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Abstract

The mathematical model of two competitive universities for limited contingent 
of applicants, offered by L.A. Serkov, has been simplified up to level , allowing to 
investigate it by methods of the qualitative theory of dynamic systems. 8 critical 
points of the simplified dynamic system are defined and the analysis of their stability 
are made. It has allowed receiving all regimes of education system’s behavior. 
Numerical experiments with the model confirmed the results qualitative analysis. The 
model spreads on n+1-dimensional case (n universities competing for the limited 
contingent of applicants).
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Introduction

To describe a wide class of social systems V. Weidlich in 1988 in the " Stability and 

cyclicity in social systems " proposed nonlinear dynamic system of second order based on the 

logistic equation [ 1]:

= x[a (y ) s -  x]

d y=y[b (x).- ,i (1)
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where piecewise variable influence functions a(y) and b(x )  describe the cooperative or

antagonistic interaction of variables. For example, if the impact of y on x is cooperative , then

f а(У) = a-  < 0 , i f  0  < y  < y s 
\ a (y ) = a+> 0 , i f  ys < y  < от,

where y s - is the switching point of the influence function .

Here are four possible options of interaction of macro variables x and y. This model was 

used in the work [2 ] to analyze the development of the education system in a competitive 

environment. In the work [3], the model (1) has been extended to three dimensions:

= x[a (y, z ) s -  x]

= y [b (x z )s -  y ] (3)

= z[c (x, y ) s -  z ], 

when specifying the following influence functions :

a (ŷ  z ) = -A yxth[k (y -  ysx )] + AZxth[k (z -  zsx )]

b (^  z) = -A xyth[k (x -  ̂  )] + Azyth[k (z -  zsy )] (4)

c (^  y ) = -A xzth[k (x -  xsz )] + Ayzth[k (y -  y.sz )]

where x sy, xsz, y sx, y sz, z sx, zsy - are the switching points of the influence functions. Their

crossing changes the macro variables interaction nature ( from suppression to strengthening or 

vice versa).

Numerical experiments with this model are done with the basic parameters s = 5, k  = 1,

Aij = 1  x sy =  x sz =  x s =  4 Л  ysx =  ysz =  ys  =  4^2 5 , zsx =  zsy =  zs =  4 ^2 , and the model is

interpreted as a competition between two one-profile universities (x, y - the number of students 

in them) for some limited resource of applicants (z - number of applicants ) .

As a result of these experiments only bistable mode of behavior of the educational system

were obtained in the work [3]: (x*,0,z*); (0,y*,z*) ; and complexity of the influence functions

setting ( 4) did not allow to do qualitative analysis.

Mathematical model and its qualitative analysis
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If the influence functions are set to a first approximation as linear functions, the dynamical 

system (3) would be able to be explored with the simplest methods of the qualitative theory of 

dynamical systems . This is conveniently done in terms of the models of the "predator - prey" 

type with the presentation of their coefficients as in competitive models of pairwise competitive- 

cooperative interactions [4, 5] In this case, the system of equations (3) can be written as :

dx q 2—  = a x x -  p x x -  yx xy + sx xz 
dt
dy n 2
—  = a 2y - f i y - Y2 xy  + S2 yz , (5)dt
dz 2—  = a 3z -  fi3z -  sxxz -  s 2 yz. 
dt

where x - number of students in the first university , y  - the number of students in the second 

university, z - number of applicants wishing to enroll in these two higher educational institutions, 

a  > 0 - growth factors, f i  > 0 -intra-contingent (intra university),competition factors, h  > 0 -

inter- contingent (inter-university)competition factors , S  > 0 - coefficients of students-

applicants cooperation.

In model ( 5 ) in addition to the three logistics members and inter-university competition 

(members: - h x y ) ) the balance of students- applicants interactions (for example , an influx of

applicants the first university ( sxx z) is equal to the outflow of applicants from their total

number( - S 1x z )) is taken into account. If the right-hand sides of equations (5 ) we will take out

of brackets x, y  and z, then we will see in the brackets the above mentioned linear functions of 

influence in the model of L.A.Serkov .

We will find singular points of the dynamical system (5 ) in the solutions of the following 

system of algebraic equations :

x ( a  - f i x - y ^  + S1z ) = 0

<y ( a 2 - f i 2 у  h2 x + S2 z ) = 0 (6)
z ( a  -  f iz  -  S x -  s 2y ) = 0 .

This system of equations has eight solutions which determine the coordinates of the 

singular points . We will write them in order:

1. x* = 0 , y  = 0 , z  = 0 ;
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a
2 . x, = — , y  = 0 , z* = 0 ;

Pi

a3. x* = 0, y* = —  , z* = 0;
, P2 ;

a
4. x* = 0, y* = 0, z* = —  ;

P3

_ a 0 B% + a^sn a^P  ~ a 0 s 05. x* = 0, y* = - ^ ----^ , z* = - 3 --2-----^  •
P2P3 ^ S2 P2P3 ̂  S

2 ’
2p 3 1 s2

a  P  + a s i  л a  P  -  a  s
6 .X = —̂  ^-L, y* = 0 , z* = - ^ -----L̂ -

p ip3 + s i pip3 +S1

7  X t - a i p 2 a 2 Y 1 _ a 2 p i  - a i ^ 2  Z t = 0 .

P 1P 2 - У 1 У 2 p i p 2 - У 1 У 2  ’

5. X» =

y* =

z# —

a i yi - s i
a 2 P 2 —S2

a 3 S2 P3

P 1 a i —S1

У2 a 2 —S2
s  a  p

p i Yi a i
Y2 P 2 a 2

s  s  a

P1 Y1 —s 1

У2 P 2 —s 2

S1 s 2 P3

P1 Y1 —s 1

Y2 P 2 —s 2

s s 2 P3

P1 Y1 —s 1

Y2 P 2 —s 2

s 1 s 2 P3

Jacobi matrix of the linearized dynamic system (5 ) has the form :

a  — 2px* — Y1 y* + s1z* —Y1x*
A = —y2 y* a 2 — 2P2 y* — y2 x* + s2 z*

s1x*

S2 y* . (7)
S1z* —S2 z* a 3 — 2P3 z* — S1x* — S2 y*

The characteristic equation for this matrix has the form :

A  — Я/| =
a 1 — 2 P1x* — y1 y* + s 1z* — Я —y1x* s 1x*

y 2 y* a 2 — 2 P2 y* — y2 x* + s 2 z* — Я s 2 y *

a 3 — 2 P3 z* — S1x* — S2 y* — Я—s1z* —S2 z*
= 0 .

(8)

For the first trivial singular point the characteristic equation (8) takes the form :
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( a  -  A)(a 2 -  A ) ( a  -  A) = 0 ,

and therefore , the point is unstable node.

For the second singular point the equation (8) takes the form :

|A -A l\  =

-  a  -  A Г1

a
a  -  y  — -  A

2 /2  P

a
P

aa  -  Si —  - A
3 1P

( - a  -  a )
А Л A

a - ^ - A
v P J

S\a\ n A
v p

= 0 .

A stable node occurs here, if

a P  -  r a  < 0 , a p  -  s a  < 0 ,

and in other cases we come to an unstable saddle point. A similar situation occurs for the third 

singular point, which is a stable node at a 1P2 -  y1a 2 < 0, a 3P2 -  s 2 a 2 < 0.

For the fourth singular point the equation (8) reduces to:

^ s a 3 . ̂  ^
a  +— i A +

v p j

S2a 3 _ д
v P

( - a  -  a )  = 0

and therefore , this point is a saddle .

For the fifth singular point the equation (8) reduces to:

( a  -  У1 y* + s ẑ* -  A)[A + A ( - a 2 - 0 C3 + 2P3z* + 2P2y* + S2y* -  s 2 z*) + a 2a  -  2P2ay*  +

+ a3s 2z* -  2 P3a 2 z* + 4P2P3y*z* -  2P3s2zt -  s 2 a 2y* + 2 P2s2y t I = 0 . (9)

Consider the simple case when a i = a , Д  = P , y  = y ,s t = s , then equation (9) reduces

to:

a ( p 2 - p - y s  + sp')
P 2 + s 2

-A A2 +
2qff2

P 2 + s 2
A+

( P 4 + s 4 -  2 P s 3)

1 P ^ = 0 , ( 10)

wherein y  = ■
a ( P  + s)
Pz +s

a ( P - s )
2 , - 2 ’ * 02 . „2P 1 + s

> 0 when P > s  .

Of the cubic equation (10) we define the eigenvalues:
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a { 0 2 - y P - y s  + sP) a
1  =  n 2  , _2 , 1 2,3 ' „ 2  , „2 P ± s j s ( 2P - s ) l . (11)

p 2 + s 2 ' P 1 +S1

One can show that the first eigenvalue is negative while satisfying the following 

inequality:

1  < 0 0 <p < - ( s - y ) ,■ + + £7
2 V 4

Next 12 (plus sign in the expression (11)) is real and negative, if 2 P > s  , 1 is  real and 

negative when p > s  .

Thus, the conditions of positivity of the singular points coordinates and negativity of the 

eigenvalues requires the carrying out of the inequalities

0 < p < - ( s - 7) , l( s - 7 )■ + + sy  , P > s  . (12)
2 V 4

In this case, the singular point (0, y*, z*) is a stable node.

For the sixth singular point equation (8) reduces to:

(a 2 -  У2x* + £2z* -  Л )Ц  + 1  ( - aj -  a 3 + 2 P x  + 2 P3z* + Sjx* -  S2z*) + a xa 3 -  2 a xP3z* -

- a 1s1x* -  2 p a 3x* + 4P1P3x*z* + 2P1s1 xt2 + a 3s1 z* -  2P3s 1 zt2 -  s 2z*x* + s 2z*2 ] = 0. (13)

a ( P  + s)  a ( P - s )
Simplified case a  = a , P  = P , y  = y , s. = s , x* = —^ ^ , z* = —^ ^  leads to

P  + s  P  + s

the same results , which were obtained for the fifth singular point.

For the seventh singular point equation (8) reduces to:

a  -  s1 x* -  s 2y * -  А )Ц  + 1  ( - a 1 -  a 2 + 2P1 x* + 2P2y* + У1 y* + У2x*) + a 1<X2 -  2a 1P2y* -

- a 172x* -  2P1a 2x* + 4 P1P2 x*y* + 2 P У2x ,2 -  71a 2.y* + 2 P2ŷ .y,2 = 0 . (14)

Simplified case a t = a , P  = P , 7  = y , s  = s , x* = y* = 

the following cubic equation:

a

a  ̂P + y -  2s ̂
- 1 1 2 +  ̂2aP  л

1 P + y J \ P + y J
1 +

a

P +y  

( P - y)

where P ^ y , leads to

(P +y)
= 0 . (15)

The solution of this equation is:

1  =a P + y -  2 s  
P +y

\ a ( y - P )
P + y

1 = - a . (16)



Mathematical Model for the Formation o f University Contingents. 15867

Negative eigenvalues Я and, consequently, a stable node for the seventh singular point 

will take place when the following restrictions on the parameters of the model:

2 s
p  + y

> 1, у < P  .

a
In case P = Y we have x* + y  = —

P

Я = —l a L < 0 .
Я P  + Y

Я = a —s(x* + y* ) = a
V P

(17)

Я  = 0 .

у

Thus, in this case whens > p  we have a stable node.

For the eighth nontrivial singular point equation (8) we are to consider for the simplified 

case a  = a , Д  = P , у  = у , s  = s , when

x* y*
ai^p 2 —yP — sy + P s) ai^p 2 — 2 p s  + 2 sy — y 2)

P 3 + 2 p s 2 — 2 ys2 —y 2p P 3 + 2 p s 2 — 2 ys 2 —y 2p
(18)

After a fairly cumbersome transformations it has been reduced to a cubic equation

Я  — ( 2 A + B )Я2 + A 1
P 2 у

2AB ' i  s 2^1 +--- 7
P 2 у

Я + A 2 B
f  о 2 2 2 Л2 ys у s  '— + - 13 n2 o2P3 P 2 P 2 у

— AB2 s  = 0 , (19) P 2

where

_ a P i —P 2 + sy — sp') aP  ( —p 2 +  у 2 +  2Ps — 2sy)
A = —Px* =  *3 , *  2 -  2 *  , B  =  — Pz* =  '

p 3 +  2 P s  — 2 s  —у P p 3 +  2 P s  — 2 у  —у P

(2 0 )

We obtain conditions of singular points coordinates positivity. If P> у  it follows 

automatically that x* > 0 , y* > 0. To fulfill the conditions z* > 0 it is necessary to satisfy the 

system of inequalities

p 2 — 2Ps + 2sу — у2 > 0 

£ > у
The roots of a quadratic equation p l  — 2p s  + 2sY — у 2  = 0 have the form 

P1 = 2s  —у  , P 2 = у  when s < Y  and P 1 = у , P 2 = 2s  —у  when s >  у . To solve this system 

of inequality it is necessary to consider three cases:

1. 2 s  — у  < 0
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2 . 0  < y  < 2 s - y o  0  < y < s

у / / / / / / / / !  *
0 \ z  s - у  у P

3. 0 < 2 s - y  < y  o  0 < s < y

Thus, the first and third case system of inequality (20) has the solution P > y , in the 

second - P > 2 s - y  .

If 0 < P <y  it follows automatically that x* > 0, y* > 0. To fulfill the conditions z* > 0 it 

is necessary to satisfy the system of inequalities

0 1  -  2 f i s  +  2 s y  - y 2  < 0  

0  < P < y  .

As before, to solve this system of inequality it is necessary to consider three cases:

(21)
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1. 2 s - y <  0

2 . 0  < y <  2 s - y < ^  0  < y < s

3. 0 < 2 s - y < y 0 < s < y

15869

That way, in the first instance system of inequality (21) possesses a solution 0 < P < y , in 

the second case there in no solution, in the third case this inequality possesses a solution

2 s - y  < P  < y
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The stability of eight singular point of simplified dynamic system will be revealed, when 

real root parts of cubic equation (19) are negative. According to the Routh - Hurwitz conditions, 

in order that roots of arbitrary cubic equation

(2 2 )

with a real coefficients have negative real parts, it’s essential and sufficient that all main 

diagonal minor determinants of Hurwitz matrix for equation (22)

G =
a

Й0 Й2

0 Л

0

V 0  Й1 Й3 у

(23)

are positive.

Й2 0
=  й й  >  0 ,

a

0

0
=  й й  >  0 ,

a a
^1^2 a a

a a a Й0 Й2
(24)

For our actual equation (19) the conditions (24) will be:

2 Л

+ 2 AB

- (  2 A + B ) 

- (  2 A + B )

у

A2 B

Гл ^  
1 +-------7

P 2 у
A2B 2ys2

V

2

P 3
+ ? - - S -  - 1

P 2 P 2

л
-  AB2^  

P 2

> 0

^ 2 y s2 y2 s
~j F  + P  -

-  AB 2 S

1 - y -  P z

2

+ 2 AB
у

у
2

P
> 0

1+ sP 2 у
-  A2B 2ys y s

P +P  -

Л
+ AB2 —  > 0.

P 2

(25)

Let’s analyze the case > y, if the first factor of first system inequality (25) is positive, 

as A < 0, В < 0. And thus, the second factor of this inequality has to be positive. It follows that 

second inequality is fulfilled by itself. The third inequality transforms to the form:

2  A3У
P 2

- 1 ' - 4 A 2B - 3 A 2B £ l - 2 A B 2 - ^ - 2 ^  
P 2 P 2 P 3

>  0

it follows that, for the same conditions (P > y, A < 0, B < 0) is fulfilled by itself.

By this means, all roots of cubic equation (19) will have negative and real components as:

A 2 B
o  2 2 2
2ys  y  s  ,
P 3 P 2 P 2

\
-  AB 2 s— > 0 <=> 2 y -1  + 

P 2 P
V P

s 2

> B _ z*
A x,

(26)

2
2

•<

2
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For the case p  > 2у this inequality admittedly is not fulfilled as its left part is becoming 

negative. Therefore the stable node or stable focus for the eighth singular point will be in the 

next changing parameters fields of shortcut dynamic system (5):

2 у / p  + ( у 2  —p 2) / s 2 — 1 > B / A  

< у  < P  < 2 у  (27)

2 s  —у  < 0

The analytic study of other cases is quite difficult and will not be considered. Singular 

case for ft = у  the leads to the nonexistence of solution of algebraic system (6) for the 

determination of singular point coordinates.

Therefore qualitative assay of dynamic system (5) shows that there are two regimes of its 

behavior with full suppression of one university by other with full exhausting of stationary 

applicants reserve. (singular points 2 and 3), two similar regimes if there is stationary applicants 

reserve (singular points 5 and 6), two regimes of mutual coexistence of universities with 

presence (singular points 8) or exhaustion (singular points 7) of stationary applicants reserve, 

two unstable regimes of educational system’s behavior (singular points 1 and 4).It should be 

noted that for the singular points 5, 6 and 8 there are situations when z* = 0 (exhaustion of 

stationary applicants reserve).

Other, more complicated regimes of dynamic system’s behavior (5) (for example self­

oscillations), might be detected in the result of numerical experiments.

Numerical experiments

The examples of numerical experiments with model (5) are shown in figure 1
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Variant 1. Model parameters and calculated coordinates of nontrivial singular point: 
a 1 = 0.2, a 2  = 4.0 , a 3  = 8.0, f t  = 4.0, ft2 = 2.1, ft3  = 0.4 ,y1 = 2.1, y 1 = 0.2, e1 = 4.0, e2  =

0.2, x* = 1.64, y* = 2.0, z* =2.64
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Variant 2. Model parameters and calculated coordinates of nontrivial singular point: = 4.0,
a 2 = 4.0 , a 3 = 2.1, f t  = 0.2, f t  = 4.0, f t  = 0.06,ух = 5.9, y2 = 0 . 2 , =  1.0, £2 = 0.2, x* =

1.74, y* = 1.04, z* =2.46
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Variant 3. Model parameters and calculated coordinates of nontrivial singular point: a 1 = 2.1, 
a 2  = 2.1 ,a 3  = 2.1, p 1 = 5.9, p 2  = 4.0, p 3  = 2.1 ,y1 = 0.2, y 2  = 0.2, e1 = 0.2, e2  = 0.2, x*

=0.37, y* = 0.56, z* =0.91

Figure 1. The result of numerical experiments according to the model (5)

The numerical experiments show that system’s behavior seems the type of stable focus in 

the first two variations, and the third variation -  by type of stable node.

Conclusion

Dynamic system (5) can be easily spreaded to n +1 - dimensional case (n of universities, 

competing for the limited applicants’ contingent). In this case it is as follows:
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dx, „ 2—  -  a x  -  f i x  -  у 12X1X2 - ... -  yhxlxl - ... -  y^xXn + s ^ z  
dt
dx 2
j  = a 2x2 -  fi2x2 -  У2Л x1 -  ... -  У2ix 2xt -  ”. -  y2 nx2xn + S2x2zdt

dxi 2—i  = a x  - P x  - ynxix  
dt

... -  yx,x, - ... -  y x x  + s x zij i j in i n i i

dx 2—- - a  x - p  x - y  x  x  - . . . - y x x  - ... -  y x x  , + s x z7 n n Ân n / n 1 n 1 t m n i / n,n-1 n n-1 n ndt 
dz
dt -  a n+1z -  fin+1z 2 -  s 1 x1z -  ... -  sixiz -  ... -  snxnz

(28)

Singular points of dynamic system (28) are defined from the solution of algebraic 

equation system

x1 (a 1 -  fix1 -  y12x2 -  ... -  yuxi -  ... -  y1„x„ + S1Z) = 0

x2 (a 2 -  fi2x2 -  y21x1 -  ... -  у2 ixi -  ... -  у2 nXn + S2 Z) = 0

(a i -  fiixi - Уг1 x 1 -  ... -  yyxj -  ... -  У Л  + SiZ) = 0

(a  - B  x - y  ,x, - ...- y  x - ...- y  ,x , + s  z) = 0у n r  n n / n1 1 f ni i / n,n-1 n-1 n Jxn (a n -  n n

z (a n+1 - Pn+1z - s 1x 1 -  ... - s x  -  ... -  snxn ) = 0

(29)

The general amount of singular points with different combination of zero and nonzero 

elements is equal to 2n+1 [6 ]. By analogy with analysis of 3 - dimensional dynamic system, there 

are different suppression regimes of ones universities by others. Different university coalitions 

might appear which will suppress others with time. Let us assume that, five one-profile 

universities compete with each other in educational market, than, for example, coalition of three 

universities, there is a possibility to form (three combinations of five): C53 = 10 .
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