DERIVATION OF THE EQUATIONS OF NONISOTHERMAL
ACOUSTICS IN ELASTIC POROUS MEDIA
A. M. Meirmanov

Abstract: We consider the problem of the joint motion of a thermoelastic solid skeleton and a viscous
thermofluid in pores, when the physical process lasts for a few dozens of seconds. These problems
arise in describing the propagation of acoustic waves. We rigorously derive the homogenized equations
(i.e., the equations not containing fast oscillatory coefficients) which are different types of nonclassical
acoustic equations depending on relations between the physical parameters and the homogenized heat
equation. The proofs are based on Nguetseng’s two-scale convergence method.

Keywords: nonisothermal Stokes and Lamé’s equations, equations of acoustics, two-scale convergence,
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Introduction

In this article we consider the problem of modeling rapid nonisothermal processes in an elastic
deformable medium perforated by a system of channels and pores filled with a fluid (elastic porous
media). The solid component of a medium of this kind is a skeleton; and the domain, filled with a fluid,
is a pore space.

In dimensionless variables (without primes)

L? L
=Lz, t =71t, w=—w, 0= 0,—50
qr

the differential equations of the model in the domain © € R? for ¢ > 0 for the small perturbations of the
dimensionless displacement vector w and the dimensionless temperature 6 have the form

Pw _

Pom — divP + pF, (0.1)

00 . 0
oy = div(a,. Vo) — Oéga(dlv w) + ¥, (0.2)
P — xP/ + (1 — x)P*, (0.3)
P/ = a,D (:E, %—?) —(pr + s 0, (0.4)
P* = c\D(z, w) + (o divw — ags0)1, (0.5)
pr+ xXopdivw = 0. (0.6)

Here and subsequently we use the notation:
D(x,u) = (1/2)(Vu + (Vo)) p=xps + (1= X)ps,
& =X+ 1 =X)), Q= Xus+ (1 —X)s, Qg = Xtgr + (1 — X)ps;
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I is the unit tensor; the given function x(x) is a characteristic function of the pore space Q; C €; the
given function F(z,t) is a dimensionless vector of distributed mass forces; the function W(z,t) is a given
density of heat sources; P/ is the stress tensor of the fluid; P* is the stress tensor in the solid skeleton; and
py is the pressure of the fluid. The differential equations (0.1)—(0.6) mean that the displacement vector w
and the temperature 0 satisfy the nonisothermal Stokes equations in ¢ (x = 1) and the nonisothermal
Lamé equations in 2, = Q\Qy (Y = 0).

On the common “solid skeleton—pore space” boundary I' = 9 N 91 the displacement vector w,
the temperature 0, and the stress tensor of the continuum medium satisfy the continuity conditions

[w](xg,t) =0, [0](xo,t) =0, xpel, t>0, (0.7)
and the momentum conservation law and the energy conservation law in the form
[P-n|(zo,t) =0, [@,VO- -n|](xo,t) =0, =xoel, t>0, (0.8)
where n(zg) is the unit normal to the boundary at zo € I' and

[pl(z0, 1) = sy (0, 1) — 5y (0, 1),
Ps)(®o, 1) = lim @(z,1), @ (xo,t) = lim @(z,t).

T—X0 le—
QZGQ,S ;emeO

The derivation of (0.1)-(0.8) and description of strictly positive dimensionless constants may be
found in [1]. In particular,

2ur 272 0 T2
aM:LQ_poy OO\:L2—007 aP:pfcfﬁy
2
2 T T%f THg 0 Cps
Uy = PsCims,  Qopp = =5, Qg = = =
il PsCyq 12 ) xf L2Cpf ) P L2Cpf ) D Cof )

where f1 is the viscosity of the fluid, A is the Lamé constant, ¢ is the speed of sound in the fluid, ¢, is the
speed of sound in the solid skeleton, L is the characteristic size of the domain under consideration, 7 is
a characteristic time of the given physical process, py and p, are the mean dimensionless densities of the
fluid and rigid phases, respectively, scaled with the mean density of water, and py under the atmospheric
pressure and the zero temperature at the Celsius scale of temperature, g is the value of acceleration of
gravity, sy and s are heat conductivities in the fluid and solid components respectively, and, finally, ¢,y
and ¢, are specific heat capacities in the fluid and solid components respectively.
The problem is endowed with the initial and boundary conditions

’lD|t:0 =0, E =0, 0|t:0 =0, =ze€ Q, (09)
t=0

w=0, 0=0, xS =00 t>0. (0.10)

The corresponding mathematical model, described by (0.1)—(0.10), contains the natural small pa-
rameter £ which is the pore characteristic size [ divided by the characteristic size L of the domain under
consideration: ¢ = [/ L. Therefore it is very natural to find the limiting regimes as the small parameter
tends to zero. This approximation significantly simplifies the original problem and at the same time pre-
serves all of its main features. However, the problem remains too difficult even under the presence of the
small parameter, and some additional simplifying assumptions are necessary. In terms of the geometrical
properties of the medium, it is most expedient to simplify the problem by postulating that the pore space
is periodic.



Assumption 1. The domain Q = (0,1)? is a periodic repetition of the elementary cell Y = Y,
where Y = (0,1)® and the quantity 1/ is integer so that Q always contains an integer number of copies
of the elementary cell Y*. Let Yy be the “solid part” of Y, and let the “fluid part” Y; be the open
complement of Y, in Y, while the boundary v = 0Y; N 0Y between the “fluid” and “solid” components
is a Lipschitz continuous surface.

The pore space (15 is a periodic repetition of the elementary cell €Yy, the solid skeleton (1 is a periodic
repetition of the elementary cell €Yy, and the Lipschitz continuous boundary I'* = 0Q5N08Y5 is a periodic
repetition in §2 of the boundary 7.

The solid skeleton 2% and the pore space Q*} are connected domains.

Under these assumptions

x(z) = x"(z) = x(z/e), p=p(z)=x(2)ps + (1 —x(2))ps,
& =c(@) =x(@) + (1= x(@)ep, p=0p"() =x(2)ps + (L= X ())ps,
e = a5 () = X5 (@) sy + (1 — X5 (®)) s, Qo = () = X (2)agy + (1 — X*(2)) s,

where x(y) is the characteristic function of Yy in Y which defines the pore space. In the present model
x(y) is a given function.
We assume that all listed dimensionless parameters depend on the small parameter £ and the following
finite or infinite limits exist:
il\rj% OJM(&:) = Ho, il\rj% ax(g) = Ao, i{% ap(g) = P+,
(€)=, im g (€) = saog, i (<) = 20
i{%% = p1, ii\lj%% = A1, ii\lj%% =5, L= [,

In this article we consider the processes of seismic acoustic wave propagation when the characteristic
time of the process 7 is about some seconds (some dozens of seconds), while the characteristic size L of
the domain under study is about thousands of meters (dozens of thousands of meters). Let us recall that
the speed of sound in fluid and solid media vary between two and seven thousands meters per second.
For example, if we choose the size L of the domain, then it is naturally to choose the characteristic time
of the process 7 such that the acoustic wave covers this distance L during the time 7, that is 7 = L/cs.
As a rule, for this kind of processes the quantities o, and ) are proportional to some positive powers
of the parameter ¢, and the quantities oy and «, are about unity.

Note that the purely mathematical task of finding all limiting regimes of the problem, depending on
some small parameter, does not answer how to choose the most appropriate approximate model for a given
physical process. In practice there is a given physical medium with a given set of physical parameters: the
viscosity and Lame’s coefficients, the densities of different components, the characteristic size of pores,
the characteristic size L of the physical domain under study, and, finally, the characteristic time 7 of the
physical process. The smallness of the dimensionless parameter ¢ does not mean that we may change the
size of pores and make it smaller. The size of pores is fixed. The only parameters that can be varied are
L and 7. However, even these parameters have the natural bounds (obviously, L is limited by diameter
of the Earth).

Thus, in a given physical situation we may find some rules for combining dimensionless criteria, which
would suggest the choice of the form of the limiting regimes. As we already noted, this choice may fail
to be unique. Therefore, to find all possible limiting regimes (homogenized systems) is very important
from both mathematical and practical standpoints.

The most complete results for isothermal motion are obtained in [2,3]. In this article we continue
the efforts that were begun in [2-7], and consider the not studied yet case \g = 0; namely, a situation
when pg = Ag = 0.



We show that the homogenized equations for the exact model (0.1)—(0.10) are either different systems
of nonisothermal acoustics for a one-velocity continuum (A = g3 = 0o or Ay < 0o and 3 < 0o) or the
different systems of nonisothermal acoustics for a two-velocity continuum (A; < oo and gy = oo or
A1 =00 and p1 < 00).

This is a very interesting fact: initially a one-velocity continuum becomes a two-velocity continuum
after the homogenization procedure, which appears to be the result of different smoothness of the solution
in the solid and fluid components:

/aﬂ(e)X5|Vw5|2d:v < Co, /a,\(e)(l )|V da < Co,
Q Q

where Cp is a constant independent of the small parameter £. To preserve the best properties of the
solution, we must use the well-known extension lemma [6, 7] and extend the solution from the solid part
to the fluid part and conversely. At this stage, the dimensionless criteria g1 and A; become crucial.
Namely, let w? (w?) be an extension of the fluid (solid) displacements to the solid (fluid) part, and let
1 = A1 = oo. Then the limiting (homogenized) system describes a one-velocity continuum. This is
because of the fact that each of the sequences {w®}, {w?}, and {w{} two-scale converges to the same
function independent of the fast variable. This statement follows easily from Nguetseng’s theorem [8].
If 1 < oo and A1 = 00 (1 = oo and A1 < oo) then the homogenized systems describe a two-velocity
continuum because the sequences {w?} and {w} may converge to different limits. If 41 < oo and Ay < o0
then the homogenizes systems again describe a one-velocity continuum.

In this paper we restrict ourself with the simplest model of viscous fluid with one viscosity coefficient.
Accounting for the second viscosity does not essentially change both the structure of homogenized equa-
tions (see [2], where the complete model was considered) and the corresponding proofs. The summary
of the papers and some preliminary results may be found in [2,9, 10], and the basic notation of function
spaces, in [10].

§1. The Main Results

There are various forms of representation of (0.1), (0.2) with (0.7), (0.8) equivalent in the sense of
distributions. In what follows, it is convenient to write them as integral identities.

DEFINITION 1. We say that the functions (w?, 05,p§c,p§) are a generalized solution of (0.1)—(0.10) if
they satisfy the regularity conditions
Jw* ow*

ot "’ ng77 szy vesy 057 p?: pi € L2(QT)

in the domain Q7 = Q x (0,7"), the boundary conditions (0.10), the equations

1
—pf = —x" divwS, (1.1)
Qp

—p5 = —(1 — x°) divw® (1.2)
O

almost everywhere in {27, the integral identity

£ £ 82(’0 £ awg £
/(pw ‘WJFX OZMD<5U77> Dz, ) —p°F -

Qr

{1 = xO)aD(x, w®) — (pF + p5 + 5071} : D(z, cp)) dadt =0 (1.3)



for all smooth vector-functions ¢ = ¢(z,t) such that

plxz,t) =0, z€ S, t>0; o(z,1) :(?9—(':(:1:,T):O, x €,

and the integral identity

S0 + af divw® o8 _ as,VO° - VE+ W ) daedt =0
] o ot >

Qrp
for all smooth functions & = £(z, t) such that
z,t) =0, z€ S, t>0; &(z,1)=0, z €

(1.4)

We additionally introduced the new unknown function pZ which we call the solid pressure by analogy

with p%, and so we regard (1.2) as the continuity equation in the solid skeleton.

In (2.4), by A : B we denote the convolution (or, equivalently, the inner tensor product) of the two

second-rank tensors along both indices, i.e.,

3
A:B= tr(IB* . A) — Z Az]B]z

G,5=1
We impose the following constraints.

Assumption 2. 1. The functions ¥V and |F| belong to L*(Q7).

2. The dimensionless parameters satisfy the conditions: p;!, 770_1, P, o, 20 f, ¥os < 00, Ao = pio = 0.

The following Theorems 1-9 are the main results of the paper.

Theorem 1. For all = > 0 on an arbitrary time interval |0, T there exists a unique generalized

solution of (0.1)—(0.10) and

ow® . .
o?%(”(‘ 5 | 10 I>(-,t) o + /|| Vw (.,t)||m> <y,
- Ow® .
V| [XTV + |aE V6|20, < Co,
2,Qr
g (1950500 + [P0 D]].0) < Co

where Cy is a constant independent of &.
Theorem 2. Let one of the conditions be valid
0 <spf, os,

or
myp = s = 0, 015 = 215 = 0.

(1.8)

(1.9)

There exists a subsequence of small parameters {¢ > 0} and functions w3, w; € L™ (0,7 W}(€)) such

that
wj = w® in QF x(0,T), w;=w" in Qg x(0,T)

and the sequences {6}, {p*}}, {ps}, {w}, {(x*w°}, {(1 — x)w}, {w?}, and {w$} converge as e \, 0

weakly in L2(Qr) to 0, py, ps, w, w!, w®, wy, and wy respectively.

If (1.8) holds then {6°} converges two-scale in L?(Qy) and weakly in L*((0,T);
holds then {6¢} converges two-scale in L*(Qr) to 0.

WA(Q)) to 0. If (1.9)



Theorem 3. Assume that the hypotheses in Theorem 2 hold and piy = Ay = co. Then wy = ws = w
and 0, w, py, and p, satisfy in Qr the system of acoustic equations

A "
P—a;v =-V ( byt aef9> +pF, (1.10)
1
—pr + ps+d1vwf() (1.11)
Px 7o
1
O+ —pr= 0+ —— 1.12
Qgrt + mpf sVt 7 — P (1.12)
the homogeneous initial conditions
0
w(z,0) = a—’t"(x,o) —0, zeQ, (1.13)
and the homogeneous boundary condition
w(z,t) -n(z) =0, x5, t>0, (1.14)

where m = fY X dy is the porosity and p = mps + (1 —m)p, is the average density of the mixture.

Theorem 4. Assume that the hypotheses in Theorem 2 hold and OF /ot € L*(Qr), py = oo, and
0 < A\ <oo. Then 0, w/ = mwy, w®, py and p, satisly in Qdr the system of acoustic equations, consisting
of the state equation (1.12) and the homogenized momentum balance equation in the form

(92wf D?w® 1 .
prm 5 + ps 5 -V (Epf + a9f0> + pF (1.15)
for the fluid component, the continuity equation
1
p—pf+n—ps+md1vwf +divw® =0, (1.16)
*
and the relation .
a 8
g; =(1-m _(’9f / Bi(t —7) - 2°(x, 7)dr,
0 (1.17)
w
Zs(xyt) —V( pf+0[9f0> ‘I’psF_pSW;

for the solid component. Problem (1.12), (1.15)—(1.17) is supplemented with the homogeneous initial
conditions (1.13) for displacements in the fluid and solid components and the homogeneous boundary
condition (1.14) for the displacements w = mw; + w®.

n (1.17) the matrix Bi(t) is defined below by (5.5).

Theorem 5. Assume that the hypotheses in Theorem 2 hold and p; = oo and Ay = 0. Then 0,
wl = mwy, w®, py, and ps satisfy in Qr the system consisting of the acoustic equations (1.12), (1.15),
(1.16) and the homogenized momentum balance equation for the solid component in the form

82108 s (921.0 R 1
ps—8t2 = psB3 - (’9t2f_ + ((1 —m)I— ]BQ) . (-V(Epf + a9f0> + psF>, (1.18)

The problem (1.12), (1.15), (1.16), and (1.18) is supplemented with the homogeneous initial condi-
tions (1.13) for displacements in the solid and fluid components and the homogeneous boundary condi-
tion (1.14) for displacements w = mw; + w®. In (1.18) the matrix B3 is given below by (5.7), where
(1 —m)I — BS) is symmetric and strictly positive definite.



Theorem 6. Assume that the hypotheses in Theorem 2 hold and OF /0t € L*(Qr), 0 < 1 < oo,
and \; = co. Then 0, w/ = mwy, w®, pr, and ps satisly in Qp the system ol acoustic equations, consisting
of the state equation (1.12) and the homogenized momentum balance equation in the form

9w’ Pw, 1 .
P15 +ps(1 = m)W ==V <Epf + O‘9f0> +poF (1.19)
for the solid component, the continuity equation
1 1
—ps + —ps +divew’ + (1 —m)divws =0, (1.20)
P« 7o
and the relation .
ow’ 0
L / B{(t— 1) 2/ (2, 7) dr, (121)
0
Hat) =~V (—ps + aos0) + pyF o,
2 (x,t) = mpf Qgy Pr Pr o2

for the fluid component. The problem (1.12), (1.19)-(1.21) is supplemented with the homogeneous initial
conditions (1.13) for the displacements in the solid and fluid components and the homogeneous boundary
8

condition (1.14) for the displacements w = w’ + (1 — m)w?®.
In (1.21) the matrix ]B{(t) is defined below by (6.1).

Theorem 7. Assume that the hypotheses in Theorem 2 hold and p; = 0 and Ay = co. Then 8,
wl = mwy, w®, py, and ps satisly in Qr the system of acoustic equations, consisting of (1.12), (1.19),
(1.20), and the homogenized momentum balance equation in the form

a2wf f 82103 f 1
Py o012 = prB; - 2l + (m]I — B2> . (—V (Epf + Oégf0> + pfF> (1.22)

for the fluid component. The problem (1.12), (1.19), (1.20), and (1.22) is supplemented with the ho-
mogeneous initial conditions (1.13) for the displacements in the solid and fluid components and the
homogeneous boundary condition (1.14) for the displacements w = w’ + (1 — m)w,. In (1.22) the
matrix Bg is defined below by (6.2), where (m]I — ]Bg) is symmetric and strictly positive definite.

Theorem 8. Assume that the hypotheses in Theorem 2 hold and py < oo and A\ < co. Then
functions 0, w! = mwy, w®, py, and ps satisfy in Qr the system of acoustic equations, consisting of the
continuity equation (1.11), the state equation (1.12), and the relation

%_‘;’ _ /t]Ba(t _5)- (v (%pf +a9fe>> (@, 7) dr + £ (x, 1), (1.23)
0

where the matrix B(t) and the vector f (z,t) are given below by (7.5) and (7.6).
The problem (1.11), (1.12), and (1.23) is supplemented with the homogeneous initial and boundary
conditions (1.13) and (1.14).

Theorem 9. Assume that the hypotheses in Theorem 2 and condition (1.8) hold. Then each of the
systems (1.10)—(1.12), (1.15)—(1.18), (1.19)-(1.22), and (1.11), (1.12), and (1.23) is supplemented with
the homogenized heat equation

@a_e_aef%_%aps
Pot pe Ot my Ot

and the homogeneous initial and boundary conditions (0.9), (0.10) for the limiting temperature 6.

—div {BY - V0} + ¥ (1.24)




In (1.24) &, = m + (1 —m)cy, the symmetric and strictly positive definite matrix B is given below
by (8.1).
If the condition (1.8) holds instead of (1.9) then all systems above are supplemented with the equation
t

(z,1) +%ps(x,t) +/\1u(:.:,7) dr. (1.25)
0

cpl(x, t) =

§ 2. Proof of Theorem 1

The existence and uniqueness of a generalized solution to (0.1)-(0.10) are proved in [1].
For a formal derivation of (1.5) and (1.6) we consider the energy equality

%{!( (%) c;(ef)2> do +aAQ/(1 — O)D(x, w°) : Dz, w) da

+ap/xg(divw5)2 dr + oy, /(1—X5)(divw5)2d:v} +/0/;|V05|2d:v

Q Q Q

ow*® Ow* Ow*
D, 2 D, 2 Vde= [ FZL 2.1
+aﬂ/x D(w, > ) <£E, o )dw / B dx, (2.1)
Q Q

which is obtained in result of multiplication of the equation for w® by dw*®/0t, the equation for ¢ by 67,
integration by parts, and summation.
The last identity (2.1) together with the Holder and Gronwall inequalities implies the estimate

pes([ (e 1),

+,/0p || divw®(.,t ||295> ‘«/045|V05|Jm/04M
2,Qr

where Cy is independent of £. Estimates (1.5) and (1.6) are obvious from (2.2). Finally, (1.7) for pressures
p} and pS follows from the continuity equations (1.1), (1.2), and (2.2).

The informal derivation of estimates is a little longer than the formal one and follows, for example,
from the proof of existence of a generalized solution by Galerkin’s method. The derivation of the energy
identity for the approximate solutions is quite simple, and the estimate (2.2) for the limiting solution
follows from the estimate (2.2) for the approximate solutions as a result of the limiting procedure.

+ IV V| 4 /ag] div w|) (., )] 2,05

E

< Cy, (2.2)

REMARK 2.1. All results of Theorem 1 are also valid for the inhomogeneous initial conditions
a £
wi(@,0) = wi(@), —-(2,0) = vi(=),
if the norms HVw8H2 o and Hv8H2 o are bounded uniformly in .

REMARK 2.2. Let OF/0t € L*(Qr). It is obvious that we can differentiate the equations and
boundary conditions of (0.1)—(0.10). Therefore the time derivative v* = 0w®/0t of the generalized
solution w* of the problem (0.1)—(0.10) is also a generalized solution to the same system with the right-
hand side OF /0t and the nonhomogeneous initial conditions

a £
v (z,0) =0, a—"t(x, 0) = F(z,0).
Thus, by Remark 2.1
82
) <C 2.3
ocior|| o2 (7 ) 20 0 (28)

where (Y is independent of .



§ 3. Proof of Theorem 2

By the extension results [11,12] (also see [2]) there exist w}, wi € L*°((0,7); W(£2)) such that
wy = w® in Qf x (0,7), w; = w* in O x (0,7), and [[wf]|,, < Cllwt|l20s, |V, < OV 0,
i = f,s, where ' is a constant independent of . By Theorem 1, the sequences {p%}, {pi}, {w®},
(w5}, {wi}, {VaxVw:}, and {,/a;Vw$} are uniformly bounded in L*(Qr) in e. Hence there exists
a subsequence of small parameters {¢ > 0} and functions py, ps, w, wy, and wy such that

p[} — DPf, pi — Ps; w® — w, w]E” — wy, ’lD§ — Ws (31)

weakly in L2(Qr) as £ \, 0.
Note also that
(1 —x")arnD(z,ws) — 0, XEaMD(:E,in) —0 (3.2)

strongly in L?(Qr) and
Ow® Ow ow; ~ Owy Ow Ows

RN

ot ot ot ot ot ot

divw® — divw,

weakly in L2(Qr) as £ \, 0.
REMARK 3.1. If 9F /0t € L?(Qr) then by Remark 2.2 the second derivatives of w® with respect to
time are uniformly bounded in £ and

DPw® R 9w 8210; N Pwp  O*wE R DPw,

ot2 oz’ o2 oz’ ot ot?
weakly in L?(Q7) as € \, 0.

By Nguetseng’s theorem [8] (also see [2]), there exist functions Pr(z,t,y), Ps(z,t,y), Wz, t,y),
Wy(z,t,y), and Wy(z,t,y) one-periodic in y and satisfying the condition that the sequences {p*}} {r:},
{w}, {w?}, and {w;} two-scale converge in L*(Qr) to Pr(=,t,y), Ps(z,t,y), W(z,t,y), We(z,t,y),
and W(z,t,y) respectively.

If (1.8) holds then by the boundedness of {6} in L2(0, T; W3(£2)) there exist a subsequence of small

parameters {¢ > 0}, the functions 6 € L2(0,T; W(Q)), and a one-periodic (in y) function (=, ,y) such

that 0= — 6 weakly in L*((0,T); W1(Q)) as £ \, 0, and the sequences {#°} and {V6°} two scale converge
in L2(Q7) respectively to 0, and V@ + V,0(z,t,y). If (1.9) holds then the sequence {0°} two-scale
converges in L?(Qr) to the proper weak limit . Namely, we have

Lemma 3.1. Assuming (1.8) or (1.9), the sequence {6¢} two-scale converges in L?(Q7) (up to some
subsequence) to the proper weak limit 6(x,t).

PrROOF. By Nguetseng’s theorem [8] there exist a subsequence of {¢ > 0} and a one-periodic (in y)
function ©¢(z,t,y) such that {6} two-scale converges to Oo(z,t,y).

Let af = min(aif,aif) and let U(z,t,y) be a smooth scalar function one-periodic in y. The
sequence {0]5.}7 where

g
0; Y O‘i/ax (337t)\11(:87t7 :'3/8) ClLEdt, j: 172737
J
Qp

is bounded in £. Therefore,

£

Vag

/e%(x,t)\ll(:c,t,x/e) dadt = o; =0 ase\0,
J
Qrp



which is equivalent to

ov
//@o(a:,t,y)y(a:,t,y) dydxdt =0, j=1,2,3,
o v Y;
or Oy(z,t,y) = O0(x,t). O
In the same way as in Lemma 3.1 we can prove

Lemma 3.2. Let p1; = 0o (A = 00). Then Wy(x,t,y) = wi(z, 1), x(¥)W(z,l,y) = x(y)ws(z,1),
and wl = Wy, = mwy (Ws(z,t,y) = ws(z,1), (1 - x(y))W(z,l,y) = (1 — x(y)ws(z,t), and w* =
W)y, = (1 —m)ws).

§ 4. The Microscopic and Macroscopic Equations

Lemma 4.1. For almost all z € () and y € Y the weak and two-scale limits of the sequences {p}i},
{5}, {w}, {w5}, and {w:} satisfy the relations

X I-X
P = — P = — 4.1
f mpfy s 1— mp87 ( )
1 1
agrl + —Pr = st + TP (4.2)
1 1
—pr + —ps +divw =0, (4.3)
Px Mo
w(z,t) -n(z) =0, =xe€b, (4.4)
divy W =0, (4.5)
W = xW; + (1 - X)W, (4.6)

where n(x) is the unit normal vector to S at x € S.

PROOF. In order to prove (4.1), insert into (1.3) the test function in the form * = sy(x,t, x/2),
where v (x,t,y) is an arbitrary one-periodic function of y that is compactly supported in Y} (or in Y,
or in Y). Let, for example, ¢(x,t,y) be a compactly supported function in Y. Passing to the limit as
£\, 0 and taking Lemma 3.1 into account, we obtain the integral identity

/ /(Oégf&(:c,t) + Pf(:c, t,y)) divy, ¥ dydzdt =0
Qr Y
which is equivalent to the equality V,FP; =0, y € Y;.
All other cases are considered in the same way. Gathering all together, we have
VyPr=0,yeYy VyP=0 yeYy Vyay)o+Pr+P)=0 yev, (4.7)
where
ap(y) = aorx(y) + aos(1 — x(y)).-
Next fulfilling the two-scale passage to the limit in the equalities (1 — Xg)p*} =0, x°p% = 0, we arrive
at the relations (1 — x) Py = 0, xPs = 0 which, together with (4.7), prove (4.1).
Equation (4.2) follows from (4.1), Lemma 3.1, and the last relation in (4.7): the sequence {a50° +
p*} + pi} two-scale converges to

x(y)

Tpf(x’t) i 1-x)

o(w)0(z, 1) + —
where &y = magy + (1 — m)apgs.

Equations (4.3)—(4.5) appear as the result of the two-scale passage to the limit in the sum of the
equations (1.1) and (1.2).

Finally, (4.6) is the result of the two-scale passage to the limit in the equality

w® = x*w® + (1 —x%w®. O

ps(:':y t) — (&90 +pf +ps)(a37t)7



Lemma 4.2. For almost all (z,t) € Qr and y €Y,

2w’ PPw* .
Pf BTE + ps v V( pf+a9f9>+pF. (4.8)

PROOF. Inserting a test function of the form ¢ = v(x,t) into (1.3) and passing to the limit as
g\ 0, we arrive at the desired macroscopic equation (4.8). We took it into account that the sequence
{a§05 + p*} + pi} two-scale converges to

. 1 1
Gl +py +ps = gyl + Epf = ot + mps

on assuming each of the conditions (1.8) or (1.9). O

Lemma 4.3. Let 1y = co and Ay < co. Then the functions 0, W* = (1 — X)W, wy, and py in Y
satisfy the system of microscopic equations

PW
= MAW? =V, R -V 0 F, yeY,,
Ps—F5 012 1 ( Dy + oy ) + ps Yy 8 (4.9)
W* = we, Y €7,
in the case A1 > 0 or the microscopic relations
D*W 1
ps—5 = —Vul' =V —pr+ag0 ) +pF, yeY, (4.10)
ot m
(Wé—wys) n=0, yev, (4.11)
in the case Ay = 0. The problem is endowed with the homogeneous initial data
OW'*
Wiy, 0) = ——(3,0) =0, yeY. (4.12)

In the boundary condition (4.11) n is the unit normal vector to .

Proor. The differential equations (4.9) and (4.10) and the initial conditions (4.12) follow as £ \, 0
from (1.3) with the test functions in the form v = @(xe™!) - h(z,t), where ¢ is the solenoidal function
compactly supported in Y;. The boundary condition in (4.9) is a consequence of the two-scale convergence
of {\/arV,w®} to VA V,W(z,t,y). By this convergence, V,W(zx,t,y) is L?-integrable in Y. The
boundary condition (3.13) follows from (4.5), (4.6), and the relation Wy = wy.

Note that (4.9) and (4.10) are understood in the generalized sense (in the sense of distributions) as
appropriate integral identities. Let, for example, H(Y;) be the space of all one-periodic functions from
W4(Y), solenoidal in Y and vanishing at 4. Then W# is a generalized solution to (4.9), if

W (W) € D0, T HG),  Jo e 12V, % (0,7))
and
’ oW
//(ps T (,;': MVW? : Ve + 2% c,o) dydt =0, W*(y,0) =0 (4.13)
0

for each function ¢ in L2((0,T); H(Y5)) such that dp/0t € L3(Ys x (0,T)) and ¢(y, T) = 0. In (4.13)
2

0“w
zs(x7t) - v( Dy +049f0> +psF—psW2f- O

In the same way, we can prove the following



Lemma 4.4. Let 1y < oo and \; = co. Then the functions 0, W/ = xyW, w,, and py in Yy satisfy
the system of microscopic equations

Pw owf

1
Py 12 = 1y o Vny — V(Epf + Oégf0> +psF, yeYy, (4.14)

Wf =ws, Y, (415)
in the case p1 > 0 or the microscopic relations
o*w/ 1
Pr—E = ~V, R — V(ﬁpf + 049f9> +prF, y e Yy, (4.16)
W/ —w,) n=0, yey, (4.17)
in the case uy = 0. The problem is endowed with the homogeneous initial data

ow/!

Lemma 4.5. Let 11 < oo, A1 < oo, and p(y) = prx(y) + ps(1 — x(y)).
Then, in Y, the functions 0, W, and py satisfy the system of microscopic equations

>*wW 1 , oW
o S+ V(- augt ) = pt = LD (5, B ) + (1 = Dt W) - Rt} (409
and the homogeneous initial data
oW

In the proof of this lemma we choose in the integral identity (1.3) the test functions in the form
W = p(xe™b) - h(x,t), where ¢ is the solenoidal function compactly supported in Y, and additionally use
Nguetseng’s theorem which states that the sequence {¢D(x,w®)} two-scale converges to D(y, W).

Lemma 4.6. Let (1.8) hold. Then for all (z,t) € Qr and y € Y strong and two-scale limits 6 and
© satisfy the microscopic equation

divy{s0(y) (VO +V,0)} =0, (4.21)

where s0(y) = x(y) 207 + (1 = x(y))>0s-
To prove this lemma it suffices to consider (1.4) with the test functions in the form & = ép(x, t, z/=)
and pass to the limit as £ N\, 0.

Lemma 4.7. For all (z,t) € Qr the weak and strong limits 0, py, and p, satisfy the macroscopic
heat equation

tper — —L L — =2 = div (54 VO + (30, O)y} + U, (4.22)

where ¢, =m + (1 —m)c) and 35 = (30)y > 0 if (1.8) holds and sq(y) = 0 in the case of (1.9).

The proof of this lemma repeats that of Lemma 4.2, if we express the term «j div w® in (1.4) in
terms of pressures using (1.1) and (1.2).
Theorem 3 is a simple consequence of Lemmas 3.2, 4.1, and 4.2.



§ 5. Proofs of Theorems 4 and 5

Equation (1.15) is immediate from (4.8). The continuity equation (1.16) follows from (4.3), if we
take it into account that w = maw; + w?®.

To find the last two equations (1.17) and (1.18) we just have to solve the system of microscopic
equations (4.5), (4.9)—(4.13) and to use the formula w*® = (W)y,.

1. Let Ay > 0. Then the solution of (4.13) is given by the formula

L3

W = /(Z Ws’i(y,t—r)zf(a:,r)>d7, 25 = (25, 25,23), (5.1)
0

i=1

where the one-periodic (in y) functions W*¢(y, t) € L2((0,T); H(Ys)) and OW*¢/ot € L?(Ys x (0,T))
are solutions to the integral identities

Wsz S Z . . J—
//(ps 5 (’915 —VW? ch) ClydtJr/ez e(y,0)dy =0 (5.2)

E]

for every smooth function ¢ € L2((0,T); H(Ys)) such that d¢/0t € L%(Y; x (0,T)) and o(y,T) = 0.
In (5.2) (ey, es, e3) is the standard Cartesian orthogonal basis.
In fact, we may rewrite (5.2) as

Wsz o .
/ / (D50t S200t) MWl =) s Vitont) ) i + [ i ol )y 0,
Ys

if p(y,t) =0 at ¢t > T. Inserting (5.1) into (5.2), changing the order of integration in the time integrals,
and considering the last relation, we arrive at (4.13). To solve (5.2) we use Galerkin’s method. Let
{4£}2, be a complete basis in H(Y;) orthogonal in the inner product of L?(Y;). Then the approximate

solutions V¥ (y,t) = fozl ck(t)r(y) of (5.2) are defined from the Cauchy problem

d2ck N
pSW = —)\1 Cm V’J’m Vapy dy,
m=1
(5.3)
dck
Ck(O):O, E(O): ez'”l,llkdy, I{]:1,,N

Ys

The unique and infinitely smooth solution of the Cauchy problem (5.3) exists on an arbitrary interval
(0, 7). If we multiply the kth equation in (5.3) by deg/dt, sum over all k, and integrate the result over
time interval (0,¢) then we obtain the well-known energy estimate

/(ps<a:9?;v(y,1t)>2 + )\1<V‘/;N(y,t»2> dy = iy{(ei ) dy <1—m

E]

Using this estimate and the standard methods (see [10]) we may prove that the sequence {V;"} contains
some weakly subsequence convergent in L2((0,7); H(Y:)). This subsequence converges to the solution
W of (5.2) such that OV, /0t converge weakly in L2(Ys x (0,7)) to OW /3t and

[ (oo( B w0) W)y < 1-m (5.1

E]



Thus, we can differentiate expression (5.1) with respect to the time variable and dw®/9t = (OW /Ot)y,.
Equation (1.17) follows from the last equality if we put

3 8,1
B (1) = <Z 9‘; >Ys(t) @ e;. (5.5)

i=1

In (5.5) the matrix a @ b for given vectors a and b is defined by the expression (a @ b) - ¢ = a(b - ¢) for
every vector c.

REMARK 5.1. It is clear that the main difficulty in the proof of the lemma is in the properties of
H(Y;). Namely, H(Y;) must be nonempty. To prove this fact it suffices to consider the small ball G C Y
and solve in G the Stokes problem

A"vb_vq:g(y)y le’l,[J:O, 77[)|(9G :07

with a smooth function g compactly supported in &G and extend v in Y; by zero outside G. It is easy to
see that such a function v belongs to H(Y5).

2. If Ay = 0 then in solving (4.5), (4.10)—(4.12) we first find the pressure R*(z,t,y) by solving the
Neumann problem for the Laplace equation in Y; in the form

3
R (x,t,y) = Y Resly)2(x, 1),
i1

where R, ;(y) is the solution of the problem
AyRs,z' =0, ye¥Yy vyRs,z' n=mn-e, Y, <R8,i>Y$ = 0. (5'6)

Formula (1.18) is the result of integration of (4.10) over Y; and
3

B = > (VRi(y))y, @ e, (5.7)
=1

where the matrix B = ((1 — m)I — B3) is symmetric and strictly positive definite. In fact, let R =
S22 | Rs& for every unit vector € = (€1, &, &3). Then
(B-€) &= (€~ VR?)y, =0

if and only if R is a linear function in y. On the other hand, it follows from the assumption about
the geometry of Y that all linear periodic functions on Ys are constant. Finally, the normalization
condition (Rs;)y, = 0 implies that B = 0. However this is impossible, since the functions R; are
linearly independent. [

§ 6. Proofs of Theorems 6 and 7

The proofs of these theorems repeat those of the previous Theorems 4 and 5. Here we have to solve
the system of microscopic equations (4.5), (4.14)—(4.18) and to use the formula

owl oW
ot \a /[y,

Thus,
3 .
oWl
B (1) = ; 1
[0~ (X 75), Woe (6.)
=1 f
3
Bg = Z<VRf,z’>Yf ® ey, (6.2)

i=1



where the one-periodic (in y) functions W/#(y, t) solve the periodic initial boundary-value problem

FPw i OW I+ .
A RF =0 Y, >0 6.3
Pr—pp— ~ A=+ V , yEY, >0, (6.3)
div, WHt =0, yeYy t>0, (6.4)
whit—=0, yen, t>0, (6.5)
. oWl
Wiy, 0) =0, pr(y, 0)=e; yevYy, (6.6)

and the one-periodic (in y) functions Ry ;(y) solve the periodic Neumann boundary-value problem for
the Laplace equation

AyRp; =0, yeYy VyRps-n=n-e, yevy; (Rpiy, =0 O (6.7)

§ 7. Proof of Theorem 8

To derive the momentum conservation law (1.23) we must solve the system of microscopic equations
(4.5), (4.19), with the initial conditions (4.20), and use the formula w = (W)y.
Let

w2 [l

=1

R=) ]t

=1

3
(W=( 2 (y,t — 7)zi(z, 7) + WF’i(y,t —7)Fi(x, 7)) dr,
(R>

‘“ (y,t — )2z, 7) + RF’i(y,t— TYFi(z, 7)) dT,

O\ﬁ O\ﬂ

where ,
Z zie; = ( —pr + Oégf0> F = ZFiez’.
=1

Then the one-periodic (in ) functions {W7(y, 1), R%(y,t)} (j = s, F, i = 1,2,3) are found as solutions
to the system of equations

oW . RWii
vy (sa2 (1, 25 ) 4wl = 0BG W) - RT) — o) S ()
div, W9 = 0 (7.2)
in Y for £ > 0, and satisfy the initial conditions:
2z, awp,i
w= (y,()) - 07 p(y) BN (y,()) = —€4, S 3/7 (73)
) aWF,i
whi(y,0) =0, o (y,0) =e;, zeV. (7.4)
Therefore,
3 .
DW=
Bt — t 2
=375 ), 0o (75




The solvability and uniqueness of generalized solutions to the periodic boundary-value problems for
{W2(y,t), R?"(y,t)} (j = s, F,i=1,2,3) follow directly from the corresponding energy identities

(o (P w0 D W ) D w0 )
Y

t . .
oW oW 1,
. uw- N ¢ )
+//M1D<y, 57 (y;T)) -D<y, 5 (y;T)) dydr 57
0

Y

for i =1,2,3 and j = z, F. Here v = (1/p)y, v = (p)y. O

§ 8. Proof of Theorem 9

The homogenized heat equation (1.24) is the macroscopic heat equation (4.22) where the expression
(50V,©)y is replaced with the term (5V,0)y = Bf - V0. The last formula is the result of solving the
microscopic heat equation (4.21) in the form

3
@(:'37 2 y) - Z @Z(y)a_e(x7 t):

ow;
i=1 t

where ©;, i = 1,2, 3, is a periodic solution to the equation div,{s(V,0; +e;)} =0in Y and

3
B’ = sl +BY, Bi=) V,(O)y @e; O (8.1)
i=1
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