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Abstract—We obtain lower bounds ior the fractional moments of linear combinations of analogs
of the Hardy function. In addition, we apply these estimates to the Karatsuba problem of finding a
lower bound for the number of zeros of the linear combination of analogs of Hardy lunctions on the
interval (0, 7.
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1. INTRODUCTION

Suppose that No(T") is the number of zeros of ((1/2 + it) on the interval (0, 7).
In 1921, Hardy and Littlewood [1] established the estimate

No(T) > 1T, c1 > 0 is an absolute constant.

In 1942, Selberg [2] obtained the following order-exact estimate of No(7'):
No(T) > 2T log T, ca > 0 is an absolute constant.

For arithmetic Dirichlet series satisiying a functional equation of Riemannian type, but not having an
Euler product, no order-infimums for the number of zeros on the intervals of the critical line Re s = 1/2
have been obtained so far.

Voronin was the first to show that, on the critical line, there are abnormally many zeros of the
arithmetic Dirichlet series without an Euler product. In 1980, he proved [3] the estimate

1
No(T, ) > 03Texp<2—0\/loglog loglogT>, (1)

where No(T', f) is the number of zeros of the Davenport—Heilbronn p function f(s) such that Re p =
1/2,0 <Imp < T, and ¢z > 0 is an absolute constant.

In 1989, Karatsuba [4] developed a new method for finding lower bounds for the numbers of zeros of
certain Dirichlet series on the intervals of the critical line, with the help of which he proved the following
inequality significantly strengthening Voronin’s result (1):

No(T, f) =2 T+/1og T (log T))"*, (2)
where ¢ is an arbitrarily small positive number, 7" > Ty(g) > 1.

In 1994, Karatsuba [5] replaced the multiplier (log7")~¢ in inequality (2) by the more slowly
decreasing multiplier e~¢4vIogloeT \where ¢; > 0 is an absolute constant.
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At present, the inequality

No(T, ) > T+/log T exp(—cq+/loglog T'), cq > 0,

is the sharpest known estimate for No(7', f).
Suppose that

. 1
Z(t,x) = e’9<t’X>L<§ + it),

where the function (¢, x) is chosen so that Z(t, x) is real for real t. Then Z(t, x) is an analog of the
Hardy function (see, for example, [6, p. 86]).

Suppose that
G(t) - a1Z(t,X1) +F a/NZ(t7XN)7

where aq, ..., ay are arbitrary real numbers.

In 1991, Karatsuba [7] posed and solved (using his method of 1989) the problem of finding a lower
bound for the number of zeros of G(t) on the closed interval (0, 7.

This problem will be called the Karatsuba problem.
Let us cite the Karatsuba theorem from [7].

Theorem A. Suppose that N > 2, and ky,...,ky are arbitrary natural numbers satisfying
the condition K = |ky, ..., kn] > 3, and x1,...,xn are arbitrary primitive Dirichlet characters
modulo kq, ..., ky, respectively. Further, suppose that, a1, ...,an are arbitrary real numbers.

Then the number No(T,G) of zeros of odd order of G(t) on the interval (0,T) satisfies the
inequality

No(T,G) > T(log T)*~%, (3)
where £ > 0 is an arbitrary number, T' > Ty(e) >0, K is the least common multiple of the

numbers ki, ..., kn, Bp(K) =1, and ¢(K) is the Euler function.
If the characters x1, ..., xn have identical parity, then

No(T, G) = T(log T)27==. (4)

In 2002, Karatsuba [8] obtained an estimate for the number of zeros of the Riemann zeta function on
a closed interval of the critical line, by using the knowledge of the true order of the fractional moments of
the zeta function on the line Re s = 1/2. This estimate turned out to be less sharp than the order-exact
Selberg estimate, but significantly sharper than the Hardy—Littlewood estimate.

The Karatsuba method of 1989 is very complicated. Considerations dating back to Selberg are
supplemented in it by a number of original ideas due to Karatsuba himself.

In contrast, the Karatsuba method of 2002 is comparatively simple. It was noted in [8] that, in
addition to the techniques of Hardy and Littlewood, it incorporates the knowledge of the true order of
the fractional moments of ((s) on the critical line.

In the present paper, we obtain order-sharp estimates of the fractional moments of linear combina-
tions of analogs of the Hardy function. In addition, we show that, in some special cases, the Karatsuba
method of 2002 can be applied to the Karatsuba problem and, moreover, it can produce a sharper result
than the elaborate method of 1989.

In what follows, we shall use the following definitions.
Suppose that

RRTCY

where k is the modulus of the character x(n), and 7(x) is the corresponding Gauss sum, and ¢ is equal
to, respectively, O or 1 depending on whether the character x(n) is even or odd.
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We introduce the following functions:

(TR (1 = s+ 6)/2)
o) —e(f) IO,

O(s) = a1(p(s, x1))" Y2 L(s,x1) + az(p(s, x2)) " /2 L(s, x2). ()

Here and elsewhere, the moduli of the characters x; and s are assumed constant (not increasing
with the main parameter 7). The constants in all subsequent estimates depend on these constants.

Suppose that
1
G(t) = @(5 + it).
[t follows from Stirling’s formula that, for 7'/2 <t < T, the following formula holds:

kst

1/2—0—it '
2 eemei o), -y ©
™

oo vit )~ (

this formula will be used on numerous occasions in what follows.
The main results of the paper are stated in the following theorems.

Theorem 1. Suppose that ki and ks are natural numbers, m > 2 is an arbitrary natural number,
and dy y,(n) are the Dirichlet coefficients of the function (C(s))Y/™ for Res > 1. Suppose that x1
and xs are primitive Dirichlet characters modulo ky and ks, respectively.

Suppose that

sin(w/m? B\ e 2 _
Ck,l/m: (ﬂ-/ )<g0§€)> /O r 1/ 2 1(1—6 )d?“

1 dym@)? I
><H<1+m2p+ = +> 1= :

Suppose that, in formula (5), a1 and ay are arbitrary complex numbers such that
|a1|2/m0k1,1/m # |a2|2/mck2,1/m'

Then, forT > Ty > 2, the following estimates hold:

T
zwﬂwﬁ</meW<ﬂmﬂW?
0

Theorem 2. Suppose that ki and ke are natural numbers and x1 and o are primitive Dirichlet
characters modulo ki and ke, respectively. Suppose that, in formula (5), a1 and az are arbitrary
real numbers such that

|a1|2/30k1,1/3 # |a2|2/30k2,1/3-
Then the following estimate holds:
No(T, G) > esT(log TS, ¢4 > 0.
Note that if the constant g irom (3) (or 23 in the case of the same parity of the characters x; and x2)

is less than 1/6, then the estimates of Theorem 2 are sharper than (3) and (4). At the same time, the
scope of applications of the Karatsuba theorems is wider than that of Theorem 2.



Theorem 3. Suppose that ki and ke are natural numbers and x1 and o are primitive Dirichlet
characters modulo ki and ke, respectively. Suppose that a1 and as is are arbitrary complex

numbers such that
1/m 1/m
|a1|2 Qp(kl) # |a2|2 Qp(kQ) )
k]l k2

Then, for any natural number m > 2, the following estimates hold:

T

1 1

T(log T)V™ <« / |a1L<§ +it, X1> + a2L<5 1 it, X2> 12/m qt < T(log T)H™.
0

In order to prove the theorems, we shall need the following lemmas.

2. LEMMAS

Lemma 1. Suppose that x(n) is a Dirichlet character modulo q, 0 < k <1, and di(n) are the
Dirichlet coefficients of the function (((s))*. Then the Jollowing asymptotic formula holds:

2
Z |dk | |X )| _ quk(lOg N)k2 +O((log ]\7)162—1)7

where

e B () a8 B0

Proof. Suppose that b= 1/log N, T = ev°e N Perron’s formula (see [9, p. 427 (Russian transl.)])
implies the equality

1 b-iT NS loe N
Z'dk ) FIxm)P —/ F(1+s)—ds+0<0g ),
b S T

2mi —iT

where
Z |di.() [ x(n)[?
n1+s :
Suppose that I'; is the rectangle with vertices

b—iT, b+1il, —c1+1iT, —c1—1iT,

where ¢1 = ¢} /\/Tog N and ¢] is a small positive constant such that the closure I'y does not contain
zeros of ((s). The existence of such a constant is a consequence of the well-known Vallée—Poussin
theorem on the boundary of the zeros of {(s) (see, for example, [6, p. 33]). Suppose that ¢ = ¢//log N,
where 0 < ¢ < 0.1¢}.

Further, note that, for Re s > 0,

F(l+3s) = (C(L+s)P U+ s), (7)

where

10 A Ly
Ui +s)= H<1 Ty e ) (1 N pl”) H<1 N pl“) '
pla plg
The function U(1 + s) is regular in the hali-plane Re s > —1/2.

Inside the rectangle I'q, let us make a cut along the interval [—¢y, —c|. Define a closed oriented
contour I" as follows. From the point b — T, along the sides of I'y, we go upward, turn left, and go down



to the point —cp; we go along the upper edge of the cut to the point —¢; we bypass the point s = 0 along
a negatively oriented circle of radius ¢ centered at the point s = 0; along the lower edge of the cut, we go
to the point —¢y; along the the sides of I'y, we go down, turn leit, and return at the point b —
The upper edge of the cut, the circle, and the lower edge of the cut with the given orientations are
denoted, respectively, by I's, I's, and I'y. By Cauchy’s residue theorem, we have
1 N*

— [Pt ds —o.
omi J P+ s) = ds

Combining this with the estimates

1
|C(1—cl+it)|<<C—+TcllogT<<\/logN for |t| <T,
1

|C(1+ o £iT)| < T log T < +/log N for —cp <o <b,
we find that
1 b1 NS NS
— F1+s—ds——</ / /) 1+s—ds+0 —aVlog N/2y (g
270 Jo_sr ( ) 2mi I's I's Iy ) ( ) ( )
Using the relation

F(l + 3) = S_kz(SC(l + S))sz(l + 3) — U(l)s—kz + O(|S|1—k2)7

we obtain the equality

(/F /F /F> (9 as=v (/F /F /F> 8 g 1 0o NP, (9)

Let us evaluate f;, s~* *(N*%/s)ds. We have s = re™, ds/s = dr/r, N® = =" 1eN

2 N¥ a2 [ e o
/ —k Zds—e ik / r k 16 TlOgNClT’
I's $ c1

_ _e—m'kz(log N)k2 / r—kz—le—r dr + 0(6—0/1\/10*%—]\[/2).

C/

Similarly, evaluating f}., s (N*/s) ds, we obtain

(/ / > —kzN (ewikz —mk )(lOg N) / r—kz—le—r dr+0(e—0/1\/m/2).
I's 'y c

Let us evaluate fp, s~ (N*#/s) ds. We have

NS 0 (1—k?)
/ s_kz—ds/ sk d—s+z(logN kQZLJl,
s

=1
Jy = /_7T eiel=k?) de.

Let us evaluate [, s ¥ (ds/s). We have s = ce'?, ds/s = i dip,

where

2

-7 N—k ) )
/ S—kzﬁ _ l/ C—k —ipk? dgp _ (C )2 (log N)k2 (emkz . e—mkz).
I's S T k

N—k? 0
(6112 /C/ r=K =1,

Since




we obtain the equality

NS o0
(/ +/ +/ > R gs = —2i(sin 7k?)(log N)* / r_kz_l(l—e_r)dr
r, Jrs Jry o

0 z E2)
i(log N) kz Z Jy + O(e= Ve N/2y,
=1
/

substituting this equality into (9) and passing to the limit as ¢/ — +0, we finally obtain

NS
(/1—‘2+/1—‘3+/F4>F(1+8)?d8
= —2iU(1)(sin 7k?)(log N)l€2 /oo r—k2—1(1 — e ") dr + O((log N)kQ—l).
0

Now the assertion of the lemma immediately follows from (8). O

Lemma 2. Suppose that f(s) is a function regular in the strip o < Re s < 3 and continuous in the
strip a« <Res < 3. Suppose that f(s) — 0 as |Ims| — oo uniformly in « < Res < 3. Then, for
a <y < pandq >0, the following inequality holds:

0 o0 (B=/(B=a) ; roo (v—a)/(B—a)
[iserioras ([ 1) ([ i+ iwpa) -
For the proof, see [7].
Lemma 3. Suppose that1/2 <o <3/4,1>0,T > 2,
0 T
J(o) = / (0 +it)[Pw(t) dt,  w(t) = / e 2=7) g
T/2

Then the following inequality holds:
J(O’) < T<l+1)<0_1/2)J(1/2)3/2_U.

Proof. Let us apply Lemma 2, setting in it
1 3

57 /6 - 5 )
where 7 is a number from the interval [7'/2, T]. We obtain the inequality
oo ) 1 21 3/2—c 0 3
/ |f(o+it)|2ldt§</ ‘f<§+it> dt) (/ f<§+it>

Let us integrate it over 7 from 7'/2 to T" and apply Holder’s inequality:
1 3/2—c 3 o—1/2

3 .
‘p<§ + it, M)‘ <2 j=12

Now the definition ®(s) (see (5)) and the fact that the L-Dirichlet function is bounded in the half-plane

Re s > 3/2 implies that
2 2T 3 2 3
dt<<Tl/ <‘L<—+it,x1> +‘L<—+it,){2>
T/3 2 2

2T
(Y [t a)
2 T3] \2

The lemma is proved.

a= v=a, q=2l, [(s)=®(s)els",

21 o—1/2
dt) .

[t follows from formula (6) that

21
) dt < T,




3. PROOF OF THEOREM 1

The upper bound in Theorem 1 is well known (see, for example, [11], [12]). Let us prove the validity

of the lower bound.
First, consider the integral

T
Ji(o) — /m Do + it)[2/™ d.

Suppose that, for Re s > 1,

1/m Z dl/m

Further, suppose that

3 Xl Zdl/m Sy 3 X2 Zdl/m Sy

where N = T3/4,
Suppose that, for example, |a1|>/™ ey, 1 jm > |az|*™ ¢y 1 /m. Then
T
Ji(o) = / Jmloto i x) 2o it )

T/2
+az(p(o +it, x2)) " 2SR (o + it x2)
+ai(p(o +it, x1)) " A(L(o +it, x1) — Sw(o +it, x1))
+ag(p(o + ity x2)) "V (L(o + ity x2) — SRo + ity x2)) | dt.

Suppose that
L,
2 logT’

while C' > 1 will be chosen later.
Using the inequalities
|Zl|2/m _ |z2|2/m < |Z,1 + Z2|2/m < |Z,1|2/m + |Z2|2/m
valid for all complex numbers z1 and z5 and any natural number m > 2, we obtain

(|a1|2/mk,(1¢7—1/2)/mL1(0.) _ |a,2|2/mk]gg_1/2)/mL2(O'))T<0_1/2)/m
< Ji(0) + (K1 (0) + Ky(o)) TV /2m,

where
T
Lj(o) = / Sno + it, x))| db,

T/2

T

ki)~ | o ROt H) = 05 s) ~ asSR0), G =12
2
Let us show that

1 —1/m2 o " o— m
T("‘g) <<|a1|2/mk:§ 1/2)/ Ll(o)—|a2|2/mk:§ 1/2)/ Lo(o).

(10)



The following relation holds:

N g2 9
Li(o) = (g +O(N log N)) S dl/m(glfl(n)l
n=1

(see, for example, [6, p. 123]).
Let us rewrite the sum

N di ), () ()
Z = n201

n=1

Suppose that N1 = exp((o — 1/2)7%/2). Then, by Lemma 1, we have
X dim)ba(m)? d2 () (n) 2 L\ —1/2m
L/m _ 1/m 1-20
SR MU

n=1 Ni<n<N
N 1 —1/2m?
—— [ C(u)du'= + C(N)N'=2 1 0<<a — —) )
Ny 2

where
@2, () ()2

Clu)= »_ -

Ni<n<u

Again, using Lemma | and integrating by parts, we obtain the equality
N a2, m)|xi(n)?

Z 1/m pes

n=1

(20—1) log N 1 —1/2m?
_ Ckl,l/m (20_ _ 1)—1/m2 ,Ul/m2_16—v dv + O o— = .
m2 0 2

Using the same arguments to J,(o) and taking into account the fact that

_ 1 )
|a1|2/mck1,1/m > |a2|2/mck2,1/m7 kf;'g VM _ O(U - 5); J=12,

3
(20 —1)log N > 3

we obtain (10).
Thus,

—1/m?
T<a - %) TE=12Im « Ji(o) + (K1(0) + Ka(o))T 0= 2/m,

Our immediate problem is to estimate from above the integrals K; (o) and K2 (o) for values of o close
to1/2.

The integrals K(o) and Ky(o) are estimated in a similar way. Suppose that j is any one of the
numbers 1, 2.

Let us apply Lemma 2, setting in it

1 )
57 /6*17 q=

where 7/2 < 7 < T'. We obtain

oo 00 (5—40)/3 00 (40—-2)/3
/ |f(a+it)|2/mdt§</ |f(1/2+it)|2/mdt> (/ |f(5/4+it)|2/mdt> .

—c0 —00 -

o =



Let us integrate this inequality over 7 from 7'/2 to T" and use Holder’s inequality. We see that

o< (o) (w(3) "

©0 T
Mo = [t F P d, = [ e
- T/2

where

Further, for Re s > 1, the function H;(s) can be expressed as the series

Hy(s)= > bj(m)n™%,  where |bj(n)] <n®, £>0.
n=N-+1

Therefore, using Holder’s inequalities and the Montgomery—Vaughan theorem, we obtain the estimates

5 m 3T
(Mj (Z)) < Tm—l/ |H;(5/4 +it)|* dt
T/3

O
< Tm—l Z (T+n)n25—5/2 < TmN25—3/2 < TmN_3/47
n=N-+1

5\ (40-2)/3

In the case [M;(1/2)| < T, by(11), we have
M;(0) < TN™lo=1/2/m
Now suppose that |M;(1/2)| > 7. Then, inview of (11) and (12), we see that

M;(0) < M (%) N—(o=1/2)/m

Using the inequalities
1 oo 1 .
M; B < . L B + it x5

M;(o) < T(log T)V™ N—(o=1/2/m,

2/m

1
w(t)dt + Lj <§> < T(log T)l/mz7

we obtain

Hence, using M;(y) =< K;(v), we find that
T(O’ o 1/2)—1/m2T(0—1/2)/m < Jl(O') + T(lOg T)l/sz(U—1/2)/mN—(U—1/2)/m.

Recalling that ¢ = 1/2 4 C/logT, N = T3/ and noting that N=(?=1/2/™ decreases with the

growth of C' faster than C=1/m "and that the constant in the Vinogradov sign is independent of C,
for a sufficiently large constant C, we obtain

Ji(o) > T(log T)l/m2 .

Now Theorem 1 follows immediately irom Lemma 3.



4. PROOF OF THEOREM 2

We shall follow the scheme of proof from [8] with slight modiiications.
Suppose that A > 0,

h h
Jit) = / Gt wlde,  a(t) = | / G(t + ) du].

Define the set F:
E={te0,T]]j(t) > j2(t)}-
In the same way as in [8], we obtain the inequalities
L < I+ I3,

where

T T
L / a3, L= / ¥, I3 = / J1(t)*3 dt.
0 0 E
Let us estimate 7 from below. Using Holder’s inequality, we obtain
h
h—1/3/ Gt + )| du < 51 (1)??,
0
whence
T
L= h2/3/ G2 dt.
h

Theorem 1 in which m is set equal to 3 implies that
I > i Th B logT)?,  dy > 0.
Let us estimate I, from above. We have
2 T
dt + /
0

T| rh
I§’<<T2</ / Z(t+ u,x1)du
o 1Jo

The following estimate was obtained in [7] and [8]:

2
).

h
/ 2t + u, x2) du
0

T| rh 2
/ / Z(t+u,x)du| dt < Th;
o |Jo
it implies that there exists a dy > 0 such that
L < dyTh'/?.
Choose h so that
9 3
dyTh'? = 0.5d, TR *(log T)Y°,  ie, h= (%) (log T)~1/3;
1
for such an h, we have
Th*?(log T)'/* < I. (13)

Let us estimate I3 from above. Using Hoélder’s inequality, we can write

T
1 < pmy? [ o
0

where p1(F) is the measure of the set E.
Using the upper bound from Theorem 1, we obtain

I3 < W(EYY2RT(og TV o Iy < p(E)V3R23T2/3(log T)V/S.



Combining this with (13), we see that

—_

11.

12.

w(E) > T(log T)~1/5.
From this inequality, just as in [7], [8], we derive the inequality
No(T, G) > T(log T)'/5.
Theorem 2 is proved.

Theorem 3 is proved, essentially, in the same way as Theorem 1.
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