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Abstract—In this paper, we solve Goldbach’s ternary problem involving primes expressible by
given primitive positive definite binary quadratic forms whose discriminants coincide with the
discriminants of imaginary quadratic fields in which quadratic forms split into linear multipliers.
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INTRODUCTION

In 1937, Vinogradov solved Goldbach’s ternary problem by obtaining an asymptotic formula for the
number of solutions of the equation

p1tp2tps =N (1)

in primes p1, P2, ps with NV odd.

In the present paper, we obtain an asymptotic formula for the number of solutions of Eq. (1) in primes
P1, P2, ps such that each prime p;, i = 1,2, 3 can be expressed by a binary quadratic form.

Note that if these quadratic forms are one-class, then the problem can be reduced, essentially, to the
solution of Goldbach’s ternary problem involving primes lying in certain arithmetic progressions. For
the case in which the differences of these arithmetic progressions are constants or increase with N not
too fast, the solution of such a problem does not differ significantly from that of the classical Goldbach
ternary problem. The same applies to the problem of obtaining an asymptotic formula for the number of
solutions of (1) in primes expressible by all quadratic forms of given discriminants.

[T quadratic forms representing primes, are multiclass, the question of expressing positive integers
by such forms cannot be reduced to the question of whether these numbers belong to some classes of
residues. (in this connection, see[1]).

Therefore, to solve the problem under consideration, one must have some information about the
distribution of primes expressible by quadratic forms in arithmetic progressions as well as estimates
of some special trigonometric sums.

In what follows, by quadratic forms we shall mean primitive positive definite binary quadratic forms
whose discriminants coincide with the discriminants of imaginary quadratic fields in which these forms
split into linear multipliers.

The discriminants of quadratic forms are assumed to be constant everywhere, although it can be
seen from the proofs of the main theorem and the lemmas that they may increase as the parameter N
increases.

In what follows, the following notation will be used:

® P, p1, P2 are primes;

e P are simple ideals of an imaginary quadratic field;
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e N(A) is the norm of an integer ideal A of an imaginary quadratic field;

1 ifg=1(modk)
° k1) = ’
X(g: k) {O otherwise;
e v;(l) is a character of a quadratic field in which the quadratic form @; splits into linear multipliers,
1=1,2,3;

e > " denotes summation over a’s coprime to b in the specified limits.
a=0

The main results of the paper are the following theorems.

Theorem 1. Suppose that J(N,Q1,Q2, Qs) is the number of solutions of Eq. (1) in primes p1, pa2,
p3 expressible by quadratic forms @1, Q2, Qs with discriminants — Dy, — Do, —Ds, respectively,
h1, ho, hs are the numbers of classes of equivalent forms with discriminants —Dy, —Ds, —Ds,
respectively. Then, for any constant ¢ > 0, the following formula holds:

J(N,Q1,Q2,Q3) = 0(N, Dy, Dy, D3)I(N) + O(N*log™ N),
where
1 N?
TN = > grloansTogns " Do N
n 10gny logny logna 2 log® N

ni1+natnz—
3<ny,ng,n3<N

1 oo

g—1
1 * .
N, Dy, Dy, D3) = > y o emEmal/a
O'( s L1, L2, 3) h1h2h3 o g03((]) Yt e

< (o) + 3t D0 n (1 ) (1))
< (10 + 300502, 0xa(n (1 ) e (12 )7 )
< (10 + 300500, 0xa(n (5 )3 (1 )7

and x1, X2, X3 are the characters of the imaginary quadratic fields with discriminants — Dy, —Ds,
— D3, respectively.

Theorem 2. Suppose that J(N,Q1,Q2, Qs) is the number of solutions of Eq. (1) in primes p1, pa,
p3 expressible by quadratic forms Qq, Qo, Qs with discriminant —D and h is the number of classes
of equivalent forms with discriminant —D. Then, for any constant ¢ > 0, the following formula
holds:

J(Ny Qly QQ: Q3) - 0(N7 D)I(N) + O(N2 log_c N)y

where

2
- Y 1 N

lonlonlonN2l SN’
ni+ng+n3=N g1 logng log s 08
3<n1,m2,n3<N

(T(N,D) = (To(N) +01(N,D) +02(N,D) +03(N,D),



o0 o 2
oo(N) %27“@)10(“)“@, n,p)— 5 3 HEDRMWN, Dg)

Ty 7 (22)
q2,D)=1
(D (N, D N D
7o N Z w(Dg2) ’72 ) q2)7 o3(N Z ’73 (J2
g2=1 ga=1
qQ,D) 1 q2,D)=1
q
Z e~ 2mialN/q, n(N,q) = > S(a,q)e ™M/,
a=1 a—=1
a,q )Zl a’7q>:1
q q
= Y SHa,qe N qa(Ng) = Y S3(a,q)em N/,
a=1 a—=1
a,q)=1 a,q)=1
here
q .
Sla,q) = 3 xa(he>iei/s
Lo

and x1is the character of the imaginary quadratic field with discriminant —D

The proofs are carried out by the circular method. Besides, an essential role is played by the functional
equation of the Dirichlet series of special form from [2] on which the asymptotic formula from [3] and the
estimate from [4] are based.

To prove Theorems | and 2, we need the following lemmas.

l. LEMMAS

Lemma 1. Suppose that (a, D1q2) = 1, (D,q2) =1, D | Dy; moreover, each prime divisor D
divides D. Then the following identity holds:

S(a, D1qz) = {gﬁ(a)h(%)u(qg)rxl i; gi ﬁg’

where 7, = 2 x1(1)e*™ /P s the Gauss sum.

Proof. Since the character yy is real, we have
S(a, D1g2) = x1(a)S(1, D1g2).

Further,

Dy q2

S(l D1q2 Z Z X1 l1q2 +12D1) 2mily /D1 27Tzl2/q2

l1=1 =1
l1,D1):1 l2,q2)=1

D Di/D-1

= x1(gmla2) Y Y xa(l + Dip)e?m i/ Pre2mi/(Du/D)
l1=1 I3=0

Since the sum over ls is equal to 1 if D; = D and zero otherwise, we obtain the proof of Lemma 1.
O



Lemma 2. Suppose that (D, q2) = 1. Then the following identities hold:
1 (N, Dg2) = Dufg2)x1(N) (N, g2),
72(N, Dg2) = x1(=1)Dp?(g2)7(N, D)o (N, g2),
(N, Dgz2) = x1(=1)D*u(g2)x1(N)70(N, g2).

Proof. Let us use Lemma 1. We have
Dqo

Y1(NV, Dg2) = x1(q2)(g2)7(x1) Z 1 (a)e~2miaN/(Da2)
a,ﬁi%:l
D q2 ' '
= x1(g2)1(g2)7(x1) Z x1(a1q2 + a2D)6_2771&1N/D6—27Tm2N/q2
al= az=1
a,D)=1az,q2)=1

D
= X3 (g2)1(g2)T(x1) (N, g2) Z xl(a)e_%mN/D.
Let us apply the well-known identity

D
> xa(@)e™ NP~y (=1)x1 (N )7y
a=1

then we obtain
(N, Dga) = x1{(g2)1(g2) x1(= )75, X1 (N)0(N, g2).

Further, x3(g2) = 1 and x1(—1)72, = D, because x is a real character and (g2, D) = 1. Thus, we

have obtained an identity for 1 (N, Dgs). Let us also derive an identity for 42 (V, Dq2).
By Lemma [, we have

Y2(N, Dgz) = p*(q2)75,70(N, D).

Now, the required identity follows from the fact that the function o (XV, ¢) is multiplicative with
respect to ¢ and irom equality 7')%1 =x1(—1)D.
Let us derive an identity for v3(V, Dg2). We again apply Lemma 1, obtaining

v3(N, Dgz2) = 75, (N, Dg2) = x1(=1) D?1u(g2) x1(N )70 (N, g2).-

Lemma 2 is proved. [

Lemma 3. The following identities hold:
1 N, 3DpA(D)x1 (N N,
P

@ WD) ©*(p)
_ 3DpD)x1 (=), D) (N, p)
o2(N, D) = h3p3(D) };[)( 22() ),
_ Dha=Dxa() _ 0N, p)
7N D) = s ) };[,(1 ¥*(p) )

Proof. Lemma 3 immediately follows from Lemma 2 and the fact that the function 4 (N,q) is
multiplicative with respect to g. O



Lemma4. Suppose that (I,q) = 1,1 < q < log™ x, and € is the class of ideals. Then the following
asymptotic formula holds:

q

@0l F) Z 14 x( q,D )O)Xl(l) Liz + O(Ne~collos Ny'/2)
=1

where cy = co(cr) > 0,7 = 1/(20¢y).

Proof. The proof is given in [3]. O

Lemma 5. Suppose that (a,q) =1, a =a/q+ 2, q¢<log* N, |z| <1/(g7r), and 7 = Nlog= N.
Then, for Sq(c), the following formula holds:

q
*1+Xq7D7OX l T —co(lo
So(@) =) (/w<q>) O prmitfapg 2y 4 O(veeslos V),
=1

where ¢y and vy are the constants from the lemma and

N .
e2mzn

M(z) =

: logn

Proof. By assumption, the form @ can be expressed as

Q(%,y) - W:

where wy, ws is the basis of an integer ideal A.

Suppose that A lies in the class of ideals &7 and B is an arbitrary ideal from the class &/ ~!. Then
= (&p) is the principal ideal, {5 € A.

The mapping B — £p induces a bijection between the proper ideals from the class .27~! and the
classes of equivalent numbers from the ideal A (two numbers are equivalent if their ratio is +1). Since

N(B)
N(A)

it follows that only those primes p that are the norms of simple ideals from the class &/~! can be
expressed by the form Q.

Hence we have the equality

Sola) = Z e2miaN(P) 4 O(VN) = Sig(a) + O(VN).
N

The remainder O(v/N ) is due to the fact that there exist O(v/N ) simple ideals whose norms are equal
top? < N.
Now we consider the sum S;o(a). We have

q
SlQ( ) SlQ( ) Z 627Tzal/QT

=1
where

TZ(Z) _ Z e2m’zN(P).

Peo/~!
N(P)<N
N(P)=l (mod q)



Applying to T;(z) the partial summation formula, we obtain
N
Ti(z) = —/ (m(u; g, b, 1) =71 (VN g, L, /7)) de?™
VN
+ 1N g, 1, o~ He?™ =N 4 O(\/N),
where

Wl(u;qylyﬂ_l) - Z L.

Peg 1

N(P)<u

N(P)=l (mod q)
Integrating by parts and using Lemma 4, we find

14 x(e:D,0)x1 (1) /N e
hip(q) 3 logu
The assertion of the lemma now follows from the well-known equality

Ti(Z) du+O(Ne—co(logN)W/2).

N 2mizu

e

M = + O(1).
(2) /3 logu du (1)

Lemma 6. Suppose that

N(A)y=n

where X is an arbitrary nonprincipal character of the group of classes of ideals. Suppose that
¢ >0 is an arbitrary constant. Then there exist positive constants ¢; and co such that, for
a=ua/q+z |z <1/(gr), (a,q) =1, 7= N{log N)=<2, (log N)** < q <7, the following estimate

holds:
N

A(n)a(n)e*™ ™ — O(N(log N)~°).
( )

n=1

Proof. The proof is given in [4].

Corollary 1. Suppose that ¢ > 0 is an arbitrary constant. Then there exist positive constants
c1 and ¢y such that, fora=a/q+z, |z| < 1/(q7), (a,q) =1, 7= Nog N)=2, (log N)* < ¢q <,

the following estimate holds:
So(a) = O(N(log N)™°).

Proof. The following relations are valid:

, 1 _ .
Sola)= > 62”’0‘N<P>+O(\/N):EZX(;Z%) > X(P)er NP L O(VN),
N(P)<N

where X ranges over all characters of the group of classes of ideals and h is the order of the group of

classes of ideals.
Further,

ZY(M) Z X(P)e2m'aN(P)
X

N(P)XN

_ Z 6271'1'04) + Z Xl(p)eZﬂ'iap + Z 7(%) Z X(P)62maN<P),

p<N p<N X#Xo N(P)XN



where y; is the character of the quadratic field and Xy is the principal character of the group of classes
of ideals.

The estimate
Yo X() Y X(P)erm NP — O(N(log N)™°)
X#Xo N(P)XN

follows from Lemma 6.
The estimate

Z p2miop _ O(N(log N)_C>

p<N
is well known (see, for example, [5, Chap. 10]). The estimate

> xip)e?™P = O(N(log N)~°)
p<N

also holds and can be obtained, essentially, in the same way as the estimate of the sum ZpsN e2miap
because the modulus of the Dirichlet character x; is a constant (nonincreasing as N increases). O

2. PROOF OF THE MAIN THEOREM

Proof of Theorem 1. SupposethatT = Nlog™® N and ¢z > 1. We write J(N, Q1, Q2, Q3) in integral
form:
1-1/7 .
J(N7Q17Q27Q3) = / SQl(a)SQz(a)SQS(a)e—%Tza dev.

—1/7

Let us define the sets £77 and E»:

1 1
El{OZG ——,1——>I
T T

1 1
By — {——, 1— —> \ By
T T

Choose the parameters ¢; and ¢y so that ¢+ 1 < ¢, 2¢1 < ¢3; moreover, ¢; and c¢o satisfy the
assumptions of Lemma 6. Then if N is a sufiiciently large number, then the sets £ and Fy consist
of nonintersecting intervals and

J(Ny Qly QQ: Q3) — Jl(Ny Qly QQ: Q3) + JQ(Ny Qly QQ: Q3)7

a

1
o — = =

qTr

<

,(a,9) =1, ¢ < log“N},

where
Ji(N7Q17Q27Q3) - / SQl(a)SQz(a)SQs(a)e_27TiaN ClOé, i = 172
E;

By Corollary 1, we have

Jo(N,Q1,Q2,Qs) = O((N) Imax |Sq:(@)]) = O(N? log™* N).

Suppose that o € Fy. Applying Lemmas | and 5, we obtain
g—1

1 1 x .
JI(N,Q1,Q2,Q3) = - Z _Z o—2miaN/q

3
thahs g<logl N ¥ (q) a=0

< (o) 3t D0 (1 ) (1))
< (10 + 3065 D2, 0xs(n (1 ) e (1))




q q

8 (M(Q) + x(¢; D3, 0)xs(a)p <D_3> X3 (D—3>Tx3>
1/(g7) ,

X / M3(Z)e—2mzN dz.
—1/(q7)

Following arguments from [5, Chap. 10], we can obtain the equality
1/(g7) , 1/2 |
/ M3(2)6—2mz]\/ dz = MS(Z)€_27TZZN dz + O<N2(log N)_202+201>

1/(am) ~1/2
= I(N) + O(N?(log N)~2e212e1),

Finally, trivially estimating the sum over ¢ > log™ IV, we obtain the assertion of Theorem 1. O

Proof of Theorem 2. Theorem 2 is proved in the same way, the only exception being that the sum
over q is calculated with the help of Lemmas 2 and 3. O

3. LOWER BOUNDS FOR THE SUMS OF SINGULAR SERIES

With regard to the sum of the singular series from Theorem 1, we restrict ourselves to the following
assertion.

Proposition 1. Suppose that the numbers Dy, Do, and Ds are sufficiently large and N is an odd
number. Then the following inequality holds:

1

N, Dy, Dy, D _ .
(N, Dy, Dy, 3)>2h1h2h3

Proof. Let us remove the brackets in the product

(1@ + xt 2,01 (1 ) (15 ) )
< (o) + 305 D200t (1 e (1) 7o)
< (10 + 3065 D2 st 7 Yo (12 ) )

We obtain eight summands, which correspond to eight singular series. The first summand is equal
to u(q); it corresponds to the series

1 S l@)ole, N)
1) = hihahs ; ©3(q) '

It is well known that o1 (N) > 1/(hihahs) (see, for example, [5, Chap. 10]).

Let us find an upper bound for the sums of the other series. Since all the estimates are obtained
identically, we restrict ourselves to the series

oo g—1

1 3 Z* e—zmaN/qX(q; D1, 0)x(q; D2, 0)x(g; D3, 0)

hihahs 7~ ¥ (9)

cumsonion )32

q q q
X X1 <D_1>X2 <D—2>X3 (D—3>TX1TX27XS.

0’(N, D1, Dy, D3) =



Using the root estimates for the Gauss sums, we find that there exists an absolute constant ¢z > 0
such that

C3+/ D1D2D3
hihohsa| Dy, Dy, D3?’
where [ Dy, Ds, D3] is the least common multiple of the numbers Dy, D, Ds.

If D1 < Dy < D3, then /D1 DyD3 < Dg’/Q, (D1, Da, D3)? > D2; therefore, the following inequality
holds:

|og(N, Dy, Dy, D3)

<

C3 1

< <
hihahsy/max(Dy, Da, D3) — 14hihohs

|08(N7 D17 D27 D3)

if
min(Dy, Dy, D3) > 196¢3.

Using similar procedures with regard to the six remaining singular series, we obtain our assertion.
U

Now consider the singular series from Theorem 2.
Proposition 2. /f N is an even number, then
UO(N) - Ol(NyD) - 02(N7D) - 03(N7D) =0.
Proof. If D is an even number, then, as is known, D is divisible by 4; hence o1(N) = g2(N) = 0. Also,

X1(N) =0, i.e,03(N) = 0. Finally, it is also well known that oo(/N) = 0 for an even V.
But if D is an odd number, then, for an even N, we have

H(l — ,7(:0(;\(;;5))> =0, (To(N) = Ol(N,D) = (72(N7D) - 03(N7D) =0. O
ptD

Proposition 3. Suppose that N is an odd number and —D = ép is the discriminant of a quadratic
form which is not one-class and expands into linear multipliers in the imaginary quadratic field
with discriminant §p. Suppose that D > 15. Then the inequality o(N, D) > 2/(5h%) holds.

Proof. Since —D is the discriminant of a quadratic field, it suffices to consider the following cases.
Case 1. D = 8d, where d is an odd square-free number.
Then u(D) = 0, 01(N, D) = 02(N, D) = 0, and hence ao(N, D) = ao(N) + g3(N, D).
I (N, D) > 1, then x1(N) = 0, o3(V, D) = 0; therefore, in this case, o(N, D) = go(NN).
Suppose that (N, D) = 1; then

1 1 p?
T = ﬁ@g(“m) ‘H<p—1>3>

pld
because, for any p > 3, the following inequality holds:
2
: 52 £ 3"
p—-1°" (-1

Case 2. D = 4d, where d is an odd square-free number, d > 5 (otherwise, the quadratic form with
discriminant — D is one-class).

Thenif (N, D) > 1, we have o(N, D) = go(N).

Suppose that (N, D) = 1; then

2 1 p
7N D)= F<H<1+ (p—1)3> -1l (p—1)3>

pld

H(l - M) > %GO(N),

3
o v*(p)

1+




By assumption, d is an odd square-iree number, d > 5; therefore, there exists a prime p > 5 dividing d.
But, for p > 5, the following inequality holds:
2

1 P

1
(1t =) 2 ol
whence o(N, D) > (1/2)ao(N).
Case 3. D is an odd square-iree number, D = 3 (mod 4), D > 15.
We split this case into subcases.

3.1. x1(N) = 1. Then

’YO(N7 D) - M(D)7 Xl(_l) =—1
therefore,

1 1 »° (N, p) 1
”W””Zﬁ010+@—w>‘nqhnﬂgﬁ‘zﬂm>>szw

p|D pID
because there exists a prime divisor D greater than 5.
3.2.x1(V) = —1. Then

o L (ZSDE DY I e
(%) =) s ww>>gﬁgﬂm>>owx

because —6D + D? > 0.
3.3. x1(N) = 0. In this case,

O'1(N, D) == 0'3(N, D) =0.
SUppOSQ that (N, D) =D1>1, D=D1D>, (N, D2) = 1. Then ’70(N, D) - IU(DQ)QO(Dl),

dM@%(HQ—@%§>HQ+G%F>

p|D1 p|D2
B p p ~ (N, p)
iﬂjwnv}l@—nJ}%Q )

By assumption, D = Dj D5 is an odd square-free number, D > 15. Therefore, either D1 or Ds has a
prime divisor greater than 5.

Ifp | D1, p > 7, then we have the inequality

(1-5=m) 2 5t

from which it follows that, in this case, o(V, D) > (2/5)0¢(N).
Butif p | Dy, p > 7, then the following inequality holds:

1 1 P
1_0<1+(p—1)3> =1y

and, therefore, o(N, D) > (7/10)0o(N).
The resulting estimates imply that, for all N and D satisiying the conditions, the following inequality
holds:

2 2
N, D) > =0g(N —
0( ) )—500( )>5h3

(the inequality og(IN) > 1/h3 is well known; see, for example, [5, Chap. 10]). O



In the previous proposition, we did not consider the case D = 15. Aswill be seen from the next propo-
sition, the quadratic forms with the discriminant —15 which are not one-class are the unique exception
from the following general rule: there exist infinitely many odd numbers N for which o (N, 15) = 0.

Proposition 4. Suppose that N is an odd number. If (N,15) = 1, then

N,15) > —.
o(N,15) > -

If (N,3) =1, (N,5) >1or(N,5) =1, (N,3) > 1, then
(N, 15) > %

If N =0 (mod 15), then o(N, 15) = 0; moreover, the equation
prt+p2tps=N

is insoluble in primes p1, pa, ps expressible by the quadratic forms with discriminant —15.

Proof. The first three assertions immediately follow from the equality

(N, 15) — 1(1—[ (1 _ %(Mp)) L BaN) (N, 15) 225X1(N)>

i ©3(p) 512 512 512
IYO(Ny p))
X 1l — ——=
ﬂ,)( ©*(p)

(we have taken into account the fact that h = 2).
Also, any quadratic form with discriminant —15 is equivalent to one of the forms

fley) =2 vy + 4%, fola,y) = 22° +ay + 297

Simple calculations show that the forms f; and f» can represent only primes congruent to 1, 2, 4, and 8
modulo 15, while the sums of any three such numbers are not divisible by 15. O
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