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Abstract—A modification of the Zernicke—Prins method is proposed for determining the radial distribution
of atomsin a solid. The modification consists in measuring the spectra of scattered broadband X-ray radiation
instead of the angular distribution of a quasi-monochromatic radiation scattered from the probed sample. It
is shown that, according to the proposed approach, it is possible to eliminate the principal difficulty of the
traditional Zernicke—Prins method, which is related to a limited region of variation of the argument in the

measured angular distribution of scattered radiation.

The well-known Zernicke—Prins (ZP) method of
determining the radial distribution of atoms in an
X-ray probed medium consist in reconstructing the
unknown radial distribution function (RDF) from an
integral equation that relates this function to the
experimentally measured angular distribution of a
quasi-monochromatic X-ray radiation scattered from
the probed sample [1]. A solution to this equation is
obtained by inversion of the integral Fourier trans-
form. However, this procedure encounters a difficulty,
which is related to the fact that the magnitude of
momentum transfer in the scattering event is limited
from above. This principal difficulty cannot be elimi-
nated within the framework of the traditional ZP
method. Apparent oscillations, which appear in the
RDF as a result of this limitation, are conventionally
reduced by special smoothening procedures [2].

In this Letter, we suggest to eliminate the afore-
mentioned difficulty by using an energy-dispersive
approach based on the spectral measurements of
broadband radiation scattered from the sample. It
will be shown that, within the framework of the pro-
posed approach, the arguments of functions entering
into the main integral equation are determined on
the entire numerical axis, which eliminates distor-
tions of the RDF function that are inherent in the tra-
ditional ZP method.

Consider the scattering of an X-ray wave on atoms
of the probed medium. The Maxwell equations for the
Fourier image of the electromagnetic field in the
medium are as follows:
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where J,,, is the Fourier image of the induced electron
current density for all atoms in the medium, G(k', K) is
the response function (calculated in the dipole
approximation [3, 4]), ay(®) is the dipole atomic
polarizability, f,, is the oscillator strength for the
|0 — |n) transition, ®,, = F,— FE, is the energy differ-
ence between atomic levels, /{(k' — k) is the atomic
form factor, Z is the number of electrons in the atom,
and r; is the radius vector of nucleus of the /th atom.
Representing the response function G(K', k) as a sum
of the average and fluctuation components,

Gk, K) = Gk, K) + G(K, k),
G(K, k) = (G(K,K)) = 4nn,o,(®)8(K —k),

where n, is the number density of atoms in the target,
we can eventually reduce Eq. (1) to the following form:
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Here, in agreement with Eq. (2), the refractive proper-
ties of the medium are described by the dielectric per-
mittivity defined as e(w) = 1 + 4nnyoy(o0) =1 + x (o)
(where y(w) is called the susceptibility of the
medium).



A solution to Eq. (3) can be obtained by applying

the method of iterations to E_, = Egi( + EEOSk) ), where

the first term describes the incident wave that satisfies
Eq. (3) in the zero-order approximation with respect
to G (K', k) and the second term describes the scattered
field that obeys Eq. (3) in the first-order approxima-

tion with respect to G (K', k). These terms can be writ-
ten as follows:
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where e; is the vector of polarization of the incident
nonmonochromatic wave, F is the wave amplitude,
and m; is the unit vector of the wave propagation direc-
tion.

Formulas (4) lead to the following expression for
the spectral and angular distribution density of scat-
tered radiation:
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where ng is the unit vector in the direction of scattered
wave propagation and angle brackets denote averaging
with respect to the positions of all atoms in the target.
This averaging is performed with allowance for the fol-
lowing formula:
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where N is the total number of atoms in the target
(assumed to be homogeneous), f,(r;, r,,) is the two-
particle atomic distribution function that can be pre-
sented as the product of a one-particle function
JSirp = 1/V and a pair correlation function g(|r; — r,,|)
(which decreases with increasing argument [5]), and
Vis the target volume. Substituting formula (6) into
Eq. (5) leads to the following final expression for the
density of scattered radiation
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where 3 is the scattering angle defined by the relation
n, — ng = 2sin($/2) and #(r) is the atomic RDF
defined by the relation nyg(r) = [n(r) — ny)/V? [6] (as
the radius rincreases, n(r) tends to the average number
density of atoms n, = N/V). It should be noted that, in
the X-ray frequency range, the permittivity of sub-
stances only very slightly duffers from unity and,
hence, we can put €(®) = 1 in the right-hand side of
Eq. (7).

Formula (7), which is considered as the integral
equation for determining the RDF n(r), is analogous
to the ZP equation [1]. As was noted above, n(r) is
reconstructed according to the ZP method from the
angular dependence of the scattered radiation density
dN®/dodQ), which is experimentally measured at a
fixed frequency ®. The argument x = 20sin(8/2) of
the measured function varies within finite limits 0 <
x < 2. This leads to a distortion of the n(r) function
reconstructed by inversion of the integral Fourier
transform, in which the integration must be performed
over the infinite domain.

We propose to use the alternative possibility that
follows from Eq. (7) for determining #(r) from mea-
surements of the spectra of scattered broadband radi-
ation for a given initial spectrum |E, |* and a fixed scat-
tering angle 3. Indeed, since all quantities entering
into Eq. (7) are determined as functions of ® (at
present, data on the susceptibilities % (®) measured in
a broad frequency range are available for many sub-
stances [7]), the unknown function #(r) can be deter-
mined from Eq. (7) according to the following for-
mula:
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where the argument x is related to the frequency ® by
the relation presented above (x = 2wsin(8/2) and the
quantity dN,/dwdQ coincides with the coefficient at
the square bracket in the right-hand side of Eq. (7).
This coefficient describes the spectral and angular dis-
tribution of radiation scattered by atoms in the
medium independently of each other, since it is obvi-
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ous that the collective effects in the scattering decrease
with increasing frequency o and the measured value of
dN®/dwdQ tends to dN,/dodQ. In contrast to the
Z.P approach, the integrand function J(x) in Eq. (8) is
determined on the entire numerical axis. This circum-
stance eliminates distortions of the unknown function
n(r), which are inherent in the traditional ZP method.

It should be noted that the scheme of spectral mea-
surements at a fixed position of the X-ray detector is
simpler than the scheme of angular measurements
involved in the ZP method. On the other hand, the
proposed approach implies the need in the knowledge
of the susceptibility of a target and the spectrum of
probing radiation. In view of the latter requirement,
one of the most convenient sources of probing photons
is the synchrotron, which ensures a high intensity of
the radiation and makes possible exact calculation of
its characteristics.
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