PROBABILISTIC DESCRIPTION OF CASCADE KINETIC PROCESSES

Yu.P. Virchenko', R.Ye. Brodskii®

!Belgorod state University, Belgorod, Russi,
e-mail: virch@bsu.edu.ru;
“Institute for single crystal NASU, Kharkov, Ukraine,

e-mail: r.brodskii@gmail.com

Kinetic equations of cascade processes are deduced in mostly general form on the basis of methods of branching
markovian random process theory. It is done both in the discrete time case and in the continuous time case.

1. INTRODUCTION

The kinetic evolution processes in non-equilibrium
physical many-body systems are described on the basis
of probability theory representations by many-particle
distribution functions (see, for example, [1]). However,
probabilities defined by distribution functions are not
observed by direct experiments. Physically measured
values are modeled by some mathematical expectations
on the probability distribution defined by the set of
many-particle distribution functions. These averages are
connected with the special class of random values which
are called summing functions of various order
1=1,2.... [1]. They are represented by sums of typical

random values which are contributions of / -particle
groups. Only such averages are available to direct ob-
servation. The standard problem of non-equilibrium
statistical mechanics is the obtaining of evolution equa-
tions for these averages. Such equations, as a rule, may
be not obtained accurately by the corresponding averag-
ing of the basis of evolution equations for many-particle
distribution functions. As a rule, they are obtained in
frames of an asymptotical expansion procedure in a
small parameter. The most famous example of such a
procedure is the Chapmen-Enskog method [2]. It is
connected with calculation of non-equilibrium averages
when the evolution equation is formulated in the so-
called "average field" approximation. Nevertheless,
there are some kinetic processes of special type when
this approximation gives the exact kinetic equations.
The aim of this work is the demonstration of the fact
that the so-called cascade evolution processes are re-
lated to such a random process class [3]. They consist of
the particle multiplication by the definite physical
mechanism. Each particle of the system is characterized
by the collection of physical parameter values. The es-
sential peculiarity of the cascade multiplication process
is the evolution independence of each subsystem con-
nected with any separate particle on analogous subsys-
tems. Of course, this independence property is the ap-
proximation from the physical point of view. However,
at the description of many physical processes, it is justi-
fied. The examples of such cascade processes are elec-
tron-photon showers [4], the multiplication of nucleons
in their collisions with heavy nucleons [5], cascade
processes in solids [6], mechanical destruction of solid
medium to some separate fragments [7]. In this work,
we propose the mathematical model of cascade proc-

esses such that they are represented by Markov branch-
ing random processes with continuum particle types.
We show that the closed linear kinetic equations for
summing averages are realized for such processes.

2. DISCRETE TIME CASE

Here, we deduce the mentioned evolution equations
in the case of discrete time. It is done not only for me-
thodical aim. The using of discrete time is suitable in
some phenomenological statistical physical models.

Let particles be elements of physical system under
consideration and they are characterized by one positive
parameter » >0 . For definiteness, we name it as the

energy. Then, each it particle, i=1,2,....n, is charac-
terized by the value 7 of this parameter. At each time
moment >0, the system is characterized by the ran-
dom number 7 (f) of particles and the set AsesTiiey)
of random energies which are the characteristics of all
particles. Therefore, we describe the statistical system
state at each fixed time moment ¢ by the set of distribu-
tion densities {f,,(n,...,7,,;t) =2 0;n € N) . They are some

symmetrical functions on R} . These densities are de-
fined by such a way that integrals

1
;J.fn(rl,...,rn;t)drl...drn =p,), neN

(hereinafter, all integrations on variables » are done on
[0,90) ) represent the probability p, (f) of the fact that
there are n particles in the system at the moment ¢ . In
this case,

S pa)=1. (1)

n=1

It is necessary to formulate the evolution equation of
functions (f,(r,....7,;t)=20; neN). We solve this
problem supposing that the time ¢ is discrete, i.ec.
t=Al, le N, A>0. At the next section, we shall
formulate the integro-differential equation with con-
tinuous time.

In the case of the discrete time £, we consider that
the cascade process possesses the memory loss, i.e. the
system statistical state which is characterized by the



probability distribution at the time (/+1)A depends

only on the probability distribution at the moment /A
and it does not remember all previous history. Let us
introduce the conditional probability distribution densi-
ties (@ (A. bbb A Lo rys)imn € N) of the tran-
sition from the state (#....,
t=IA to the state (n,....r,

functions on argument groups #....,#,, and #.,...,

r,y at the time moment
Y. They are symmetrical
r, and
they satisfy to the normalization condition

001 ,
Z;jgnm(rl,...,rn;t,Am, FYdR.dr, =1 (2)
n=1""

Then, the evolution equation of the process which is the
Markov chain in this case, is represented in the form

fn (l"l,...,

1
:Zﬁjgnm(rlwwrn
m!
m=1

X Jon (Floees Ty s AR Ay,

It is necessary to consider all conditional densities
gmn as independent ones of the time ¢ when there ex-

1yt +A)

LA T) (€))

ists the physical temporal uniformity at the evolution
process description. The equation (3) together with the
condition (2) guarantees the conservation of the nor-
malization (1) at each time moment.

If the cascade process has such a property that parti-
cles does not disappear at each step, then the summation
in Eq.(3) spreads only on the values m =1,...,n . Let us

introduce the conditional distribution densities

gs(n,....rg;t,Alr), se€ N which are symmetrical on
arguments r,...,7; and satisfied the normalization con-
dition
Z%J-gs(rl,. Foi, Al F)dn..drg =1. 4)
s=1""

Each of mentioned densities determines the decay
probability of the particle with the energy » into s par-

ticles with energies #....,7; at some fixed time moment

t . In addition, keeping in mind that values r;, i =1,...,s

are called energies by conditional way, the energy con-
servation law r =rn +...+r, does not necessary take
place at each decay event. Usually, ones consider such
cascade processes when, at each evolution step, the de-
cay of each particle into new particles at any fixed time
t happens independently of other particles having ap-
peared up to 7. In this case, the conditional densities
g,.» are expressed by means of densities g, using the

so-called branching conditions

gnm(rla rn;taA|r1’> r}”}’l)
= Z Hgs (At Alr)) &)
Al mf =1

where the summation is done on all disjunctive subdivi-
sions {4,...,4,,} of the number set 1,2....n, ie.

>

A;nA; =D at i#j and UTZIA]- =n . Besides, the

shortened designation g (4d;t,Alr)=
=g S(rl-l, i :t,A|r) has been introduced where
A={i,....i;}. On the basis of Eq.(4), it is simple to

verify that densities g,, defined by the formula (5)
satisfy the normalization condition (2).

The equation (3) with the branching condition (5)
completely determine the cascade evolution process by
means of the set of transition conditional densities
gs(....rs:t,Alr), se N . Our next problem is to ob-
tain kinetic equations (with discrete time) for above
mentioned average physical values using Eq. (3). For
this, let us introduce into consideration the generation
functional H[u;f] of the probability distribution
(M, ry:t);ne Ny . Tt describes the statistical state
of particle system at each time moment by the equiva-
lent way. We define this functional on sufficiently rap-
idly decreasing functions u(r) , » > 0 by the formula

n=1"

Hlu;t]= Z I[Hu(r ]fn(rl, Lrb)dn..dr, . (6)

Function Glu;r] of the conditional probability distribu-

tion is defined by the set of conditional distribution den-
sities g, (n,....rs,LA|Fr), seN,

[ee] 1 N
Glu,r]= ) — -
[u:7] El . J.@_Ilu(rj )] ™

X G (Ao LA | F)dn . dry.

Therefore, it depends additionally on the parameter
r >0 . Using definitions (6), (7), we find
Hlu;t+A)= H|Glu; r];t]. (8)

on the basis of Eq.(3) and the formula (5). Let us define
the particle density with energy » by the mathematical
expectation

OO

p(rH)= 2 1( 1)'jfn(r1, Fp_1,730)dn..dr,.
It is evident that
OH [u;t]
:f
p(ri) = [ 5u0r) j By

On the basis of Eq.(8), we find the self-consistent
evolution equation

p(r.t+A)= jK(r,r';t, Ap(r'Ddr’ 9)

for this density. Here,

K(r,r',t,A)
> : ! 10
= n 1)'jgn FloeosFp1, 7, A #dr . dryq (10)
n:l - H



is the average number of particles having the energy r
and formed from particles having the energy »' at the
time moment / during one evolution step. It satisfies
the following equation

5G[u;r’]}

K(r,r',t,A)= [ 40)

In the analogous way, one may introduce the configura-
tion functions p;(#,....#;;¢) of higher order /=1,23,...,

p1(r.0=p(r1),

pr(A .1 h)

_Z l)'jfn(rla rlrl>

These functions are determined by the generation
functional,

8! Hlu:1] J

Pr (i riil) = {6u(r1)...8u(rl) el

However, unlike the equilibrium statistical mechanics
system (sce, for example, [1]), the evolution equations
for these functions are self-consistent, since the chang-
ing of the function p,,(A.....5;;t), m=1.2,...,] during
one evolution step is determined completely by the den-
sity values at the given time moment 7. Really, intro-
ducing the average

i 1
LAl =
nz::l(”_l)!

X jgn(rl,...,rl Moo P LA P dr

_ { BZG[u;r’] J
du(r)..ou(r;) el
we find from Eq. (8), using the multiple differentiation
formula of the composite function, that

P (st +A) = Ky (py,eupyi),
where K () is the linear operator applying to the densi-

ties p,, (7.,
we have

p2(r.r t+A)
= IK(rl,r’;t,A)K(rZ,r”;t,A)pz(r’,r”;t)dr’dr”

Ki(n.....

ri;t), m=12..,1. Inparticular, at / =2

+ [Ka0n.ma:t APy (00

3. CASCADE PROCESSES
WITH THE CONTINUOUS TIME
As above, we consider cascade processes with ran-
dom states described by sets {r,...,#,} of any random
length n=1,2,
i=1,..,n. Probability distribution of such random
states is described by the set of symmetrical densities

. at each time moment where », >0,

SV Ddr'y.dr' .

) =0;neN) at ecach time moment 7.

<fn(rl>"'>rn

They satisfy the normalization condition (1).

Let us introduce the conditional probability distribu-
tion densities {g,,, (M,.... 3t | F'oes#yit)), mone N)
of the transition from the state (r'|,...,r',,) at any time
moment ¢ to the state {....,#,) at the time moment

t >t They satisfy the normalization condition

|
Z—jgnm(rl, il | st dr, = 1. (11)
n=1 nl
It is evident that the next relation takes place
Tun(r,nrys )
= i iJ.g,,m(rl,...,rn;t|rl’,...,r,’n;O)
o (12)

X Jon(H sy 0)AH .y,

for any ¢ >0 taking into account the complete probabil-
ity formula. In the case when the cascade process is
markovian, i.e. the memory about the past is absent, the
conditional transition densities g,,, satisfy the Chap-

men-Kolmogorov equation which has the form

Com Flaes Pt | P Pyt

Gl |
= - (r7 > ,t r DF’:t”)

;l'_‘.gnl 1 7 | 1> ! (13)
X & (i I | s i)y

in our case. Then, it follows from Eqs.(12) that these
equations connect the densities f,,, ne N at any dif-

ferent time moments ¢ and ¢,

Sn (PP i1

© 1 | o
:%lﬁjg”m(rl""’r”;”rl>'">rm;t) 1)
X fon (F'] s ¥ 0P .Y,

In particular, if there is the temporal uniformity, condi-
tional densities g,,, depend only on the difference

t—t' but not on each temporal argument separately.

For a markovian process, the evolution equation for
densities g, and f,,, m,ne N follows from Eq. (13).
Namely, after the substitution t =¢+A, " =1, and

using the smallness of A the following expansion can
be written down

oMo T E+ AP L' 00
Sum 25(”1 -r')..or, -r',)
P
n
FAN i (Fees Pt | P e ) H0(A) (15)

Here, the first sum is done over all argument #....,#,
permutations and

A Ploees T E | P e P )

:(gnm(r1> IR A m;t’))t’:t'



From the functions g,, normalization conserva-
tion, it follows that

> 1
Z;_‘-ﬂ’nm(’ﬂlr
n=1""

Let us take into account that the investigated cascade
process is jump-like, i.e. the described stochastic evolu-
tion is represented by the sequence of jumps from one
state to another occurring at random time moments

(ke N). Then, at small A, with assumption that

there exists the nonzero average time between two se-
quential jumps, the probability g,,,dn...dr, is the sum

of probabilities of two events: the probability
Vst | 7'ty )dn..dr, = o(A),
o4 | v 120> m) 20

b | 7Y ety ). dr, = 0.

AVnm(rla
Vi (Fiseees By

of the fact that one transition has taken place
(P oo Py ) = {1 ..., 7,y and the probability

5nm25(r1 —=r'1)..0(ry —r'y)
P}’l
X (L= AV (P oo P D)y .y, +0(A)

of the fact that there is no transition. From this, it fol-
lows that

i Floee s B | P s
=V (Mo T E| 7' e ') 16)
=8V (Moemes m,t)Hé(r
Vm(rla"'arm;t)
A7)

[}
1
= Z ;J-Vnm (}"'1 >~~~>r'n ;t|r1>"'>rm)dr'l"'dr'm’
n=1""

that is the so-called detail balance principle. Tending
A — o after the substitution of the expansion (15) to
Eq.(12), we find

fn(rla"'arn;t)
0
1 ”
= Z_'J-Vnm(rla . n>t|r1> m)
m=1""
X fn(r'y o'y s Ddr'y..dr'y,

V(Moo Fgs D) Sy (Mo T3 1), (18)

Let wus express the tramsition  frequencies
Vo (oot £ |7 L', ) through more elementary
quantities, i.¢. frequencies of particle decays in the case
when the process is cascade-like. As above, let us take
first into account that particles do not disappear and,
therefore, the summation in Eq. (18) spreads only on
values m=1,....,n . We introduce the conditional distri-
rg;t+A|rt), seN of the
decay of the particle with energy » to s particles with
energies 7,...,7, at the time moment 7+A. They are

re;t,Alr) and, therefore,
they satisfy the normalization condition (4). Further, we

bution densities g,(r,...,

similar to densities g,(r,...,

construct the conditional densities g, on the basis of
introduced densities using the branching condition

Eom (F1,e. rn;t+A|r'1> Tt
= Y Hgs (At +A )1, (19)
A ,Am] =1

where designations are similar to those used in Eq. (5).
Substituting the representation analogous to one per-
formed by Eq. (16) but at a small A,

gs(rla * S>t+A|r t) 5135(r1_r)

X (1= Au;0)+ Apg (..., 7 1| 7)) +0(A),
into Eq.(19), we obtain that Eq.(15) takes place with the
condition (16) where

Vi (Plaees T s P s 7')

= 2 ZZ[HW

@+ Al [=1P jed

n (20
rP] ]/un—mﬂ(A;”rl) (20)

Here, py(A.....7s:t|r")=0 is the frequency of the de-
cays of the particle with energy »' to s particles with

energies A.,....x,

|
Z ;J.ps (F'1,.ur gt p)dr'y . dr' g = n(r;t). Q2n
s=1°"
Using definitions (17) and (20), we find
m
Vo (Mees P2 1) = D WU ). (22)
=1

Substituting Eq. (20) and Eq. (22) to Eq. (18), we
come to the equation system numerated by index
n e N . It determines completely the cascade process

fn(rla rnat)
= > [Hnema (A [P f (A" 0dr!
@#AC]

= i) [ (e,
=1

(23)

7y ).

Let us introduce into consideration the generation
functional H[u;¢t] of the set (f,(n,...r,;;t);neN)
corresponding to Eq. (6). Having defined the functional

24

M, [u;r] = Z%I[Hu(r].)]
s=1"" \ j=1

X phy (P Vo | P .. dry

on the basis of the equation system (23), we obtain the
evolution equation of the functional H[u;f],

S3H [u; 1]
du(r")

From this equation, by the differentiation over u(r) at

Hlu.t] = j (M [ = u (s 0)dr'. (25)

# =1, we obtain the equation of the particle number
density,

p(rn) = fu(r,r’;t)p(r’;t)dr’ —W(rDp(rin), (26)



where p(r,»';f)= (8M P [u;r’]/8u(r))uEl and the equality
ML ="t is used. As in the case of discrete

time, by the induction on the order / of correlation
function

Py (i l) = (slﬁ[u;t]/su(rl)...ésu(rl ))HE1 ,
one may obtain that its evolution equation has the form
pl (rlb"'brl ;t) = Ml (pl)""pl))

where M| is the linear integral operator applying to the
set of correlation functions py,...,p; .
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BEPOATHOCTHOE OITUCAHUE KACKAJAHBIX KHHETHYECKHUX MPOONECCOB

FO.II. Bupuenxo, P.E. Bpoockuii

Jaércst oOmuit BHIBO KHHETHUCCKUX VPABHCHUH 11 KACKAJAHBIX MPOLIECCOB, OCHOBAHHBIM HA MPEACTABICHUIX
TEOPHUH MAPKOBCKUX BETBAIIMXCS CIY4YAiHBIX MPOLECCOB, KAK B CIy4ae JUCKPETHOTO, TAK U B CIIY4a¢ HEIMPEPBIBHO-

TO BPEMCHH.

IMOBIPHOCHE OIIMCAHHA KACKA/JHUX KIHETHYHHUX ITPOIECIB

FO.I1. Bipuenxo, P.€. Bpoocvxuii

JlaeTbcs 3arabHE BUBEACHHS KIHETUMHUX PIBHSIHD UL KACKAJTHUX MPOLECiB, OCHOBAHE HA MPEACTABJICHHIX Te-
Opii MapKIBCHKUX TiTYACTHX BHIIAJKOBHX IIPOIECIB, K ¥ BHIAIKY JUCKPETHOTO, TAK 1 Y BUIAAKY HENEPEPBHOTO

Hacy.



