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Abstract: A linear system is considered of the differential equations describing a joint motion of
an elastic porous body and a fluid occupying a porous space. The problem is linear but very hard to
tackle since its main differential equations involve some (big and small) nonsmooth oscillatory coeffi-
cients. Rigorous justification under various conditions on the physical parameters is fulfilled for the
homogenization procedures as the dimensionless size of pores vanishes, while the porous body is geo-
metrically periodic. In result, we derive Biot’s equations of poroelasticity, the system consisting of the
anisotropic Lamé equations for the solid component and the acoustic equations for the fluid component,
the equations of viscoelasticity, or the decoupled system consisting of Darcy’s system of filtration or
the acoustic equations for the fluid component (first approximation) and the anisotropic Lamé equa-
tions for the solid component (second approximation) depending on the ratios between the physical
parameters. The proofs are based on Nguetseng’s two-scale convergence method of homogenization in
periodic structures.

Keywords: Biot equations, Stokes equations, Lamé equations, two-scale convergence, homogenization
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Introduction

In this article we consider the problem of modeling small perturbations in an elastic deformable
medium perforated by a system of channels (pores) filled with a fluid. Such media are called elastic
porous media and they are a rather good approximation to real consolidated grounds. In the present-day
literature, the field of study in mechanics corresponding to these media is called “poromechanics” [1]. The
solid component of such a medium is the skeleton, and the domain, filled with a fluid, is a porous space.
The exact mathematical model of an elastic porous medium consists of the classical momentum and mass
balance equations in Euler variables; the equations of the stress fields in the solid and fluid phases; and
an endowing relation determining the behavior of the interface of the fluid and solid components. This
relation expresses the fact that the interface is a material surface, which amounts to the condition that
it consists of the same material particles all the time. Denoting by p the density of the medium, by v the
velocity, by P/ the stress tensor in the fluid component, by P* the stress tensor in the solid skeleton, and
by X the characteristic (indicator) function of the porous space, we write the fundamental differential
equations of the nonlinear model in the form

P = (@A) TP + (- 0P} +pF, Lt pdivew =0,
where d/dt stands for the material derivative with respect to the time variable.

Clearly the above original model has an unknown (free) boundary. A more precise formulation of
the nonlinear problem is not in the focus of our present work. Instead, we aim to study the problem
that is linearized at the rest state. In continuum mechanics the methods of linearization are developed
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rather deeply. The so-obtained linear model is commonly accepted and basic for description of filtration
and seismic acoustics in elastic porous media (for example, see [2-4]). In this model the characteristic
function of the porous space ¥ is a known function for ¢ > 0. It is assumed that this function coincides
with the characteristic function of the porous space ¥ given at the initial moment. In the dimensionless
variables (without primes)

/

o =Lz, t'=7t, w =Lw, p,=pops, py=pops, F =gF

the differential equations of the problem in a domain Q € R® for ¢t > 0 for small declinations of the
dimensionless displacement vector w of the continuum medium have the form:

_0%w ) _ Oow _ _
OZT'OW = d1vw{xaM]D) <ac, E) + (1 —x)aD(z,w) — (¢ + 7r)]I} + pF, (0.1)
. N ay Op
v= _adelvwwy T = —O[n(]_ - X) dlv% w, q=2p + _8_7 (02)
oy Ot

where p = Yps +(1—%)ps, D(z, ) := (1/2)(Veu+(Veu)?). The dimensionless constants «; (i = 7,7, ... )
are defined by the formulas

L v 2u cp I n 2A
Oy = —5, Oy = s oy, = s Oy = —, Oy = s O = s
Toogr? 7Y rLgpe’ " tLgpe’ 7 Lyg " Lgpo’ " Lgpo

where p is the viscosity of the fluid, v is the bulk viscosity of the fluid, A and n are the Lamé constants,
¢ is the speed of sound in the fluid, L is a characteristic size of the domain under consideration, 7 is
a characteristic time of the process, p; and p, are respectively the mean dimensionless densities of the
fluid and solid phases, correlated with the mean density of water, and g is the value of acceleration

of gravity.
The problem is endowed with the homogeneous initial and boundary conditions
Ow
0 = 07 e — 07 (= Qy 03
wlo=0, 55| =0, @ (03)
w=0, ze€S=00 ¢t>0. (0.4)

The corresponding mathematical model, described by the system (0.1)-(0.4), contains a natural small
parameter ¢ that is the characteristic size of pores [ divided by the characteristic size L of the entire
porous body: ¢ = [/L. Our aim is to derive all possible limiting regimes (homogenized equations) as
a small parameter vanishes. Such an approximation significantly simplifies the original problem and at
the same time preserves all main features of the latter. But even this approach is too hard to implement,
and some additional simplifying assumptions are necessary. In terms of geometrical properties of the
medium, the most appropriate way is to simplify the problem by postulating that the porous structure
is periodic. We accept the following constraints:

Assumption 1. The domain Q = (0,1)? is a periodic replication of the elementary cell Y* = £Y,
where Y = (0,1)® and the quantity 1/c is integer, so that Q) always contains an integer number of
elementary cells Y;°. Let Y, be the “solid part” of Y, and let the “fluid part” Yy be its open complement.
We put v = 0Y; N 0Y, and assume that v is a Cl-surface. The porous space Q‘}i is a periodic replication
of the elementary cell €Y}, and the solid skeleton ) is a periodic replication of the elementary cell €Y.
The boundary I = 082, N 08Y; is a periodic replication in (1 of the boundary ev. The “solid skeleton”
(2s is a connected domain.

Under these assumptions

X(@) =x"(x) =x(z/e), p=p(x)=x"(2)ps + (1 —x(@))ps;

where x(y) is the characteristic function of Y, in Y.



The first attempt at deriving the limiting regimes in the case when the skeleton was assumed an
absolutely rigid body was carried out by E. Sanchez-Palencia and L. Tartar. E. Sanchez-Palencia [3,
Chapter 7.2] formally obtained Darcy’s law of filtration by the method of two-scale asymptotic expansions,
and L. Tartar (see [3, the Appendix]) justified homogenization with a mathematical rigor. Using the
same method of two-scale expansions, J. Keller and R. Burridge [2] formally derived the system of Biot’s
equations [5] from the system (0.1)—(0.4) in the case when the parameter «,, was of order 2 and the
remaining coefficients were fixed independently of . Under the same assumptions as in the article [2],
the rigorous justification of Biot’s model was given by G. Nguetseng [6] and later by Th. Clopeau in
cooperation with J. L. Ferrin, R. P. Gilbert, and A. Mikeli¢ in [7]. Also R. P. Gilbert and A. Mikeli¢ [4]
derived a system of equations of viscoelasticity, when all physical parameters were fixed independently of .
In these works, Nguetseng’s two-scale convergence method [8, 9] was the main method of investigation.

Suppose that all dimensionless parameters depend on the small parameter ¢ of the model and the
following (finite or infinite) limits exist:

ii\I‘I(l) a,(e) = po, il\I‘I(l) ax(e) = X, 3{‘1(1) a-(e) = 1.
We restrict consideration to the cases when 19 < 0o and either of the following situations takes place:

(I) po =0, 0 < Ao < 00

(II)OSMO<OO,)\0:OO;

(IT) 0 < po, Ao < 00.

If 79 = oo then renormalizing the displacement vector by putting w — a,w we reduce the problem
to one of the cases (I)—(III).

In the present article we show that in the case (I) the homogenized equations are Biot’s system
of equations of poroelasticity for the two-velocity continuum media, or a similar system consisting of
the anisotropic Lamé equations for the solid component coupled with the acoustic equations for the
velocity of the fluid component, or the anisotropic Lamé system of equations of the one-velocity media
(for example, for the case of a disconnected porous space; Theorem 2). In the case (II) the homogenized
equations are Darcy’s system of equations of filtration or the acoustic equations for the velocity of the
fluid component (moreover, in the first approximation the solid component is viewed as an absolutely rigid
body) and, in the second approximation, the anisotropic Lamé system of equations for the renormalized
displacements of the solid component or the system of equations, described by Theorem 2, for the
renormalized displacements of the fluid and solid components (Theorem 3). Finally, in the case (III)
they are the nonlocal viscoelasticity equations or the nonlocal anisotropic Lamé system of equations of
the one-velocity media (Theorem 4).

§ 1. Formulation of the Main Results

As usual, the equations (0.1) are understood in the sense of distributions. They involve the proper
equations (0.1), (0.2) in a usual sense in the domains Q2% and Q2 and the boundary conditions

[w]=0, [P-n]=0, =z el t>0. (1.1)
On the boundary I'*, where

0
P=x"a,D <ac, e

5 + (1= X )asD(e,w) ~ (g-+ 7L

n is a unit normal to the boundary and

[pl(@o) = @(s)(@o) — @(s)(0);,  $(s)(@0) = pilm p(@), o(@o) = zélifilen; o).
There are various forms of representation of equations (0.1)—(0.4) and boundary conditions (1.1)
which are equivalent in the sense of distributions. In what follows, it is convenient to write them in the
form of the integral equalities.



DEFINITION 1. The four functions (w®, p®, ¢5, 7%) are called a weak solution of the problem (0.1)—
(0.4), if they satisfy the regularity conditions w*®, D(z, w*), div, w®, ¢°, p°, 8& ,m° € L?(Qr) in the domain

Qr =Q x (0,7T), the boundary conditions (0.4) and equations (0.2) a.e. in Q7, and the integral identity

2
/(anawa . %T;p - x“o, D(z, w*) :]D)<x, %—‘f) —p°F

Qr
(1 = x)aaD(z, w®) — (¢ + 7)1} : D(x, cp)) drdt = 0 (1.2)

for all smooth vector-functions ¢ = (=z,t), such that ¢|sq = |t = dp/Ot|t—7 = 0.
In (1.2) by A : B we denote the convolution (or, equivalently, the inner tensor product) of two
second-rank tensors with respect to the two indices, i.e., A: B =tr(B* o A) = Zijzl A;;Bj;.
Suppose additionally that the following (finite or infinite) limits exist:
. . . oy
il\I‘I(l) ay () = vo, i{% ap(€) = Pa, i{% an(e) = 1o, 1{‘1(1) ? = K1,
2 2 2

. (877151 . (87 . (87
= A1, lim =1, lim =2 =12, lim =2 = po.
eNO eNO eNo eNO0 )\ eNO0 )\

In the sequel, we use the following
Assumption 2. 1. F,0F/0t € L?(Qr).
2. The dimensionless parameters satisfy the restrictions:
ot e, o, )\51, 770_1 < oo, 0<T1+ 1. (1.3)
Note that all parameters may take all permitted values. For example, if 70 = 0 or p;! = 0 then all

terms disappear of the final equations with these parameters.
The following Theorems 1-4 are the main results of the paper.

Theorem 1. For all € > 0 on the arbitrary time interval [0, T] there exists a unique weak solution
of the problem (0.1)—(0.4).

(I) If Ao < oo then

e [[[w" (@) + A [Vow' @) + vVaxd = x)Vaw @)lllze < Ir, (1.4)
| Nl2.00 + [P ll2.00 + [I77]l200 < I, (1.5)

where Iy = C|||F| + |0F/0t|||2,0, and C is a constant independent of .

(IT) If Ao = 00, p1 = 00, 0 < A1 < oo, then (1.4) and (1.5) hold for renormalized displacements
w® — e 2a,w®, with renormalized parameters

o, — &% ay = 22 o 2%, L2 ap — 2 2%
(IIT) If \g = o0, u1 < oo then estimates (1.4) hold for the displacements w*, and under the condition
Dy < 00 (1.6)
(1.5) hold for the pressures ¢° and p° in the fluid component.
If the conditions 9% oF
0<py F=V® —, ||€l? 1.7
< Pp2; ) ot ‘ Ot € ( T) ( )
hold instead of (1.6) then
max ([[(1 — x) V(e (1) lla + Ix° diva(onw™(0) 20) < I, (L8)

0<t<T

where I}” = C|||F| + |0®/0t| + |0F/0t|||20, and C is a constant independent of . These last esti-
mates (1.8) imply (1.5).



Theorem 2. Let Ay < o0, uo = 0. Then the functions w® admit extensions u® from the domain
Q2 x (0,T) to the domain Qr, such that the sequence {u®} converges strongly in L*(Qr) and weakly in
L2[(0,T); W5 ()] to a function w. At the same time, the sequences {w®}, {p*}, {¢°}, and {n*} converge
weakly in L*(Qr) to w, p, q, and T respectively.

(I) If 4y = oo or the porous space is disconnected (the case of isolated pores for v N Y = &)
then w = v and the functions w, p, q, and 7 satisfy the following initial-boundary value problem in the
domain Qrp:

0u )
vy 012 = divy {MoA§ : D(z,w) + By dive u + Biqg — (¢ +7) - I} + pF, (1.9)
1
77—7r +C§ : D(x,u) + agdivy u + ajg =0, (1.10)
0

1 1
—p+ —7m+diveu=0, p+wp;’ @ =q, (1.11)
D+ To 81&

where p = mps+(1—m)ps, m = [i- x(y) dy. The strictly positive definite constant fourth-rank symmetric
tensor Aj, the matrices C§, Bj, and Bj, and the constants aj and aj are defined below by (4.28), (4.30),
and (4.31).
The differential equations (1.9) are endowed with the homogeneous initial and boundary conditions
8

Tou(z,0) = e —(2,0) =0, z2€Q, wu(z,t)=0, x2S t>0. (1.12)

(IT) If iy < oo then the weak limits u, w’, p, ¢, © of the sequences {u’}, {x*w®}, {p°}, {¢°}, {7°}
satisfy in {27 the initial-boundary value problem consisting of the momentum balance equation:

v *u , .
Topfa + 10ps(L —m)— 522 +V(qg+7)—pF = dlvw{)\oAé :D(x,w) + Bydivy u + Bf q} (1.13)

and the continuity equations (1.10) for the solid component, the continuity equation and the state equa-
tion:

1 1
—p+ —7 +div, w’ = (m —1)div, u, 1.14
p*p+7707r+ Vg w (m ) Wz u p+V0p* 815 =4q ( )
for the fluid component and the relations
t
ou
v—ma—i— Bi(p1,t —71) - z(x, 7) dr, (1.15)
0
1 0%u
Z(:l:,t) = _EVQ(:B:t) + ,OfF(:Z:,t) - TOhW(a::t):
in the case of 9 > 0 and p1 > 0, or Darcy’s law in the form
ou 1
=m—+ D ——V F 1.16
vm8t+2<>(mq+pf), (1.16)

in the case of 1o = 0 and 11 > 0, or, finally, the momentum balance equation for the fluid component in

the form )

ov 0“u 1
Topfa = T1opsBs - el + (ml — Bs) - <_qu + pfF>, (1.17)

in the case of 1o > 0 and j1; = 0.

Here v = 0w’ /0t and A§, B§, and B§ are the same as in (1.9).

This problem is endowed with initial and boundary conditions (1.12) for the displacements of the
solid component and the homogeneous initial condition and boundary condition

v(z,t)-n(z) =0, =S, t>0, (1.18)

for the velocity v of the fluid component.

In (1.15)—(1.18) n(x) is the unit normal vector to S at a point = € S, and the matrix By(u1,t) and
strictly positive definite symmetric matrices Ba(u1) and (ml — Bs) are defined below by (4.39), (4.41),
and (4.43).



Theorem 3. Let A\g =

(I) If 41 < oo and one of the conditions (1.6) or (1.7) holds then the sequences {x*w®}, {p°}, and {¢°}
converge weakly in L?(Q1) to w', p, and q respectively. The functions w® admit extensions u® from the
domain Q5 x (0,T) to the domain Qp such that the sequence {u®} converges strongly in L?(Q7) and
weakly in L*[(0,T); W}(Q)] to zero and

(1) if 7o > 0 and puy > 0 then the functions v = dw'/0t, p, and q solve the problem (F}) in the
domain ), where

¢
1
/B1 p1,t —71) - zo{z, 7)dT, 20 = _qu + psF, (1.19)
0
0 10
p—i—Vop*la}Z q, ga—ﬁ + divgv = 0; (1.20)

(2) if 9 = 0 and p1 > 0 then the functions v, p, and q solve the problem (Fy) in the domain Qr,
where v satisfies Darcy’s law in the form

v = By(ju1) - <—%Vq + PfF>7 (1.21)

and the pressures p and q satisty (1.20);
(3) if 7o > 0 and pu1 = 0 then the functions v, p, and q solve the problem (F3) in the domain Qr,
where v satisfies the momentum balance equation for the fluid component in the form

0 1
22—t (L), e

and the pressures p and q satisfy (1.20).
All these problems are endowed with homogeneous initial conditions and boundary condition (1.18).
In (1.19), (1.21), and (1.22) the matrices Bi(u1,t), Ba(p1), and Bs are the same as in Theorem 2.

(IT) If 11 < oo and (1.7) hold then the sequence {a\u®} converges strongly in L*(Qr) and weakly in
L2((0,T); W4(£2)) to a function w, and the sequence {n®} converges weakly in L?(Qr) to a function 7.
The limiting functions satisfy the boundary value problem

0 =divy {A§ : D(2,u) + Bjdivpu+ Big— (¢ +7) -1} + pF, z€Q, (1.23)
1

77—7r +C5 :D(x,u) + agdivyu+ajg=0, =z, (1.24)
2

where the function q is referred to as given. It is defined from the corresponding data of Problems F1—F3
(the choice of the problem depends on 1y and p1). The strictly positive definite constant fourth-rank
symmetric tensor Ay, the matrices Cy, Bi, and Bf, and the constants af and ai are defined below by
(4.28), (4.30), and (4 31) in which we have 1y = 12 and Ao = 1.

This problem is endowed with the homogeneous boundary conditions.

(ITT) If j1y = oo, py Myt < 00, and 0 < A\; < oo then there exist weak limits w’, p and 7 of the

sequences {a,e 2w}, {p°} and {7‘[’6} and a strong limit u of the sequence {a,e™*u"}, in L*(Qr) which
satisfy the fol]owmg initial-boundary value problem in Qp:

divy {A\A§ : D(z,uw) + Bidivau+ Bip— (p+7) -1} + pF =0,

ow!  Ou 1
W = E + B2(1) . <—EVp + ,OfF>, (1.25)

1 1 1
p—p + 77—7r +div, w’ = (m —1)div, u, 77—7r + C§ :D(z,u) + aydivy u + ajp = 0.
1 1 1



Here the strictly positive definite constant fourth-rank symmetric tensor A§, matrices C3, B, Bi, and
constants af, a; are defined below by (4.28), (4.30), (4.31), in which we have 1o = m and Ao = \;.

This problem is endowed with the homogeneous initial and boundary conditions.

(IV) If py = oo and Ay = oo then the corresponding problem for displacements {a,e ?w®} was
considered in parts (I), (IT) of the present theorem.

Theorem 4. Let 0 < po; Ao < oo. Then the weak limits w, p, ¢, and 7 of the sequences {w"}, {p°},
{n®}, and {q°} satisty in Qr the following system of differential equations:

0? 0
Tof)a—;v +V(q+7)—pF =div, <A2 : ]D)<x, (9_:0> + A3 : D(z,w) + Bydivy w

i
+/(A4(t 1) D(w, w(, 7)) + Bs(t — 7 divy w(z, 7)) dr), (1.26)
0
i
L mdivew = — /ogt—T D(z, w(z, 7)) + as(t — 7) divs w(x, 7)) dr, (1.27)
D+« J
i
L - m)divyw = — /C’gt—T: D(z, w(z, 7)) + as(t — 1) divy w(a,7))dr,  (1.28)
Mo J
q= p—i—;—(j% (1.29)

Here As—A, are fourth-rank tensors; By, Bs, Co, C3 are matrices; and ao, ag are scalars. The exact
expressions for these objects are given below by (6.25)—(6.30).

The problem is supplemented by the homogeneous initial and boundary conditions. If the porous
space is connected then As is a strictly positive definite symmetric tensor. If the porous space is dis-
connected (isolated pores) then A, is equal to zero and the system (1.26) degenerates into the nonlocal
anisotropic Lamé system with strictly positive definite symmetric tensor As.

§ 2. Preliminaries

2.1. Two-scale convergence. Justification of Theorems 2—4 relies on the systematic use of the
two-scale convergence method proposed by G. Nguetseng [8] and applied recently to a wide range of
homogenization problems (for example, see the survey [9]).

DEFINITION 2. A sequence {¢°} C L2(lp) is said to be two-scale convergent to a limit ¢ €
L2(QpxY) if and only if for every function o = o¢(=,t,y) 1-periodic in y the limit relation holds:

li\I‘I(l) o (z,t)o(z, t,z/e) dedt = //gp(w,t,y)a(w,t,y) dydadt. (2.1)
Qr Qry

Existence and main properties of weakly convergent sequences are established by the following funda-
mental theorem [8,9].

Theorem 5 (Nguetseng’s theorem). 1. Fach bounded sequence in L?(Qr) contains a subsequence
two-scale convergent to some limit ¢ € L?*(Qp x Y).

2. Let the sequences {p°} and {eV,p°} be uniformly bounded in L*(Qr). Then there exist a 1-
periodic function ¢ = p(z,t,y) in y and a subsequence {p°} such that ¢, Vo € L?(Qr xY), and ¢°
and eV p° two-scale converge to p and V4 respectively.

3. Let {¢°} and {V,¢°} be bounded sequences in L?()r). Then there exist functions ¢ € L?(Qr),
¢ € L*(Qr xY) and a subsequence from {¢®} such that 1 is 1-periodic in y, V2 € L*(Qr xY), ¢ and
V.¢© two-scale converge to ¢ and Vyp(x,t) + V(x,t,y), respectively.



Corollary 2.1. Let ¢ € L*(Y) and o°(z) = o(z/e). Assume that a sequence {p°} C L%*(Qr)
two-scale converges to ¢ € L?(Qr x Y). Then the sequence o°¢° two-scale converges to op.

2.2. An extension lemma. A typical difficulty in homogenization problems, like (0.1)-(0.4),
arises because of the fact that the bounds on the gradient of displacement V,w® may be distinct in the
domains €2, and 2 (the fluid and solid phases), which do not permit us to use more strong estimates. The
classical approach to overcoming this difficulty consists of extension to the whole €2 of the displacement
field defined merely on €2, with preserving the bounds on the gradient in ;. We formulate the following
lemma in appropriate form:

Lemma 2.1 [10,11]. Let Assumption 1 on the geometry of the domain Qf hold, ¢* € W}(Q)%), and
1* = 0 on the boundary S% = 0Q% N 9. Then there exists a function o© € W34 (€2) whose restriction on
the subdomain () coincides with ¢*; i.e.,

1=x"(@) (0" () —¢(x)) =0, =zl (22)
Moreover, the estimates hold:

lo"llz0 < Cll¥lla0:,  [[Vao©llag < ClIVeylla:z, (2.3)

where the constant C depends only on the geometry of Y and does not depend on €.

2.3. The Friedrichs—Poincaré inequality in a periodic structure. The following lemma was
proved by L. Tartar in [3, the Appendix]. It specifies the constant in the Friedrichs—Poincaré inequality
for an e-periodic geometrical structure.

Lemma 2.2. Let the assumptions on the geometry of the domain ()} be satisfied. Then for every

function ¢ € W5(€2;) the inequality holds:

/|g0|2dac§052/|vwg0|2 dx
% a3

with some constant C' independent of ¢.

We further denote (®)y = [, ®dy, (P)y; = [, x@dy, (P)y, = [(1 —x)Pdy, (v)a = [,pdz,
(©Vyar = fQT @ dxdt; if a and b are two vectors then the matrix a@b is defined by the formula (a@b)-c =
a(b - ¢) for every vector c¢; if B and C are two matrices then B @ C is a forth-rank tensor whose
convolution with each matrix A is defined by the formula (B ® C) : A = B(C : A); by IV we denote the
matrix with a sole nonvanishing entry equal to one and standing in the ith row and jth column; finally,
JI =117 +T") = 1(es @ e; + e; @ e;), where (e, ez, e3) are the standard Cartesian basis vectors.

§ 3. Proof of Theorem 1
I. Let Ay < oo. If 79 > 0 then estimates (1.4) follow from the inequality

0w
S (t)

ow®

lew W (t)

ow*

V.2

+Vax

max (87
0<t<T < v

2,0 2,0

+Var

2,02

£

. Ow 0%w®
lew W(t)

ot?

aZwa

€ Co

< ;
20r V&
where Cj is independent of €. The last estimates appear if we differentiate the equation for w® with

respect to time, multiply the results by 0%w®/0t?, and integrate by parts. The same estimates guarantee
the existence and uniqueness of a weak solution for (0.1)—(0.4).

x° divy (3.1)

+4/0p

>+«/Om + Vo
2,05 T

Z 2,0



If p, < 00 and 1y < oo then the pressures p* and #n¢ are bounded from (0.2) with the help of (3.1).
The pressure ¢° is bounded from the equality
£

& £ £ : aw
q- =p° — a,x" divy B (3.2)

which follows from (3.1) and the corresponding bound for the pressure p°.
If p, = oo then (1.5) for the sum of the pressures (¢° + 7°) follows from the basic integral identity
(1.2) and (3.1) as an estimate for the corresponding functional, if we renormalize the pressures as

/(qa(%t) +7°(2,t)) dz = 0.

Q

Indeed, the basic integral identity (1.2) and (3.1) imply

‘/(q“f + %) divy ¢ dz| < C||VY|l2a-
Q

Choosing v now so that (¢° + 7°) = div,+, we obtain the desired estimate for the sum of the
pressures (¢° + 7°). Such a choice is always possible (see [12]), if we put
Y=Vt diveapo=0, Dp=q +7°, plaa=0, (Vi+1o)len=0.

Note that the renormalization of the pressures transforms the continuity equations (0.2) for the pressures
into

1, . 1

— d f= =0 3.3

o b divew —BX (3.3)
o (1 —=x7)divy w” = 2 (I=x)8, (3.4)
o) (1 —m)

where 8¢ = ((1 — x*)div, w®)q. The case 1y = oo is considered in the same way. Note that for all
situations the basic integral identity (1.2) permits us to estimate only the sum (¢ 4+ 7*). However, since
the product of these two functions ¢ and #® is equal to zero, it suffices to find bounds for each of these
functions. The pressure p® is bounded due to the state equation (0.2), if in this equation we replace the
term (o, /oy,)0p7 /Ot from the continuity equation (3.3) by —x° (div, 851’55 + %%) and use (3.1).

Estimation of w" in the case 79 = 0 is not simple, and we outline it in more detail.

Let pq > 0 and 79 = 0. As usual, we find the basic estimates if we multiply the equations for w®
by Ow®/0t and then integrate all obtained terms by parts. The only one term p°F - 0w® /0t requires
additional consideration here. First of all, by Lemma 2.1 we construct an extension »® of w® from 2

to (2% so that u® = w® in Q, u® € W), and

o
Vo

We then estimate ||w®||2,o with the Friedrichs—Poincaré inequality in a periodic structure (Lemma 2.2)
for the difference (u® — w®):

[ullz0 < ClVar[lz0 < (1 = x)vVarVew|l2.q.

[wflz0 < [wllza + lv” = w'llan < [le7[l2.0 + Cellx"Valuw” — w20
_1
< w20 + Cel|Vaus 2,0 + Cleaw 2) I A Va2,

C £ £ -3 £ £
< ——[I(1 = X )IvVarVaw |20 + Clean ) X /au Vow® |2,0.
VO



Next we pass the derivative with respect to time from dw®/0t to p°F and estimate all positive terms (in-
cluding the term o, x* div, 0w®/9t) in a usual way with the help of the Holder and Gronwall inequalities.
The rest of the proof is the same as for the case 7o > 0 if we use a consequence of (3.1):

O%*we

S <c.

2,0

max o,
o<t<T

(t)

II. The proof of this part of the theorem is obvious, because the renormalization reduces this case to
the case of 1 =1 and 79 = 0, which was already considered in the first part of the theorem.

ITI. Let Ao = o0, p1 < oo and let (1.7) hold. It is obvious that (1.4) are still valid. Estimates
(1.8) follow from the basic integral identity for a)w® in the same way as in the case of (1.4). The main
difference here is in the term p°F - a0w® /0t which transforms now to

ow® ow®

T=piF-av—- +(pr — pp)(L = X)F -y et

The integral of the first term in T transforms as follows:

i
Pf// —,Of//(I)OQ\dIVw Y dedr
0

t

e . au’E e . auJE
= —,Of//<X - oy, divy, 5 + (1 —x%) - Paydiv, 3 >dwd7'

-
0 Q

= _Pf/<X€ - Doy divy w® + (1 — x°) - Pay divy, u€> dz
9)

t

+pr //(X6 @ ap divy w® + (1 — x°) - Prap divy u€> dedr,
0 Q

and it is bounded by the terms

/(XE (apay ) (e divy w®)? + (1 = X°)|aa Vo' |?) de,
0

which appear in the basic identity on using the continuity equation (0.2) for the fluid component.

The integral of the second term in Y is bounded by the positive term ((1 — x*)|aaViu®|?)q just as
before.

Estimates (1.5) follow now from (1.8). Here, as before, the sum of pressures (¢°+#°) is bounded from
the basic integral identity (1.2) as a corresponding functional, and the pressure p© is bounded from (3.2)
due to the bound (3.1) for the divergence of the velocity of the fluid component x*div,(0w®/0t) and
bound for the pressure ¢°.

If instead of (1.7) we have condition (1.6) then the estimates (1.5) for the pressures p* and ¢° follow
from (0.2), (3.2), and (3.1). Note that in this case 3° is equal to 0. O

§ 4. Proof of Theorem 2

4.1. Weak and two-scale limits of the sequences of displacement and pressures. All
conditions of Theorem 1 hold under the assumptions of Theorem 2. Therefore, the sequences {p°}, {¢°},
{7}, and {w®} are bounded in L?*(Qy) uniformly in e. Hence there exist a subsequence of the small
parameters {¢ > 0} and the functions p, ¢, 7, and w such that

pP—=p, -7, ¢ —=q w —w weaklyin L3(Qr) as e \, 0. (4.1)



Moreover, the sequence {(1—x*)Vw®} is bounded in L?(Qr) uniformly in e. By Lemma 2.1 (an extension
lemma) there is a function w® € L (0,T; W;(Q)) such that v = w* in (O, and a family {u®} is bounded
in L> (O, T; W;(Q)) uniformly in e. Therefore, it is possible to extract a subsequence of {¢ > 0} such that
u® — u weakly in L?(0, T; W, (Q)). (4.2)
Note also that
x°a,D(x,w®) — 0 strongly in L*(Qr) as ¢ \ 0. (4.3)
Relabeling if necessary, we assume that the sequences converge themselves.
By the Nguetseng theorem, there are the functions P(z,t,y), IlI(z,t,y), Q(=,t,y), W(z,t,y), and
U(z,t,y) l-periodic in y such that the sequences {p*}, {n°}, {¢°}, {w®}, and {Vu®} two-scale converge
to P(z,t,y), (z,t,y), Qz,t,y), W(z,t,y), and Vyu + V,U(x,t,y), respectively.

Moreover, the sequence {div, w®} converges weakly to the function div, w and u € L? (O, T; W%(Q))

The last assertion for a disconnected porous space follows from the containment u® € L*(0,T; W3(€2)).
For the connected porous space it follows from the Friedrichs—Poincaré inequality for «® in the e-layer
of the boundary S and from the convergence of the sequence {u®} to w strong in L?()7) and weak in
L2((0, T); W5 (Q2)).

4.2. The microscopic and macroscopic equations I.

Lemma 4.1. For allz € Q and y € Y the weak and two-scale limits of the sequences {p°}, {n*},
{¢°}, {w"}, and {u®} satisfy the relations

P=px/m, @Q=qx/m; (4.4)

IL/no + (1 — x)(divy w + div, U) = 8(1 — x)/(1 — m); (4.5)
divy W = 0; (4.6)

W =x@W+ (1 -x)y (4.7)

q = p -+ vop; ‘0p/0t; (4.8)

p/ps +divy w = (1 —m)divy u + (div, U)y, — 5; (4.9)
divg u + (div, U)y, = 3, (4.10)

where 3 = [,(div, U)y,dz in the case p, +no = oo; and § = 0 in the case p, + 1o < oo.

PrROOF. In order to prove (4.4), insert into (1.2) a test function in the form ¢¥° = ey (z, t, x/c), where
¥(z,t,y) is an arbitrary function 1-periodic in y and compactly supported on Y. Passing to the limit
as € \( 0, we infer

V,Qz, t,y) =0, yeYy. (4.11)
Passage to the weak and two-scale limits in the state equation (0.2) yields (4.8) and
140) opr
=P4 ———. 4.12
Q=P+ 7 (4.12)

Taking into account (4.11) and (4.12), we obtain V,P(z,t,y) = 0, y € Y. Next, passing the two-scale
limit in the equalities (1 — x*)p® =0, (1 — x*)¢° = 0, we arrive at (1 —x)P = 0 and (1 — x)@ = 0, which
justifies (4.4) along with (4.11) and (4.12).

Equations (4.5), (4.6), (4.9), and (4.10) appear as the results of passage to the two-scale limit in (3.3),
(3.4) with the proper test functions. Thus, for example, (4.9) arises if we represent (3.3) in the form
aippff dive w® = (1 — x°) divy u® — %55 e, (4.13)
multiply by an arbitrary function, independent of the “fast” variable y = z/¢, and then pass to the limit

as € \( 0. Equation (4.10) is derived rather similarly. In order to prove (4.6) it is sufficient to consider
the two-scale limit relations in (4.13) with the test functions in the form ey (x/e) h(z,t), where ¥ and h
are arbitrary smooth test functions. In order to prove (4.7), it is sufficient to consider the two-scale limit
relations in (1 — x)(w® —w®) =0. O



Corollary 4.1. If p, 4+ 19 = oo then the weak limits p, w, and q satisfy the relations
(P = (ma=(g)a =0. (4.14)

Lemma 4.2. For all (z,t) € Qr the relation

divy{)\o(l — Dy, U) + Dz, u)) — <H + %qx) - 11} _ (4.15)

holds.

PrOOF. Inserting a test function of the form ° = ey (z,t,z/¢), where (z,t,y) is an arbitrary
function 1-periodic in y and vanishing on the boundary S, into (1.2) and passing to the limit as € N\ 0,
we arrive at the desired microscopic relation on the cell Y. O

Lemma 4.3. Let p =mps+(1—m)ps, V = x0w/0t, and v = (V)y. Then the functions {u,v,q, 7}
satisfy in {27 the system of macroscopic equations:

0*u B
o2

PrOOF. The equations arise as the limit of (1.2) with the test functions compactly supported in Qr

and independent of the “fast” variable y = x/e. O

Topfg_: +70ps(1 —m) dive {Ao((1 —m)D(z,u) + D(y, U))y.) — (¢ +7) - I} + pF. (4.16)

4.3. Microscopic and macroscopic equations II.

Lemma 4.4. If uy = oo then the weak and two-scale limits of the sequences {u®} and {w*} coincide.
PRrROOF. In order to verify, it is sufficient to consider the difference (u® —w*®) and apply the Friedrichs—
Poincaré inequality (Lemma 2.2), just like in the proof of Theorem 1. O

Lemma 4.5. Let p; < oo. Then the weak and two-scale limits of the sequences {¢°} and {w®}
satisfy the microscopic relations

ov 1

T0pr 5 = MAY = VyR = —Vauq+psF, y €Yy, (4.17)

ou
V= a0 <7, 4.18
ot YT (4.18)

in the case of i1 > 0, and the relations

ov 1

T0pr 5 = ~Vyll = —Vuq+psF, y €Yy, (4.19)
ou

V——]n=0 4.20
< at) n=0, yev, (4.20)

in the case of p; = 0. In (4.20) n is the unit normal to .
Proor. The differential equations (4.17) and (4.19) follow as ¢ N\, 0 from the integral equality (1.2),
with the test function ¢ = @(ze™1) - h(z, t) where ¢ is solenoidal and compactly supported in Y.
1
The boundary conditions (4.18) are the consequences of the two-scale convergence of {aﬁ Vw‘g} to

1
piVW (z,t,y). By this convergence, the function VW (z,t,y) is L%-integrable in Y. The boundary
conditions (4.20) follow from (4.6). O

Lemma 4.6. If the porous space is disconnected (isolated pores) then the weak and two-scale limits
of the sequences {u®} and {w*} coincide.

PRrROOF. Indeed, in each of the cases 0 < pu1 < 0o or gy = 0 the systems of equations (4.6), (4.17),
(4.18) or (4.6), (4.19), (4.20) have the unique solution V' = du/0t. O



4.4. Homogenized equations 1.

Lemma 4.7. If 3 = oo or the porous space is disconnected (isolated pores) then w = w and the
weak limits w, p, q, and 7 of the sequences {u®}, {p°}, {¢°}, and {n®} satisfy in Q¢ the initial-boundary
value problem

2

L 0%u .

ToPp——s 50 = divy {MoA§ : D(z,u) + By diveu + Biq — (¢ + ) - I} + pF, (4.21)
1

—7 4+ Cj : D(x,u) + ajdivyu+ ajg =0, (4.22)
Tio

+ Lo Lrta 0 (4.23)

7 —p+ —7 +divyu = :
q=p Op* at p*p o x )

where the strictly positive definite constant fourth-rank symmetric tensor Ag, the matrices Cy, B, and B,
and the constants af and aj are defined below by (4.28), (4.30), and (4.31).
The differential equations (4.21) are endowed with the homogeneous initial and boundary conditions

(Zt (,0)=0, z €, u(e,t)=0 €S, t>0. (4.24)

PrOOF. Note first that « = w by Lemmas 4.4 and 4.6.
The homogenized equations (4.21) follow from the macroscopic equations (4.16) on inserting the
expression

Tou(z, 0) = 79

Ao (D(y, U))y. = XA] : D(x, u) + By div, u + Biq
In turn, this expression ensues from the solutions of (4.5) and (4.15) on the pattern cell Y. Indeed,

putting

, 1
U= Z U (y)D;; + Up(y y) divy u+ —Ui(y)g,
1,j=1

1
T = Ao Z Y (y)D;; + Mo (y) divy, u + Em(y)q,
3,j=1

where D;;(z,t) = %(gul( )+ 3 8% Lz, t)), we arrive at the periodic-boundary value problems in Y;:

Ao

div, {(1 — x)(D(y,UY) + J¥) =TI . T} = 0, n—H” + (1 — x) div, U7 = 0; (4.25)
1
divy{)\o(l — X)]D)(y, U()) —1II, - ]I} = O, 77_H0 + (1 — X)(dlvy Uy + 1) = O; (426)
0
1
divy{)\o(l — X)]D)(y, Ul) — (Hl + X) . ]I} =0, %Hl + (1 — X) divy U =0. (4.27)

Note that 8 = 0 even if p, + no = oo by the homogeneous boundary condition for u(z,t) and (4.14).

By the assumptions on the geometry of the pattern “solid” cell Y;, problems (4.25)—(4.27) have
a unique solution up to an arbitrary constant vector. In order to discard the arbitrary constant vectors,
we demand (U")y. = (Up)y. = (Uy)y. = 0. Thus,

3 3
Ay=1-m) Y JIaJ9+A], A= {1-xDy,U))y o7, (4.28)
ij=1 ij=1

The symmetry of the tensor Aj follows from the symmetry of Aj. And the symmetry of the latter follows
from the equality
~ o

o =it (4.29)

D(y, Uy, : I = =(D(y, UY) : D(y,U))y,



which appears on multiplication of (4.25) for U by U* and integration by parts. This equality also
implies the positive definiteness of Aj§. Indeed, let ¢ be an arbitrary symmetric matrix. Putting
3 3
Z=Y Ui, II=)Y I,
ij=1 ij=1

and taking into account (4.29), we obtain

Dy, Z))y, : ¢ = —(D(y, Z) : D(y, Z))y, — —TI°,

This equality and the definition of Aj yield

m&<w<:«M%@+o:®wzwf»n+%ﬁ?

The strict positive definiteness of Aj is immediate from the equality above and the geometry of the
elementary cell Y;. Indeed, suppose that (A§ : ¢) : ¢ = 0 for some ¢ such that ¢ : ¢ = 1. Then
(D(y,Z) + ¢) = 0, which is possible if and only if Z is a linear function in y. On the other hand, all
linear periodic functions on Y; are constant. Finally, the normalization condition (U%)y, = 0 yields that
Z = 0. However, this is impossible.

Finally, the equations for pressures (4.22) and (4.23) follow from (4.8)—(4.10) and

A L.
By = XD Vo)., Bi = (D, UD)y.,  ai = —{div, Uy, (430)
3
C = (div,U7)y JY, aj=1-m+ (div,Uo)y.. (4.31)

ij=1

4.5. Homogenized equations I1I. We now let u; < oco. In the same manner as above, we verify
that the limit w of the sequence {u®} satisfies the initial-boundary value problem like (4.21)-(4.23).
The main difference here that, in general, the weak limit w of {w®} differs from w. More precisely, the
following is true:

Lemma 4.8. If i1 < oo then the weak limits u, w', p, ¢, and 7 of the sequences {u®}, {x°w*}, {p°},
{¢°}, and {r®} satisfy the initial-boundary value problem in Qr consisting of the momentum balance
equation:

0 0?2
To <'0f(9_: + ps(1 — m)a—;;> +V(q+7)—pF = divw{)\oAé :D(z,u) + Bydivyu + qu}, (4.32)

and the continuity equation (4.22) for the solid component, where v = dw’ /0t and A§, BS, and Bj are
the same as in (4.21), the state and continuity equations:

0 1 1
P+ l/op*_l—p =q, —p+—n+divyw’ =(m—1)divyu (4.33)
ot D+ To
for the fluid component and the relations
t
Oou
v=mos + [ Bi(p,t —7) - z(z, 7) dr, (4.34)
0

(0,1) =~ V(o 1) + (1) — Topy 22 (2,1
z\z, - _m gz, +Pf z, Topf 2 T,t),
in the case of 9 > 0 and p1 > 0, or Darcy’s law in the form

ou

1
=m——+DB | ——V F 4.35
v=mt 4 Ba) - (~ Va4 psF ), (4.35)



in the case of 1o = 0 and 11 > 0, or, finally, the momentum balance equation for the fluid component in

the form )

ov 0“u 1
Topfa = T1opsBs - el + (ml — Bs) - <_qu + pfF>, (4.36)

in the case of 1o > 0 and pp = 0. The problem is supplemented by boundary and initial conditions (4.24)
for the displacement u of the solid component and the boundary condition

v(z,t)-n(z)=0, =S5, t>0, (4.37)
for the velocity v of the fluid component. In (4.34)—(4.37) n(z) is the unit normal vector to S at a point
z € 5, and the matrices Bi(u1,t), Bo(p1), and Bs are given below by (4.39)—(4.43).

Proor. The homogenized equations of the balance of momentum and the balance of mass are derived
exactly as (4.21), (4.22). For example, to obtain (4.33) we just expressed div,w in a sum of (4.9) and
(4.10) using (4.7) after homogenization: w = w’ + (1 — m)u. Therefore, we omit the relevant proofs now
and focus only on the derivation of the homogenized equations for the velocity v of the fluid component.
The derivation of the boundary condition (4.37) is standard [3].

(a) If 1 > 0 and 79 > 0 then the solution of the system of microscopic equations (4.6), (4.17), (4.18),
provided with the homogeneous initial data, is given as

t ¢
V:%_;L+/B{(y,t—r)-z(a:,T)dT, R:/Rf(:%t_T)'z(a:’T)dT’

0 0
where B{(y,t) = Z?:l Vi(y,t) @ei, Re(y,t) = Z?:l Ri(y,t)e;, and the functions V'(y,t) and R'(y,t)
are defined by the periodic initial-boundary value problem

ov , , ,
P15 — AV + VR =0, div,V'=0, ye€Yy t>0,

1 (4.38)
V=0, yev,t>0; 71p;/V'(y,0)=e;, ye¥;
In (4.38) e; is the standard Cartesian basis vector of the coordinate axis x;. Therefore,
Bi(u,t) = (Bf),, (0). (4.39)

(b) If 7o = 0 and g1 > 0 then the solution of the stationary microscopic equations (4.6), (4.17), (4.18)

is given by the formula

ou
V=t Bl (y) - (—Vq + psF),

in which Bg (y) = Z?:l U'(y) ®@e;, and the functions U'(y) are defined from the periodic-boundary value
problem . . . .
— AU+ VR =¢;, divyU'=0, yeYy, U =0, ye. (4.40)
Thus,
Ba(p1) = (B3(v))y,- (4.41)
The matrix By(p) is symmetric and positive definite [3, Chapter 8].

(c) Finally, if 7o > 0 and p; = 0 then in the process of solving the system (4.6), (4.19), (4.20)
we firstly find the pressure R(z,t,y) by solving the Neumann problem for Laplace’s equation in Y;. If

R(z,t,y) = Zf’zl Ri(y)e; - z(x,t), where R'(y) is the solution of the problem
AR; =0, y€Yy;, VR -n=n-e, ye€v, (4.42)

then (4.36) appears as the result of homogenization of (4.19) and
3

B; =) (VRi(v))y; @e, (4.43)
i=1
where the matrix B = (ml — Bs) is symmetric and positive definite. In fact, let R = Z§:1 R;¢; for any
unit vector £&. Then (B - &) - & = ((§ — VR)?)y, > 0 due to the same reasons as in Lemma 4.7. O



§ 5. Proof of Theorem 3

5.1. Weak and two-scale limits of the sequences of displacement and pressures.

I. Let p11 < oo and let one of the conditions (1.6) or (1.7) hold. Then by Theorems 1 and 5 we conclude
that the sequences {w®}, {p*}, and {¢°} two-scale converge to the functions W(z,t,y), P(z,t,y), and
Q(z,t,y) and converge weakly in L?({27) to the functions w, p, and ¢ respectively, and the sequence
{u*(z,t)}, where u®(x,t) is an extension of w®(x,t) from the domain 25 to the domain €, vanishes
strongly in L?(€27) and weakly in L2((0, T); W1(Q)).

IT. If g3 < oo and conditions (1.7) hold then by (1.5) and (1.8) the sequence {a) u®} converges
strongly in L?(Q7) and weakly in L*((0,T); W3 (Q)) to a function u, and the sequence {n°} converges
weakly in L?(Q27) to .

T Tf yy = oo, py ',y < oo and 0 < A; < oo then by part (IT) of Theorem 1 the sequences
{a e 2w}, {p°}, {7}, {¢°} two-scale converge to the functions x(y)W(z,t,y), P(z,t,y), O(z,t,y),
Q(z,t,y) and converge weakly in L?(Q7) to the functions w’, p, 7, ¢, respectively; and the sequence
{oe™%u} converges strongly in L*(Qr) and weakly in L*((0,T); W3 () to u.

As before in §4, we conclude that w € L?(0, T; W3(9)).

1

5.2. Homogenized equations. I. If y; < oo and one of the conditions (1.6) or (1.7) holds then,
as in the proof of Theorem 2, we construct a closed system of equations for the velocity v = dw/ /0t in
the fluid component and for the pressures p and g. We entitle the above-described systems as Problem
(F1)—(F5) depending on the forms of the matrices By, Bs, or Bs. Each system consists of one of the
momentum balance equations (4.34)—(4.36), the boundary condition (4.37) in which w(z,t) = 0, and the
equations
p—i—l/op:l%:q, pi*% +divyv=0, ze€Q, t>0. (5.1)

IT. Let 1 < oo and let (1.7) hold. We observe that the limiting displacements in the solid skeleton
are equal to zero. In order to find a more accurate asymptotic of the solution of the original model, we
use again the renormalization. Namely, let w® — a)w®. Then the new displacements satisfy the same
problem as the displacements before renormalization, but with the new parameters o, — anagl, ay — 1,
ar — ozTozgl. Thus we arrive at the assumptions of Theorem 2. Namely, let the weak and two-scale limits
u(z,t), m, Iz, t,y), and U(z,t,y) satisfy the same system of microscopic and macroscopic equations
for the corresponding functions, defining the behavior of the solid component, in which the pressure ¢
is given by one of the problems F|—F5. The only difference from the already considered case is in the
microscopic and macroscopic continuity equations which coincide with (4.5) and (4.10) if we insert 7,
instead of 7.

Hence, for u(z,t) and 7(z,t) we have the homogenized momentum equation in the form

0 =div,{A§ : D(z,u) + Bidiv,u+ Bjg— (¢+7) - I} + pF, =z €, (5.2)

the macroscopic continuity equation (4.22) in which ny = 79, and the boundary condition (1.12). The
tensor Ag, the matrices C§, By, and Bj, and the scalars aj and a] are defined from (4.28), (4.30),
and (4.31) in which we have g = 12 and g = 1.

I1. If = oo, pl_l,nl_l < 0o and 0 < A; < oo renormalizing by w® — a,e”“w® we arrive at the
assumptions of Theorem 2, when g = 0, u; =1, 7o = 0 and Ao = Ay, 9y = 0, px, = p1 and 9 = 1.
Namely, the functions w’, p, 7, and w satisfy the following initial-boundary value problem in Qp:

2

divy {A\A§ : D(z,uw) + Bidivau+ Bip— (p+7) -1} + pF =0,

ow!  Ou 1
W = E + B2(1) . <—EV]9 + ,0fF>, (5.3)

1 1 1
p—p + 77—7r +div, w’ = (m —1)div, u, 77—7r + C§ :D(z,u) + aydivy u + ajp = 0.
1 1 1



As before, the tensor A§, the matrices C§, B§, and Bj, and the scalars af and af are defined by (4.28),
(4.30), and (4.31) in which we have 19 = n; and Ay = A1.

Note that here vy = 0. Therefore the state equation p + vop;! 812 = ¢ becomes p = q.

The problem is endowed with the corresponding homogeneous initial and boundary conditions.

§ 6. Proof of Theorem 4

6.1. Weak and two-scale limits of the sequences of displacement and pressures. By
Theorem 1, the sequences {p°}, {¢°}, {7°}, and {w®} are uniformly bounded in L?(Q7) in e. Then there
exist a subsequence from {e > 0} and functions p, 7, ¢, and w such that

=)

Pop, ¢ —>q 7w —>m w —w weakly in L?(Qr) as e \( 0. (6.1)
Moreover, the bounds (3.1) imply

Vw® q)) V,w weakly in L(Q7). (6.2)

Owing to Nguetseng’s theorem, there exist one more subsequence from {e¢ > 0} and 1-periodic functions
P(z,t,y), (z,t,y), Qz,t,y), and W(z,t,y) in y such that the sequences {p°}, {7}, {¢°}, and {Vw"}
two-scale converge as € \, 0 respectively to P, II, @, and V,w + V,W

6.2. Microscopic and macroscopic equations. In the present section we do not consider
the functions of time ¢t which renormalize pressures. As shown before, all these functions are equal
eventually to zero.

Lemma 6.1. The two-scale limits of the sequences {p°}, {n°}, {¢°}, and {Vw®} satisfy in Y =
Y x (0,T) the following microscopic equations:

nin + (1 = x)(divy w + div, W) = 0; (6.3)
0
1 . . vy OP
p—*P + x(divy w 4+ div, W) =0, Q=P+ p_iﬁ (6.4)
. ow oW
div, <XMO <]D) <967 E) +D <y, W))
(1 x)Mo(D(x, w) + D(y, w») L V,(Q+T) = 0. (6.5)

Lemma 6.2. The weak limits p, 7, q, and w satisfy in Q7 the system of macroscopic equations:

nin + (1= m) divy w + (div, Wy, = 0; (6.6)
0
1 0
e mdivew + (div, Wy, =0, g=p+ %o 872 (6.7)
_0%w ow oW
o = dive (o (m> (.57 ) + (0 (. 5 >>Y)
Fo((1 — m)D(a, w) + (D, Wy, — (g + w)H) 1 hF. (6.8)

The proofs of these statements are the same as in Lemmas 4.1—4.3.



6.3. Homogenized equations.

Lemma 6.3. The weak limitsp, 7, ¢, and w satisfy in ()7 the next system of homogenized equations:

N . . 0 .
T(),OW +V(q+7)—pF =div, <A2 : ]D)< (;) + A3 : D(z,w) + Bydivy w
¢
+ /(A4(t —7) :D(x,w(x, 7)) + Bs(t — 7) divy w(z, 7)) Cl7'>, (6.9)
0
. ¢
L mdivow = — /(@(t — 1) D (e, w(@, 7)) + as(t — ) divy w(, 7)) dr, (6.10)
D+ J
. ¢
—7r+ (1 —m)divyw = — /(C’g(t —7):D(z,w(z, 7)) + as(t — 7) divy w(z, 7)) dr, (6.11)
o J
vo Op
—— 12
1=p+ o (6.12)

Here As—Ay4 are fourth-rank tensors; By, By, C2, C3 are matrices; and az, as are scalars. The exact
expressions for these objects are given below in (6.25)—(6.30).

PROOF. Put Z(z,t) = poD(z, 22) — AD(z,w), Zi; = e; - (Z - €;), and 2(=,t) = div, w. As usual we
look for the solution of the system of microscopic equations (6.3)—(6.5) in the form

W / [Wo =)+ 30 W7 ) 19
rof Pt - >+’Jip%,t—T>Zij<w>}dn (6.4

t o ”Zl@ e
" / X j;,t—r leczw vt =12 dr ), (6.15)
1= (- / Tt - 7)s(e ) + Z Iy, = 7)2 e, 7)] dr ). (6.16)

where the functions W% W, P° P o, Q°, QV, f)j, II°, and IT¥ 1-periodic in y satisfy the following
periodic initial-boundary value problems in the elementary cell Y:

Problem (I).

div, <X <u0]D> <y, 81(;[;‘”) + (1 — ) XoD(y, W) — (1 — x)IIV + XQ”)]I>> = 0; (6.17)

Yo opP

T (6.18)

—PY 4 xdiv,W¥ =0, QY=P7+
D+



—IIY 4+ (1 — x) divy, W7 =0, WY(y,0) = Wy (y); (6.19)

o
divy (x (oD (y, Wy') + J7 — QJT)) =0, x(QF +wvodivy Wy') = 0. (6.20)
Problem (II).
s aWO 0 0 0
divy{ x{ poD{y, —5— | + 1 = x)AD(y, W) — (1 = x)IF +xQ@)L | | = 0; (6.21)
L P04 (div, WO+ 1) — 0. 0 — po 4 DO
p*P +x(div, W +1)=0, Q" =P —i—p* T (6.22)
1
n—HO +(1—-x)(divy WO +1) =0, W(y,0) = Wg(y); (6.23)
0
divy (x (oD (y, W5) — Qol)) =0,  x(Qo + vo(div, W + 1)) = 0. (6.24)
Therefore,
ho=pom 3T 00 4 pohd, Af = 3 (uD(y, W), @17 (6.25)
i,5=1 bj=1
5. d
Ay =do(L—m) Y J7 @ J7 = XA} + noh{(0), A4(t) = MOEA{ (t) — oA (1); (6.26)
i,j=1
3 o Wi g 3
a0 = 2 ((un (0 25w 0) )+ 00Dl W0y ) @ 5 (6:27)
i,j=1 Yy
ow? 0
Bs(t) = { xptoD y,w(y,t) + (1 = x)AD(y, W (9, 1)) ) ; (6.28)
Y
Co(t) = —Cs(t) = Z (x divy, W (y, )y J; (6.29)
i,j=1
a2(t) = _a3(t) = <X divy Wo(yyt»Y: B, = <XU0]D)(y7 W(g)(y)>>y U (630)

Lemma 6.4. The tensors As—A,, the matrices By, Bs, Co, and Cs, and the scalars as and ag are
well defined and infinitely smooth in time.

If a porous space is connected then the symmetric tensor A, is strictly positive definite. In the case
of a disconnected porous space, Ao = 0 and the symmetric tensor As becomes strictly positive definite.

Proor. All these objects are defined soundly if Problems (I) and (II) are well posed. The solvability
of the above problems and smoothness with respect to time follow by linearity from the standard a priori
estimates (multiplication of the equation for the solution by the proper solution and integration by
parts). Note that all these problems have a unique solution up to an arbitrary constant vector. In order
to discard the arbitrary constant vectors we demand that the average value of the solution over the
domain Y should be equal to zero. The smoothness with respect to time follows from the estimates of
the solution at an initial moment. Thus, for example, in Problem (I) first of all we estimate YW’ as
a solution to the problem (6.20). Further solving (6.17) together with the continuity equation (6.19) at
t = 0 and using the continuity of displacements on the boundary v we define and estimate (1 — x)W,’.
After that from (6.17) at t = 0 we define and estimate x(OW™ /9t)(y,0). In the same way we estimate
the second derivatives with respect to time after differentiating all equations with respect to time.



The symmetry and positive definiteness of the tensor A, are showed in the same way as for the
tensor AJ. If the porous space is disconnected then the problem (6.20) has a unique solution linear in y
such that B N

x(D(y, Wy') + J7) =0. (6.31)

The last equality implies Ay = 0.
In this case the tensor As becomes strictly positive definite. Indeed,

3
Ay=2o Y J7@J7+ oA (0)
ij=1
. oW o 3
=\ J9 @ J D( y, ——(y,0 iy J,
Oiyz’:l ® +le<xuo <y7 Fras<s )>+M0 >Y®

On the other hand, coming back to (6.17) at the initial moment we see that

oW i 1 ..
<XM0]D) <y, —(y,O)) :D(y, Wé‘d)> = —2o(xD(y, Wy') : D(y, Wg")) — <—H” .Hkl>

t=0

Moreover, by (6.31)

<xuoD<y, aaﬂ;j(yﬂ)) :D(y7W§Z)>Y = —<X1D><y, %f(yﬂ)) : J’“>Y,

which proves our claim.
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