &k, &k = B,
0<r<k

and by (4.31) we get aBy) = 0. Hence u = Re b, where ¢ = 1, is a degenerate
solution. It’s clear that the class of such solutions is infinite dimensional.

Lemma 4.3. (a) The dimension of X is even.

(b) The rank of matriz a = (a;;)3 lies between | and 2. For rka =, the space
X coincides with R" (so that [ is even). For rka > 2] — 1, one has X = 0.

Proof. (a) Matrices a; define on X mutually inverse transformations denoted
by a¢j). We claim that a(;) have no real eigenvalues.

Suppose the converse, i.e. that for some p € R and non-zero x € X we have
relations @,z = px, Gsx = p~'x. Then

2
Zi i1 (aij/\i)\j)x = {a11<)\1 + (lll/\g))\l + a22(a/2)\1 + )\2)/\1}1’

and for A\; +puAs = 0 the left hand side of this expression vanishes, which contradicts
ellipticity of system (4.12).

(b) Obviously, rank of a in (4.29) is not less than [. If it equals [ then matrices
a;, j = 1,2, are mutually inverse and X = R, If rka > 2] — 1 then dim X < 1 and
by (a) this is only possible if X = 0.

First statement in (b) is satisfied by system (4.12), (4.17) with orthogonal matrix
p having no real eigenvalues.

Let us slightly extend the notion of conjugate solution. Consider matrices d €
R2>2 and dB € C?*2! written in 2 x 2-block form

dir dia Co Co
d = , dB = _ . 4.32
( da1  da 1 G ( )
Let matrix d be related to coefficients of equation (4.1) by
do1 = dizag, da2 — din = di2as. (4.33)

Then using an evident identity

0 ou ou 0 ou Ju
oy <d11% + dm@_y) r» <d21£ + d223_y> =

p 0%u 0%u 0%
= — — )= — A ———
2 Oy? 0 9a2 ! 0xy
with each solution u of equation (4.1) one can associate v for which
ov ou ou  Ov ou ou
— = dinu+ +dio—, — = du- + dyo—. (4.34)

ox ox dy’ 0Oy ox dy
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It is called d-conjugate to u and determined up to an additve constant. In general
it may be multi-valued (if domain D is multiply connected).

Analogously to theorem4.2 one checks that there exists representation (4.23)
with matrix ¢ = ¢g from (4.32). Indeed, by (4.2), (4.32)

co = di11b+ diabJ, ¢4 = diab + dagbJ.
Taking into account (4.3), (4.33) we get
coJ — c1 = dia(bJ* — agh — a1bJ) = 0.
Thus differentiating the equality v = Re ¢y¢p one obtains
v, = Recpd/ = di1 Rebd’ + dio RebJ ¢,

vy = RecoJ¢' = dog Re by’ + dos RebJ ¢,

which proves (4.34).

Under some additional assumptions functionwv is solution to a certain second
order elliptic system .

Lemma 4.4. If detd # 0 then functionv is solution to elliptic system

82v_~820+~ 0*v 0 1
oy? Qo2 TN Oxdy’
In particular, if da = ad then (4.32) is fulfilled and functionv is solution of the

same equation (4.1) as u.
Proof. Obvously, gradient Vu = (u,, u,) satisfies the system

(Vu), — A(Vu), = 0.

Writing (4.34) in the form v = du we arrive to system

ap ap

) = dAd ™. (4.35)

(Vo),A(Vv), =0, A=dAd™" (4.36)
Taking into account special form (4.2) of matrix A, relations (4.32) can be rewritten
in the form

(dA)ll - d21, (dA)lg - dQQ, (437)
hence matrix A has a block structure similar to (4.2). Combining this with (4.36)
we arrive to (4.35).
Finally, if Ad = dA then due to (Ad);; = da1, (Ad)12 = dog, relations (4.37)
are fulfilled hence (4.32) is also fulfilled.
With A commutes, for example, matrix

_ —1 0 1
in(5 )
Here ¢y = —tb hence v = Im bo.

4.4. Neumann problem. Along with Dirichlet problem (4.5) for elliptic system (4.12)
an important role plays boundary value problem

S (a2 ) 0
Zj@xj i

i,7=1

=9, (4.38)

r

where n = (n1,ny) is the unit outer normal to the boundary I' = 0D of D. In
the scalar case (I = 1) the left hand side of this expression defines differential along
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vector with components (aj1n; 4 ag1ns, ajang + asens) called conormal. In this case

the problem is called Neumann problem. We preserve this name also for [ > 1.
From (4.21) is clear that degenerate solutions satisfy homogeneous boundary

condition (4.38) in any domain D. This and theorem 4.3 implies that for dim X > 0

the homogeneous Neumann problem has an infinity of linearly independent solutions.
Degenerate solutions u corresponding to elliptic system

2~
0 0°u
T E)xzﬁx]

2

=0, (4.127)

ij=1
which is Lagrange conjugate to (4.12), define the natural solvability conditions of
the homogeneous problem (4.38).

Indeed, denote by Lu and La the left hand sides of (4.12) and u (4.12%),
respectively . Then applying Green’s formula to the identity

2 .
~ 0 ou ou

Lw)ia — u(La) = § —_ il Iy T~

i =ik 52 O K% 3%‘) e (aﬂaxj)}

the above solvability conditions can be rewritten as the conditions of orthogonality

/guods =0 (4.39)
r

to all degenerate solutions ug of system (4.12%). For uy = £ € R, they include the
necessary condition of solvability
/ gds = 0.
r

In particular, on a smooth contour one can introduce function f whose derivative with
respect to arclength coincides with ¢. In terms of conjugate function v the left hand

side (4.38) coincides with tangential derivativev’ = v,s1 + vyss = —vzng + vyny.
Hence the Neumann problem can be rewritten in the form
U}F =/

of Dirichlet problem for v. Taking into account theorem 4.2, this is Fredholm equivalent
to Riemann-Hilbert problem (3.35) with a constant coefficient G = ¢ determined
by matrix (4.23). Correspondingly, condition

detc#0 (4.40)

is necessary and sufficient for Neumann problem to be Fredholm. As in the case of
Dirichlet problem one checks that the index of this problem is equal to zero.

If (4.40) is fulfilled then the class of degenerate solutions should be finite-
dimensional, which by theorem 4.3 is only possible if X = 0. For perfectly elliptic
systems the converse is also true.

Lemma 4.5. Let system (4.12) be perfectly elliptic. Then each solution of homogeneous
Neumann problem is degenerate and condition (4.40) (adopting notation (4.26)) is
equivalent to X = 0.

Proof. Let u € C*(D) be a solution of homogeneous Neumann problem. Then
the second summand in (4.20) vanishes. As in theorem 4.2 one deduces that aVu =
0, i.e. that u is a degenerate solution.
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If det ¢ # 0 then the space of solutions of the homogeneous problem is finite-
dimensional and theorem 4.3 implies that X = 0.

Let detc¢ = 0. Consider Neumann problem in the half-planelmz > 0. By a
remark at the end of subsection 3.4 there exist infinitely many linearly independent .J-
analytic functions ¢ satisfying the estimate

@' (=) < C(L+ =)

and for which c¢(z) = 0 on the real axis Im z = 0. In virtue of this estimate, relation
(4.20) is valid for u = Reb¢ in the whole half-plane hence all such solutions u are
degenerate. By theorem 4.3 we conclude that dim X > 0.

As in the case of Dirichlet problem, for perfectly elliptic systems the nature of
solvability of Neumann problem is much simpler.

Theorem 4.4. Let system (4.12) be perfectly elliptic and satisfy (4.40). Then
solutions of the homogeneous Neumann problem reduce to polynomials (4.25) and
the non-homogeneous problem is solvable if and only if the orthogonality conditions
(4.39) are fulfilled with respect to this polynomials.

If (4.40) is violated then the homogeneous Neumann problem has an infinity of
linearly independent solutions.

Proof. Let (4.40) be fulfilled. Then since the problem is Fredholm lemma 4.5
and theorem 4.4 imply that the kernel of the homogeneous problem consists only
of polynomials (4.25). As the conjugate system to (4.12) coincides with (4.127),
orthogonality conditions (4.39) with respect to these polynomials are necessary for
the solvability of non-homogenous problem. As was mentioned, the index vanishes
so these conditions are also sufficient.

Let now det ¢ = 0. Then according to lemma 4.5 and theorem 4.3, the space of
degenerate solutions of system (4.12), i.e. the kernel of the homogeneous problem,
is infinite dimensional.

5. SYSTEM OF TWO EQUATIONS OF SECOND ORDER

5.1. Classification of systems. For [ = 2 elliptic system s (4.12) admit complete
description. In this case the characteristic polynomialis given by a 2 X 2-matrix

P(2) = a1 + (a12 + ax)z + agz® = (Py)7, (5.1)

and the scalar characteristic polynomial x(z) = det P(z) has degree 4. Thus in the
upper half-planeit has two roots which may coincide. More precisely three cases
are possible: (i) roots v and v differ; (ii) there is one multiple root v and P(v) # 0
; (iil) P(v) = 0.

Let us suppose that J in (4.2) is Jordan so that to these three cases correspond

i)(”o1 1/02),11)<V01i),iii)(’62). (5.2)

As was explained in subsection 4.1 columns z € R? of matrix b are solutions of the
chain of equations (4.11). In the three cases (5.2) these equations take the form:

(i)  Pln)r =Py =0;
(i) Pw)z =0, P(v)y+ P'(v)x = 0; (5.3)
(iii) P(v)z = P(v)y =0.
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In each of these cases let us find the connection between b € C2*2 and B € C**4
B (4.2).
Lemma 5.1. Adopting notation

b— ( Ty ) . b= Im(%_@% (5.4)
T2 Y2

we have equality
1 lvr — vo)?pg — (Imvy)(Im )| det b2, (i)
ZdetB =< p? — (Imv)?| det B|?, (ii) (5.5)
—(Imv)?| det b|?, (iii).

Proof. Introduce an operation over 2 x 2-matrices

( T11 Ti2 )* _ ( T2  —T12 ) ' (5.6)
To1 Tog —T21 T11

Obviously, (zy)* = y*z* u xo* = x*x = detx. In particular, if detz # 0 one has
r~! = (det x)"'z*. Consider the equality (4.2). If det b # 0 then

det B — det bdet(bT)det ( 1 U0
1 5T )

hence o ~

det B=detA, A =0b"bJ — Jb*b. (5.7)
Since A continuously depends on b, by a density argument (5.6) remains valid when
det b = 0.

Adopting notation (5.4), matrix b*b in the right hand side of (5.7) can be written
in the form

- r —2iq _ _
b*b = ( 2%p 1 ) . T = 1Yo — Y1To. (5.8)

In particular,
7)? = | det b|* + 4pq. (5.9)
Calculating elements of A in (5.7) in each of the three cases (i)) — (iii) and using
(5.9) we conclude that (5.5) holds.
From (5.5) , in particular, follows that in case (iii) matrix b is invertible. Thus

its columns z,y are linearly independentso by (5.3) we have P(v) = 0. Then
polynomial P(z) is divisible by z — v and z — ¥ so it is given by
P(2) = ag[z* — 2(Rev)z + |v]?. (5.10)

Notice that equality P(v) = 0 also follows from equation (4.3) satisfied by scalar
matrix J = v.

Now (5.10) shows that in the case (iii) system (4.12) can be reduced to one
scalar equation by multiplying it on the left by a,; . For this reason in the sequel
the main attention is given to the cases (i) and (ii).

Columns z, y of matrix b in equations (5.3) are determined up to linear transformations

i) 2=z, ¥y =Ny, Aj # 0;

(i) o' =Mz, vV = x4+ Ny, A #0.

In other words, performing these transformations over the columns does not
change matrix A in (4.2).

(5.11)
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According to subsection4.1 strongly coupled systems are characterized by the
linear dependence of their columns x and y. For such systems, applying an appropriate
transformation (5.11) one can always achieve that x = y in the case (i) and y = 0
in the case (ii). In other words, the strongly coupled systems are characterized by
the condition

(i) P(r)x = P(rn)r=0;

(i) P(w)z=P(v)z =0 (5.12)

for some non-zero z € C2.

Vectors x and y in (5.3) can be defined in terms of the elements of the matrix
P(z) itself. Along with b it is convenient to describe matrix ¢ in (4.23) which palys
an important role for the Neumann problem. It suffices to consider the cases (i)

and (ii) since in the case (iii) we can put b = 1 and ¢ = —(a; + axv).
Adopting notation (5.1), (5.6) let us associate with matrix P(z) matrix polynomial s
Q(z) = P*(2), R(z) = —(a + axnz)Q(z). (5.13)

Lemma 5.2. (i) Let numbers 1 <i,j < 2 be chosen so that ith and jth column
of, respectively, matrices Q(v1) and Q(vy) are non-zero. Then we can put

Qi
)

= ), bey = Quy)(1e),
cay = R G14)

141
1),  c@ = Ry)(r),

where x()y denotes the kth column of matriz x.
(i) Let i = 1,2 be chosen so that ith column of matriz Q(v) is non-zero. Then
we can put

bay = Qwy(¥),  be) = QW)

5.15
0(1) = R(i)(y), C(g) = R/( (l/) ( )

7)
Proof. (i) From definitions (5.6), (5.13) is clear that
P(2)Q(2) = x(2), (5.16)

where y = det P. Since x(v1) = x(v2) = 0 columns z of matrix Q(v,) are solutions
of equation P(vy)x = 0, which implies relations (5.14) for b. According to (1.17) and
(5.2), for the columns of matrix ¢ in (4.23) we have ¢y = —(a21bp) + a2br)vi) =
—[(a21 + agovi)n]x). According to (5.13) this leads to relations (5.14) for c.

(ii) Since v is a multiple root of polynomial x(z) we have x(v) = x'(v) = 0. By
differentiating (5.16) we derive equality P(v)Q'(v) + P'(v)Q(v) = 0. Comparing it
with equation (5.3) for this case and acting as above we get (5.15) for b.

As to ¢, as above we have: ¢y = —[ag1bu) + ag2(bJ)w)], £ = 1,2. In the case
of Jordan v-block .J, one has (bJ)n) = bayv, (bJ)@2) = bay + beyv, so that cqy =
—(ag1 + a22v)bay, ¢2) = — (a1 + V)b — azebn). Taking into account (5.13) and
relations (5.15) for b we get

¢y = —(a21 + anv)Qu (v) = Qu(v),

c@) = —(az + a22V)Q,(i)(V) — anQu(v) = Rzi)(y),

which completes the proof of (5.15) and lemma.
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Let us illustrate preceding considerations in the case of system (4.1) obtained
by separating real and imaginary parts of one complex equation

9N 0
oy “or oy or ) (T2 =

Following subsection 3.2 we get system (4.1) with matrix coefficients
ag = —(aB)", a;=—(a+p)", (5.17)

where we use notation

N [T TY
(z + 1y) _<y . ), z,y € R

For appropriate «, 3 one can get a system of any of the three types (i)-(iii). More
precisely, for « = § = =+i one gets Bitsadze systems with coefficients (4.6). For
a = v, § =7, one gets the case (iii) because then polynomial P(z) with coefficients
(5.17) coincides with (5.10). Cases (i) and (ii) are obtained, respectively, for o #
3,8 and a = 3. Moreover, v; = Rea +i|Imal, v, = Re 44| Im 3.

For Rea = Re 8 = 0, coefficients (5.17) have the form

. o 0 . 0 T1
ao—( 0 80)7 (11—(51 0 ) (518)

with some r;,s; € R. Consider system (4.1) with such coefficients for which
polynomial x(z) has z = i as a multiple root. Since

P(g):<22—r0 ryz )

—s12 22— sp

and x(z) = det P(z) = 2* — (rg + so + r151)2% + roso, the above requirement is
equivalent to conditions

To+ So + 7189 = —2, ToSo = 1. (519)

For r; = s; = 0, equation (4.1), (5.18) transforms into Laplace equationso this
case can be excluded. In remaining cases, for polynomial P(z), matrix @ and its
derivative Q" at z = i are equal to

Qi) = ( _Sz'osl_l _:07”1_ 1 ) Q)= ( Z gi ) )

Hence by lemma 5.2 we can put

. —80—1 21 . i?“l 1
b_( 181 81)’ b_(—rg—l 2@')

in case s; # 0 and r; # 0, respectively . In particular, taking into account (5.19) we
see that the system is strongly coupledif sg = ro = 1 and weakly coupled in other
cases.
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5.2. Parametric description of systems. Elliptic systems (4.12) are invariant
under linear transformations of eq s and of the vector of unknowns u, and also under
linear transformations of independent variables z,y. In terms of characteristic
polynomial these transformations act as multiplication of P(z) from the left and
from the right by invertible matrices d € R?*? and application of fractional-linear
substitution
z = w, det o # 0.
Q21U + Qg2

If one works with systems (4.1) then the first two transformations can be reduced
to similarity transformations P(z) — dP(z)d~!. Obviously, the three case (i)-(iii)
are invariant for these transformations.

Systems of two equations of second order were systematically investigated in
the monograph [5]. ipp it was shown there that using these transformations system
(4.1) can be brought to a canonical form of the type (5.19).

Consider another approach based on the relation (4.2) where matrix J belonging
to one the three types (5.2) is fixed and matrix b € C?*? is considered as parameter.
The only requirement is (4.4), i.e. invertibility of matrix B in (4.2). Lemma 5.1
describes it in an explicit form. If it is fulfilled, to each parameter b € C?*?
corresponds an elliptic system (4.1) ¢ with coefficients ag, a; determined from

0o 1\ J 0 1 B b b
(ao al)_B(o 7)3 ’ B_(bJ H)‘ (5:20)
The whole set of elliptic system s is decomposed into three subsets corresponding

to the three types (5.2) of matrix J. Using lemma 5.1 it is not difficult to give
homotopy description of each of these subsets.

Theorem 5.1. The set E of elliptic systems corresponding to the case (iii) is
connected. In the cases (i) and (ii) there are three connected components E* and
E° with parametric descriptions (5.20) as follows

det B>0, 4p>0 (5.21%)

det B < 0, (5.21°)
where p is taken from (5.4).

Proof. For a fixed J denote by G the set of all matrices b € C?*? for which
det B # 0 in formula (5.5) of lemma 5.1. Dependence of coefficients ag, a; in (5.20)
on b will be denoted as (ag, a;) = h(b). As a result we get a continuous mapping h
of G C C>*2 = R® onto £ C R? x R>*2 = RS, As (5.5) shows, set G is open. From
lemma 5.2 follows that h has a continuous right inverse A=) : E — G, i.e. one
has h h=Y(ag, a;) = (ag, a;). Hence E is open and h sends connected components
of GG to those of G. The induced mapping of connected components is one-to-one.
Indeed, if to pair (ag,a;) € E correspond two matrices b and b then these two
matrices are related by a transformation (5.11). Hence b u b belong to the same
connected component of G.

Thus it suffices to prove the statement for G. In the case (iii) according to (5.5)
the set G coincides with {b € C**?, detb # 0} and is thus connected. Consider
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now the cases (i) and (ii). Then matrix b by elementary transformations (5.11) can
be brought to one of the following two forms in each of the cases (i), (ii):

1 1 1 0 .
(L) (L 9), -
b—(x2 y2>, b—<1 O)' (5.2240)

Here is used that in the case (i) inequality z; # 0 can be always achieved by
rearranging columns and renumbering v, v;.

The rest of the argument can be performed for these matrices. Consider matrix
of the first type in (5.22). Setting xo — yo = = — iy, 21 + y2 = u + iv, equality (5.5)
for (i) can be written in the form

72 2 2

det B = —= — z—Q +5 (5.23)
with positive constants a, b, ¢, depending only on v, 5. Hence equationdet B = 0
defines an elliptic cone in the space R? of variables z, y, v. Its complement consists
of three components K, K* determined by the signs of det B and v as in (5.21).
In the four-dimensional space of variables x,y, u, v, defining matrix b we get the
corresponding components K° x R uw K+ x R. It remains to notice that det B > 0
implies that pg > 0 in (5.4), (5.5) hence the signs of p, ¢ and p + ¢ coincide.

An analogous argument works for matrix b of the first type in B (5.22ii). Here
one should put y» = x — iy, vo = v —iv and then (5.5) again takes the form (5.23).

For matrix b of the second type in (5.22), one has det B < 0. It is clear that
such matrices constitute a connected component G°. This completes the proof of
theorem 5.1.

It would be interesting to derive theorem5.1 from the general approach to
homotopy classification of elliptic systems and boundary value problems suggested
in [27]. The same refers to ellipticity criteria for systems with constant coefficients
presented in subsection 3.3.

As was noticed in subsection 5.1, strongly coupled systems can only appear in
cases (i) and (ii). From (5.5) and theorem 5.1 it follows that they correspond to
matrices b € G*. For example, for Bitsadze system with coefficients (4.6) one has
b € G*. To strongly coupled systems correspond matrices b € G°. This follows from
the fact that matrix polynomials P;(\) = tP(A\) + (1 — t)(1 + A\?) of variable A,
depending on parameter 0 < ¢t < 1, are positively determined for all ¢.

Using the mapping h : b — (ay,as) one can construct elliptic systems with a
prescribed matrix 0. For this reason it is useful to describe this mapping explicitly.
Let operation * be the same as in (5.6).

Lemma 5.3. For coefficients ag, a; € R**? of system (4.1) one has

ap = 2(det B)~' Re[(det bJ)dy — (det J)dyd],
a; = 2(det B) ' Re[(det bJ)dy — dod,],

where dj, = bJ*b*, k =1,2.

Proof. We use explicit expressions for the block elements of B~!. They are
obtained by inverting the system B¢ = 7 or, in more detail, b&; + b&y = ny,
bJ& + bJEy = .

(5.24)
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Suppose first that det b # 0. Then eliminating & u3 from the first equation and
substituting in the second one we get:

(bJ —BJb 'b)& = —bJb 'y + o,
(BT — bJb=1B)Ey = —bJD 'y + 1o

Using notation (5.7) for matrix bJ—bJb b= b(b bJ—Jb b) we have b(det ) 'A =
(5")~'A. From (5.7) and reality of det B it follows that A = (det B)"'A". Hence
the formulae for &7, & can be rewritten in the form & = cony + 112, & = Cony + 110
with matrices

co = —(det B)""ABDIb |, ¢ = (det B) AT
Since A" = J*b*b—b*bJ we have A'b" = (det b).J*b*b —bJ b hence SVDIb =
J*0*0Jb — (det bJ)b*. Thus
pi_( % @ co = (det B)~![(det bJ)b* — J*b*_@,
Co G c1 = (det B)™Y[(det b) J*b* — b*bJ b |.
By a density argument these formulae remain valid for det b = 0.
Now by (5.20) we have:

0 1 - bJ W C1 Co
ai az ) \ b2 bJ 1 C )7

which implies a; = 2RebJ?c;, j = 1,2. Substituting here explicit expressions for
matrices ¢; we arrive to formulae (5.24).

Notice that in the case (iii) matrices dj, = v* det b are scalar and formulae (5.24)
transform into the corresponding coefficients of the polynomial entering in the right
hand sideof (5.10).

As an illustration consider a strongly coupled system corresponding to matrix

b:(i 1) (5.25)

This is clearly possible only in the cases (i), (ii).
By (5.4), (5.5) we have det B = 4|v; — 1»|* for (i) and det B = 4 for (ii). Hence
substitution of (5.25) into (5.24) gives

aj =Reaj;(1+1ie), j=0,1, (5.26)

_ ) “hvy, _ ) vt (0 -1
N L )2 T\ 1o )

In particular, for v = i formulae (5.26) agree with (5.18).
Putting ags = 1 write system (4.1), (5.26) in the form (4.12). Then (4.14) and
(4.23) transform into

where

ap = —ai, @ = —ajp —az, €= —agb—>bJ.

Here ag; can be chosen to satisfy det ¢ # 0. Indeed, by (5.25) we can write

s xr
anb = ( iy iy )

with arbitrarily prescribed x, y.
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As a simple verification shows, detc # 0 for x # y in both cases (i) and (ii).
Thus Neumann problem may appear Fredholm for a strongly coupled system.

On the other hand, condition det ¢ # 0 of ellipticity of Neumann problem may
not be fulfilled even for strongly elliptic systems of the type (iii). Indeed, by (5.10)

in this case we have ag + a12 = —2(Rev)agy, where ag is positively determined
and aQT1 = ajo. Hence we can put as; = —(Rev)ag — A with a skew-symmetric
matrix A. Then ¢ = —ag1b— agev = [A —i(Im v)ag]b. Thus it suffices to show that,

for an appropriate choice of A, the matrix in square brackets has zero determinant.

Write
(D B 0 sp B
a22_<T Q)’ A_(_S/B O)?ﬁ_lmya

where p, q are positive and pg > r%. Then we have det[A — i(Imv)ag] = 0 for
2 2
5% =pq —r?.

5.3. Lamé system of anisotropic plane elasticity theory. In anisotropic
plane elasticity theory [28], [29] a medium is characterized by stress tensor o and
deformation tensor € which can be expressed as symmetric 2 x 2-matrix-functions
with the elements written as o; = 05, €; = &;, 1 = 1,2 u 019 = 091 = 03,
€91 = €12 = €3. Here ¢; are expressed through displacement vector v = (uq, u2) by
the formulae

8U1 3uQ 8u1 8u2
a—x, Ez—a—y, 28378_3/—’_%'

If one considers a cut in the medium along an arc with normal n = (ny,ns)
then on a unit length of this arc acts force on called the normal component of
stress tensor. Write columns of 2 x 2-matrix o as o(;) and o2 then vector on is a
linear combination o(;)n; + o(2)ne. In absence of mass forces matrix o satisfies the
equilibrium equations

€1 = (5.27)

80‘(1) (9(7(2)
ox + dy

and is related to deformation tensor € by Hooke’s law. In the linear theory this
relation is expressed by

=0 (5.28)

o1 = Q1€1 + auer + 206€3, a1 g Qg
O9 = (\4E1 + QsEg + 20[583, a = a4 Q9 QOf >0 (529)
03 = €1 + 5E2 + 20133, ag Qs Q3

with constant coefficients «;, called elasticity modules. Here, as above, inequality
symbol after a matrix means that it is positively determined. In particular, all
principal minors of « including its determinant

deta = 1oy + 20[40(5065 — OélOég — OéQOég — 04304421
are positive. Thus a;; > 0, j = 1,2,3, and ayan > o, aja > af, azag > a?.
Using (5.27) formulae (5.29) can be written as

ou ou .
O(i) = ail% + Gma—y, 1=1,2 (5.30)
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with matrix coeflicients

. a1 Gg o Qg Oy
ail = s Q12 = )
Qg (O3 Q3 Qs
Qg Q3 a3 Qs
a1 = s Qo2 = .
Q4 Op Q5 Q2

Substituting expressions (5.30) into (5.28) we get a system of equations (4.12) for
displacement vector u = (u, ug) which is called Lamé system.

Consider block matrix a = (a;;)? € R** composed from matrices (5.31).
Rearranging its columns and rows with numbers 2 and 4 one gets a symmetric
matrix with equal two last columns (and rows) and with the third principal minor
coinciding with matrix « entering in (5.29). Hence matrix a is non-negatively
defined and its rank equals 3. Moreover, the solution space of system a;1&1 +a;0& =

0, 7 = 1,2, is spanned by vector e = (e, e5) € R* with block components
e1 = (0,1), eg = (—1,0) € R% (5.32)

Remembering definition 4.2 we see that Lamé system is perfectly elliptic.

As is known typical boundary conditions for Lamé system in a plane domain D
assume that prescribed is either the displacement vector u on its boundary I' = 9D
or the normal component oyn; + oz)ny of stress tensor o, where n = (ny,ng) is
the unit outer normal on I', or else given is a combination of these two conditions.
Taking into account (5.30) this corresponds to Dirichlet problem (4.5) or Neumann
problem (4.38) which are often called the first and the second boundary value
problem , respectively .

In the theory of boundary value problems of anisotropic plane elasticity one
can distinguish two classical directions. The first one is based on using analytic
functions in the spirit of Kolosov-Muskhelishvili formulae in isotropic case [30],
[31]. The second direction uses the methods of potential theory [29].

Results of preceding sections enable us to develop a functional theoretic approach
based on the use of hyperanalytic functions. In isotropic case it was described in
[32]. In a general anisotropic case this method was used by S.Mitin [33]. Some other
possible approaches were discussed in [34], [35], [36].

For Lamé system (4.12), (5.31) consider matrices b and ¢ appearing in (4.2) and
(4.23). By the strong ellipticity of Lamé system we have detb # 0. According to
lemmas 4.3(a) and 4.5 an analogous condition is fulfilled for ¢. Thus theorems 4.1
and 4.4 lead to the following result.

(5.31)

Theorem 5.2. For Lamé system, Dirichlet problemis uniquely solvable, while
solutions of homogeneous Neumann problem reduce to polynomials ug(x,y) = ¢+
Aizer+Aayes, ¢ € R where \; € R and vectors e; are as in (5.32). Correspondingly,
the mon-homogeneous problem is solvable if and only if orthogonality conditions
(4.39) are fulfilled with respect to these polynomials.

Matrices b and ¢ discussed earlier may be explicitly described applying lemma 5.2
to Lamé system (4.12), (5.31). Let us make this more concrete. The characteristic
polynomial (4.25) and associated polynomial @) in (5.13) can be written as

P:(gl gs)j Q:( 92 —g3>
g3 92 —93 9
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with polynomials
g1(2) = a1 + 2062 + @322,
g2(2) = az + 2052 + ap2?, (5.33)
g3(2) = a6 + (a3 + aq)z + as22.

Along with 3 x 3-matrix « in (5.29) consider matrix

B Bs Bs
B=(deta)a = B B B5 |,
Be Bs B3

which is also positively determined. In more detail:

b1 = asas — ozé, B = s — 0%7 B3 = apag — Oé?p (5 34)
54 = 0505 — (x30ly, 55 = ylig — 1105, 56 = Q45 — Q0. ’

In this notation the scalar characteristic polynomial y(z) = g;g2— g3 can be written
as
hi(2) = B2 — Bs2 + faz?,
X(2) = hi(2) — zho(2) + 22h3(2),  hao(2) = Bs — B3z + Bs22, (5.35)
hs(z) = B4 — Bez + f12°.

Notice that polynomials h;(z), j = 1,2, 3, never vanish simultaneously. Indeed,
if hy(z) = ha(z) = hz(z) = 0 then (1, —2z,2?) is a solution of the homogeneous
system with determinant equal to det 8. However this contradicts the inequality
det g > 0.

Simple computations show that for matrix

Qg + a3z az+ asz —g2 g
RE) = (o + Q) = (007 oo ) (T o)

in (5.13) we get the following expression:

. —Zhg —hl
R = ( hs Ry — 2hs ) . (5.36)
In particular, pol s g;(2), j = 1,2, 3, also do not vanish simultaneously. Thus for
Lamé system only first two cases in (5.20) are actually possible. Notice that in the
case (i) one of the numbers hg(v1), hs(12) is certainly non-zero as only one of the

roots of hy may lie in the upper half-plane. In both cases (i), (#i) matrices b and
¢ can be described as follows.

Theorem 5.3. Let for definiteness hs(v2) # 0. Then

o= (i 2ot ) o= (e Tt ) w20

= () e ) e (Tl T ) ) =

(ii) Moreover,

= (o i )+ e= (R ™)
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In particular, we see that here determinants of matrices b and ¢ are always non-
zero, which was earlier derived from general reasons.

Proof. (i) If h3(v) # 0 then by (5.36) the first column of Q(v) is non-zero. If
hs(v) = 0 then by (5.35) each of the numbers hy(v), hs(v) is non-zero, hence the
second column of () is non-zero. Thus the desired conclusion follows from lemma
5.2.

(ii) Acting as in (i) it is sufficient to show that hs(r) # 0. Suppose the contrary:
x(¥) = X'(v) = hs(v) = 0. Then by (5.35) we have h;(v) # 0, j = 1,2. Putting
p = ag + asv, ¢ = az + azv from (5.36) we deduce that pgs(v) — qgs(v) = 0,
—pg3(v)+qg1(v) = hi(v). Since g1 (v)g2(v) = g5(v) and pg # 0, this is only possible
if go(v) = gs(v) = 0. Using equalities x = g192 — g5, X' = 192 + 9195 — 29395 we
see that g1(v) = 0, which gives a contradiction.

5.4. Orthotropic and anisotropic cases. An elastic medium is called orthotropic
if coordinate axes are the axes of symmetry. This case corresponds to

a5 = Qg = 0 (537)

for modules of elasticity of matrix « appearing in Hooke’s law (5.29). In particular, matrix
« is block-diagonal. Then expressions (5.33) and (5.35) are simplified:

G =+ azz? go = az+ aez?, g3 = (a3 + au)z,
hi = Ba + Baz?, ha = —Psz, hy = 4 + P127, (5.38)
X = B2+ (B3 + 284)2% + p12*.

In particular, the roots v; of biquadratic equation x(z) = 0 are defined from

2610 = —f3 — 284 £ /7, (5.39)
where v = (83+2084)* =41 B2. In particular, for v > 0 the roots lie on the imaginary

axis. The case (ii) of multiple roots corresponds to v = 0, i.e. 83 + 284 = 2+/[1 5.
By (5.34) this is equivalent to

2003 + qy = /oo, (5.40)
From (5.38), (5.39) follows that 2hs(v) = —f5 & /7. Hence hs(v;) = 0 is
equivalent to (838, = [182 — 33, or, in terms of «, to az + a4 = 0. Thus (5.40)
corresponds to theorem 5.3(ii), while the first and second cases of theorem 5.3(i)
are obtained, respectively , for asz + a4 # 0 and ag + a4 = 0.
As to the formulae for matrices b u ¢ given in the theorem, one should substitute
there expressions (5.38).
Suppose that in addition to (5.37) are fulfilled relations oy = ay = ay + 2«3 or,
equivalently,
=y =A+2u, az=pu, ;=2\ (5.41)
with some positive A and p. Then we get the isotropic case when each straight
line is an axis of symmetry of medium. In such case linear relations (5.27), (5.29)
transform into

S /\<%+8—1;2) n zu%,
o5 = u(%—?Jr%), (5.42)
09 = )\<%+8—1;2) + QM%,
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and Lamé system can be written in the form
(9 3u1 3u2
A A — [ =—+=1=0
(5.43)
0 8u1 8u2

pAu2+()\+M)a—y <%+a—y) =0.

In this case (5.40) is obviously fulfilled so that v is multiple and equal to i.
Thus we are in the conditions of case (ii) with Jordan block J corresponding to
eigenvalue v = 1.

From (5.34), (5.41) we have ) = By = p(A + 2u), B3 = (A + 2u)?, Bs = —p,
Bs = Ps = 0. Thus by theorem 5.3(ii)

_( (At 2i(A+2p) B iN4 ) 2X+3u
b_<—i(k+u) —(A+p) ) 0_2”(—(A+u) i()\+2u))'

Adding to the second column the first multiplied by 2i(A + 2u)/(A + p) and
reducing the common scalar multiple —(\ + u) these matrices can be also brought
to the form [37]

(10 (2 A-1 A +3u

By theorem 3.2 the general solution of Lamé system (5.43) is expressed through
a J—analytic function by formula

u = Rebo. (5.45)
On the other hand, we have the classical formulae due to Kolosov-Muskhelishvili
[30] which give representation of o and u by a pair of analytic functions:
o1+ 0y = 4Rex(2),
oy — o1+ 2ioz = 2[Zx|(2) + x2(2)], (5.46)

2p(un +iug) = Axa(2) = 2x1(2) = xa(2).
Connection of these formulae with (5.45) is established using theorem 2.1 in the
form (2.17). In our case formula (2.17) takes the form

_ zZ(0 1 p
o) = v+ 5 (0§ )
Substituting this into (5.45) we get for the components of vector
B B 1 0 1. _ (0 4 ,
u-Requ—Re(Z. _A)¢+§Rez(0 1)1/1
expressions
— — .=
2up = 1 + by + (FYy — izy) /2,

: — — _ —
2up = i — Ay —ithy — Aipy — (Zas + 2905) /2,
and, respectively, 2(u; + iug) = 20, — iA(ths + 1hy) — izthy. Putting here y; =
—uithy, X2 = —2uby — iAptbe, we come to the last equality in (5.46).
As to the first two equalities in (5.46), they can be obtained from the last
one using (5.42). It is also possible to use vector-functionv conjugate to u as in
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subsection 4.3. By theorem 4.2 it is expressed through a J-analytic function ¢ by
formula (4.24) with matrix ¢ from (5.42). From (5.30) the tangential derivative of
function v along a smooth arc coincides with the normal component of stress tensor

fi_z =on, (5.47)

which gives the desired expression for elements o; of matrix o.

6. DOUGLIS-NIRENBERG SYSTEMS

6.1. Analog of Jordan’s theorem. Let a natural number [ be decomposed into
sums of non-negative integers | = l; + ly = my + my. Given matrices ay! € R™i %t
consider a system of equations

0%u 0%u 0%u ou ou
107U 11 1 11 1 12 OU2 12 OU2
2 2,
%o 0T + o 0x 0y T+ Oy + ox ta dy (6.1)

%o ox “ oy =0

for real I;-vector-functions u;,j = 1,2. As usual under a regular solution are meant
functions u; € C?uy € C* satisfying (6.1). As in (3.2), (3.3), with system (6.1)
one can associate its matrix characteristic polynomial

adt +ailz +adlz? al? + al?z
P(z) = ol | 91 (6.2)
ag +ay z 0
and scalar polynomial
X(z) = det P(z). (6.3)

System (6.1) is called elliptic in the sense of Douglis-Nirenberg (in short DN-
elliptic) if the degree of polynomial x is equal to [;+m; and characterisitc equation x(z) =
0 does not have real roots. Such systems were introduced by M.Douglis and L.Nirenberg
in 1995 in a slightly different form [38]. For I = 0, such systems were earlier
considered by I.Petrovsky [39].

Lemma 6.1. If system (6.1) is ND-elliptic then number l; + my is even and
me < Iy, lo < mq. In particular,

23:l1—|—m1:m1+m2+30:l1—|—l2+50 (64)

for some sy > 0.
Proof. According to (6.2) product

diag(l € C™>™, > € C"2*™2) P(z)diag(1 € C"*1, 2 € C*2)

is a matrix polynomial P(z) = Py + Pyz + P;z? with highest coefficient

112
p, — ay” a4
T la o '
1

By definition, det 15(2) is a polynomial of degree 21 = my + Il + mq + [; hence
det 152 # 0. This implies that rows of a?! are linearly independent so that my < ;.
Analogously, considering columns of a}? we get inequality I, < my. Finally, the fact
that my + [; is even follows from the reality of coefficients of polynomial x(z).
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As in subsection 1.3 roots v of characteristic equation x(z) = 0 are called the
eigenvalues of polynomial P(z) of corresponding multiplicity. The order of v is the
order of pole of matrix-function P~1(2) at z = v.

The main aim of this subsectionis to establish an analog of theorem 1.5 for
polynomial (6.2). Write it in the form

P(z) = Py + Piz + P2° (6.5)
Unlike to subsection 1.3 determinant of P, vanishes. Let J € C**° be a Jordan

matrix with eigenvalues in the upper half-plane. By analogy with subsection 1.3
we say that matrix b € C17%2)%s transforms P(z) to Jordan form .J if

Pyb + PibJ + PybJ? = 0. (6.6)
As in theorem 1.5 it is easy to see that columns of b are given by the chains of
eigenvectors and adjoint vectors of polynomial P(z), i.e. by vectors zg, x1, ..., 2, €

C* satisfying equalities (1.26):

P(v)xzyg = 0, P(v)xy + P'(v)xy = 0,
P(W)z; + P(v)z;io1 + (1/2)P"(v)x;i90 = 0, 1=2,..,1,
where is used that P® = 0 for k > 2.

Here number v corresponds to the eigenvalue of the corresponding Jordan block.
By the first equality it is also an eigenvalue of polynomial P(z).

Theorem 6.1. There exists matriz b =] (b1, bs), b; € Cl**, transforming polynomial P(z)
to Jordan normal form J. Matriz J has the same eigenvalues that polynomial P(z)

in the upper half-plane{Im z > 0} and their multiplicities and orders coincide.
Columns of (21, + l) X 2s-matriz B defined as

B = (B())FO)’ BO :\l/ (b17 bIJa b2)7 (67)
are linearly independent .

Proof. Comparing (6.5) with the block form (6.2) equality (6.6) can be written
as:

Zkvj alb; g =0, i=1,2, (6.8)

where b; € Cli** are determined by (6.7). With polynomial (6.2) are associated two
block matrices

0O -1 0 1 0 0
a = | a' al' a® |, e = | 0 a' @2 |, (6.9)
a%l a%l 0 0 O 0

which according to (6.4) are square matrices of order 2l; +lo= 2s+ms. By a direct
verification one gets that

—
N
=]
_|._
e
—
I\
~—
= O
n =
o O
—
—
1
—_
)

(6.10)

(@)
o
[S—y
[V
[
—~
N
~
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This identity which is an analog of (1.25) shows that polynomials P(z) and
ap + a1z have the same eigenvalues with the same multiplicities and orders. It is
also easy to see that adopting notation (6.7) equalities (6.8) and

CL()B[) + alB()J =0 (611)

are equivalent. Thus it suffices to prove the theorem for affine polynomial ag + a, 2.
According to (6.9) matrices a; have block structure

Qo :\lf (a(l)a a’(2)>a ai :\L (CL%, 0)7 a'Jl’ S RQSX(25+m2)' (612)

By (6.5) rows of a? are linearly independent , hence there exist my linearly independent columns.
Choose an invertible matrix d such that ag d is block-diagonal with identity (mso X
ms)-block in the right low corner and a; d is a column with vanishing last my
elements.

Denoting a;d and d~'B, again by a; and By we may count that a3 = (0, 1),
1 € R™*™2, Then by putting By =/ (B},0), By € C*** (6.12) is reduced to the
case

ap +a;ByJ =0 (6.13)

of 25 x 2s-matrices aj. Since equationdet (ag + a;z) = 0 has exactly s roots in
the upper half-planeand detal # 0, equality (6.13) expresses the statement of
theorem 1.4.

6.2. Representation of solutions. For the general solution u of equation (6.1)
we have an analog of theorem 3.2. As in §4 we notice that for n = 2 relations (3.12)
define the corresponding subspaces in C?.

Theorem 6.2. (a) Adopting notation (6.7) each solution u = (uy, us) of equation (6.1)
in simply connected domain D is representable in the form

Uy = Re b1¢, Uy = Re b2¢/ (614)

with some J-analytic function¢ and u = 0 implies ¢ € C®. Function ¢ is uniquely
representable as a sum ¢g + ¢, where ¢ € C* and ¢y satisfy conditions

¢0(20) =0, RebyJe = Rebyc =0, (6.15)

at a fixed point zg € D.

(b) Let D be a m-connected domain, m > 2, and points z;, j = 1,...,m — 1,
belong to different components of the complement C\D. Then in representation (6.14)
function ¢ is multi-valued and uniquely representable as a sum

m—1

o(2) = po(z) + ¢+ Z In[z — z]e;, ¢,¢; € C°, (6.16)

j=1

where ¢g is single-valued and, in addition to (6.15), conditions Rebic; = Rebic; =
0,5=1,...,m—1, are fulfilled.

Proof. Let (u1,us) be a solution of (6.1) and

aul 8u1
= (=%, 22 . 1
U (8m Dy ,u2> (6.17)
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Comparing (6.1) with (6.9),(6.12) one sees that vector-function U satisfies system
of equations

ou ou
Analogously, system (6.11) can be written as:
ayBo +a;ByJ =0, a2By = 0. (6.19)

Consider in R?112 subspace X of vectors £, @3¢ = 0. Since rows of a2 are linearly
independent its dimension equals 2l; + Iy — my = 2s. By (6.18) transformation
¢ — Re By acts as C* — X. By theorem 6.1 columns of matrix B = (B, By) are
linearly independent hence this transformation defines an isomorphism of C* onto
X. Consequently, equality

U = Re By (6.20)

establishes a one-to-one correspondence between (21, +15)— vectors U satisfying the
second equationin (6.18) and complex s-vector-functions . Substituting (6.20) in
the first equation we get
1 op oY

0= alReBan J@a:'
Comparing (6.5) with (6.9), (6.12) one sees that equalities al¢ = 0, a2¢ = 0 take
place only if £ = 0. In particular, the figure bracket in the latter expression vanishes,
which means J—analyticity of function. The remaining part of the argument is
the same in in the proof of theorem 3.2.

Similarly, the remark at the end of subsection 3.1 remains valid. Namely, let D
be a neighbourhood of oo and solution wu,,us satisfies in some neighbourhood of
this point estimate
(9u1 8u1
ox oy

Then function ¢ in (6.14) does not have branching at oo, i.e. > ; = 0in (6.16) and
its order at oo equals 0 so that it is bounded in a neighbourhood of co.

A complex version of (6.1) can be studied in the same way as in subsection 3.2.
In this case number [; + m; need not be even and (6.4) is changed by equalities

st s =L +mi=mg+mg+so=1 + s+ s,

+ |ug| < C]z\’?

where sT(s7) is the number of roots of characteristic equation x(z) = 0 in the upper
(lower) half-plane . Some changes should also be done in theorem 6.1. Equality (6.7)
should be changed to

B=(B*B7), B*=| (b biJ* b5), bE e

Matrices J* correspond to the roots of polynomial (6.3) in the upper and lower
half-planes. Matrix relation (6.6) should hold for b* =] (b, b3) and J* :

Pob* + Pb*J* + P (J5)? = 0.

In this notation an analog of theorem 6.2 holds in the complex case. One only
needs to change (6.14) by

up = bt +brom,  ug=bi(6") + by (¢,

and make corresponding changes in conditions (6.15) (as it was done in subsection 3.2).
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The case when J is a direct sum of blocks can be treated analogously. The scalar
case [; = Il = 1 corresponds to situation in subsection 3.3.

Consider now systems elliptic in the sense of Petrovsky which are obtained from
(6.1) for [y = 0:

Pu | QP L0%u
ao(%2 + alaxﬁ + aZ? =0, 621,
2 + 29 _

09z T4, =0

where ai € R™*! m; + m, = [. For such systems, matrix b, in (6.7) is absent
and representation (6.14) for their solutions coincides with representation (3.7) for
systems of classical type (3.1).

In the complex case system (6.21) can be approached differently. Namely, applying
Cauchy-Riemann operator 0/0% to the second equation one gets a system

P | D% 0%
(10@ +a

o 0 20,0\
(a—y ‘%) (a%“‘la—y) -0

which is elliptic in the classical sense.

Thus theorem 6.2 for system (6.21) can be deduced from theorem 3.2. In principle,
analogous considerations are applicable to general system (6.1) if, in addition to
differentiation, one makes a substitution

_ (0 O\
2= \ay o)

in the first equation of the system. Finding then representation uy, 15 of the resulting
system as in §3 one can get representation for function us by differentiating s. In
a slightly different form theorem 6.2 was established by N.Zhura [15].

6.3. Conjugate functions. Concepts from subsection 4.3 can be naturally extended
to systems (6.1). Suppose we are given [;-vector-functions w;, v;,i = 1,2, subject to
linear relations

ov ou ou
8_:171 = dlla_xl + dw@_yl + dyzug,
ovy Ouq Ouy
go _ g ot oy 6.22
oy 25 + da2 oy + d23Uz, ( )
0 0
Uy = d31% + dwﬂ + d3gzu,
x dy

where d;; are constant matrices of corresponding orders. The vector-functionv =
(v1,v9) is uniquely determined from u by these (up to an additive constant vector
(€,0)) and it is called conjugate to u.

Square (20; + 1) x (21, +l3)-matrix d = (d;;) is called admissible for system (6.1)
if each of solutions u = (u1, us) of the latter admits conjugate function . Description
of such matrices can be given as in lemma 4.4

Lemma 6.2. Matriz d is admissible for (6.1) if and only if

(di1by + diabyJ + dishs) J = doiby + dosbyJ + dagbs. (6.23)
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Granted this condition functionv conjugate to (6.14) is given by
v1 = Reciop+ &, v9 = Recyd/ (6.24)

with matrices C1 = dllbl + d12b1J + dlgbg, Cy = d31b1 + dggblj + d33b2.
Condition (6.23) is fulfilled if there exist matrices a; such that in the block
structure (6.9) their first rows coincide with the first row of a; and

daj = glj d, j = O, 1. (625)

In particular, if d commutes with a; then functionv is solution of the same system
(6.1).
Proof. Existence of functionv in (6.22) is equivalent to

8 3u1 8u1

8_3/ (dn% + dlza—y + d13u2) —

0 ou ou
—% (dQla_LL'l + d228_y1 + dggUg) = 0.

By theorem 6.2 each solution u of (6.1) is representable in the form (6.14). Substituting
it in the previous identity rewrite it as

Re@Q¢" = 0,

where @ is the difference between the left hand side and right hand side of (6.23).
Since J-analytic function ¢ is arbitrary, this implies @) = 0.

For the second part of the lemma suppose that (6.25) holds with indicated ;.
Then multiplying (6.11) from the left by d we get a similar equality

aoBy + @1 BoJ = 0 (6.26)

for By = dBy. As in the proof of theorem 6.1, we conclude that By has a block
structure analogous to (6.7). This , in particular, implies (6.23).

Let b; be determined by By as in (6.7). Then for @; = a; equality (6.26) ca
be rewritten in block form (6.8), where b; should be marked by wave. Putting
¢ = by, ¢ = by in (6.24) we come to equation (6.1) for v.

If matrix d is invertible, then analogously to (4.32) condition (6.25) can be
rewritten in terms of relations between elements of matrices a and d. According
to block structure (6.9) represent vectors & € R?1+2 in the form (&1, &, €3), where
1,8 € Rl & € R™2. Then element of the first row of a; in (6.9) can be described
by conditions

(a1&)1 = =&, (a6 = &

The same conditions should be satisfied by matrices a; appearing in (6.25). Putting
¢ = dn assumption (6.25) can be changed to conditions (day )1 = —(dn)2, (daxn); =
(dn); or, in matrix notation,

(dal)lj = —d2j, (da2)1j = dlj; Jj=123.

In order to calculate here matrix products write Iy X (I3 + lo)—matrix (dy2,d;3) in

block form
(da2), das)), daz) € RV™ djg) € R,
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Then taking into account (6.9) preceding equalities take the form

d(lz)a(l)1 + d(13)a’(2jl = —dy, 61(12)61%1 + d(13)a%1 = dy — da,
(6.28)
d2)ay? = —das, daz)as' = diz, dgs)as® = dys.

Hence if matrix d is invertible and, in notation (6.27), is related to ag, a; by
relations (6.28) then this matrix is admissible for system (6.1).

It is easy to write down a system of equationfor conjugate functionv. By
assumption matrices a; have block structure

L L
l 0 -1 0 1 0 0
ag = mi| pu1 pi2 P13 |, a1 = | quu @12 ¢3
ma \ P21 P22 P23 G21 422 (23

Differentiating the second equationin (6.18) we get system

— — = 0.
ap o + a; ay
Since a; = da;d~* we have
ov ov
an — a1 — = — d .
agp O + ay 8y O, \%4 U

By (6.22) vector V' is constructed from functions vy, vy as in (6.17), hence taking
into account expressions for a;, for these functions we get the following equation s:

‘ 8201 +( i A)32v1 T g 82U1+
Pi1 8x2 Di2 qi1 axay qi2 8y2

8U2 @UQ
psagc qi3 y

Each of them has the same form as the first equation of system (6.1).
Despite relations (6.28) express conditions of compatibility of d with (6.1),
conditions (6.23) are practically more convenient.

6.4. Stokes system. Linearized two-dimensional stationary Navier-Stokes system
describing viscous incompressible fluid [40] is called Stokes system. In dimensionless
variables it has the form

Ful Pt op P P op
Ox? oy? Ox T 022 oy? oy ’
(6.29)
o 0w
Ox oy ’

where u = (u',u?) is velocity vector and p is the pressure. With respect to u; =

u,us = p this system is elliptic in the sense of Douglis-Nirenberg of the form (6.1)
Withm1:l1:2, m2:l2:1.
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Its solutions can be represented using analytic functions [40]. Put w = u' + iu?
and add the second equationin (6.29) multiplied by 7 to the first one. Then system
(6.29) can be written in the form

*w  Op 0w  Ow
e —+—==0 6.30
9.0z oz oz oz (6.30)
which shows analyticity of function
ow
40" = 2— — p.
2 02 p
Since 5
i
47 = 2— —
()0 az p?
for p we get expression
p = —4Re . (6.31)

Eliminating p from preceding equalities and using the second equation in (6.30) we
obtain

Ow o —

& = ¢ — @,
hence

W= — 27 + 19 (6.32)
with some analytic function ). Representation (6.31) , in particular,shows that
function p is harmonic.
On the other hand, Stokes system (6.30) can be treated using results of subsection 6.2.

Putting uy = u, uy = p, write characteristic polynomial (6.2) of this system as

1+ 22 0 —1
P(z) = 0 1+22 —2
1 z 0

Since det P(z) = (1+22)?, characteristic polynomial has in the upper half-plane one
root v = 4 of multiplicity 2. By theorem 6.1 matrix b € C>*? transforming P(z) to
Jordan form is constructed from eigenvector xg and adjoint vector z;:

Thus
1 0 .
b=|1i -1 |, J:(é 1)
0 2
and representation (6.14) from theorem 6.2 takes the form
u = Re < 1 _01 > ®, p = Re(2igy), (6.33)

where ¢, is the second component of 2-vector ¢.
By theorem 2.1 function ¢ can be expressed via an analytic vector-function ¢) by

formula (2.17)
58
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Substituting this into (6.33) we get
2ur = Re(2¢1 + iZ1)y), 2us = Re(2ithr — 2¢p2 — Z¢5),
p = Re(2iyy),
or putting w = uy + tusg,
2w =1y — 4i(hs + 1) + 2005, p = Re(2i)h).

For 2¢ = —i}, 21 = 11 + 4irhy, these formulae transform into (6.31), (6.32).
By analogy with subsection 5.3 introduce stress tensor

(T T3
T = ( T ) (6.34)

Ou; p Ous p 1 [Ou; Ouy
e 2P oy 20 7P 2(8y - 83:)

With a solution (u,p) of Stokes system one can associate pair of functions (v, q)
by formulae

with elements

ov Ouy  Oug
P T .
U —Tn, g , (6.35)

first of which has the same sense as equality (5.47). These formulae can be rewritten
in the form (6.22). Namely, denoting by T(;), j = 1,2, columns of matrix 7, its
definition (6.34) can be rewritten in the form

oo (1 0 o (0 0)du [-1/2
W= 0 1/2) ox 1/2 0 ) oy o )P

(0 1/2) du 1/2 0 ou 0
T<2>_<o 0)%+(0 1)a_y+ —1j2 ) P
Writing out the first equation (6.35)

T(l) ny + T(Q) Ngo = % (—TLQ) + =

we arrive to relations (6.22)

ov (0 —-1/2\ Ou ~1/2 0\ Ou 0
ax‘(o 0 )aﬁ( 0 —1)(9@/*(1/2)]”

v 1 0 ou 0 0 Ou —1/2
_ ou 6.36
dy (0 1/2)ax+(1/20>ay+< 0 )p’ (6.3
ou ou
— 1) == 1.0) ==
0= (0.-DF + 105

for pair (v, q). Direct verification shows that the main condition (6.23) of lemma
6.2 holds for given matrices d;; and matrices

10 . 1
blz(i _1), by = (0,2i), J:(é Z)
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appearing in (6.33). Adopting notation (6.24) we also have

¢ = (‘1’ (j) = —ib, = (0,2) = ib.

Thus pair (v, ¢) admits a representation analogous to (6.33):

v=1Im ( 1 _01 ) ¢, q=1Im(2igy), (6.37)

and , in particular,it is a solution of the same system (6.29). It is not difficult
to show that matrix d in (6.36) commutes with matrices (6.9) corresponding to
system (6.29). This agrees with the last statement of lemma 6.2.

Relations (6.35) are natural analogs of Cauchy-Riemann conditions for the real
and imaginary parts of an analytic function. Along with representations (6.33),
(6.37) they were obtained by N.Zhura and used for investigation of new non-local
problems of hydromechanics [41]. Notice that changing in (6.33), (6.37) function ¢
to i¢ Cauchy-Riemann conditions (6.35) can be reversed. In particular, we have

- 81)2 8111 . 8'111 8’02

p_——— [ —

ox Oy’ 1 oy Oz’
From the physical point of view this enables one to interpret pressure as the curl

of conjugate velocity vector v while the conjugate pressure is equal to the minus
curl of the original velocity vector.
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