
Chapter 28
Discreteness, Periodicity, Holomorphy,
and Factorization

V.B. Vasilyev

28.1 Introduction

The main topic of the paper is to establish some relations between the solvability of
a special kind of discrete equations in certain canonical domains and holomorphy
properties of their Fourier analogues. We start from the theory of pseudo-differential
operators and equations [Ta81, Tr80, Sh01], and corresponding boundary value
problems [Es81] and we shall try to construct a discrete analogue of this theory
with forthcoming limit passage from discrete case to a continuous one.

Historically, the theory of pseudo-differential operators started from a special
kind of integral operators, namely Calderon–Zygmund operators of the following
type

.Ku/.x/ D p:v:
Z

�m

K.x; x � y/u.y/dy; (28.1)

where the kernel K.x; y/ has certain specifical properties [MiPr86]. If we enlarge
the class of such kernels and in particular we permit that the kernel K.x; y/ can be a
distribution on a second variable y, then the above formula will include differential
operators with variable coefficients

.Du/.x/ D
nX

jkjD0
ak.x/

@ku

@xk1
1 � � � @xkm

m

.x/;

where k is a multi-index, jkj D k1 C � � � km.
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316 V.B. Vasilyev

Indeed for this case we use the kernel

K.x; y/ D
nX

jkjD0
ak.x/ı

k1 .y1/ � � � ıkm.ym/:

A theory for similar operators consists in a description of functional spaces in
which these operators are bounded, possible additional conditions (maybe boundary
conditions) which permit to state the well-posedness of boundary value problem in
a corresponding functional space and so on. Here, we would like to discuss these
problems for a discrete situations and to describe some of our first results in this
direction.

28.2 Discreteness

We consider functions ud of a discrete variable Qx 2 h�m, where h > 0 is a small
parameter, and operators defined on such functions of the following type

.Adud/.Qx/ D aud.Qx/C
X
Qy2Dd

Ad.Qx � Qy/ud.Qy/hm; Qx 2 Dd; (28.2)

taking partial sums of the series (28.2) over cubes

QN D fQx 2 h�m W max
1�k�m

jxkj � Ng;

where we use following notations.
Let D � �m be a domain, Dd � D\h�m be a discrete set, Ad be a given function

of a discrete variable defined on h�m, and a 2 �. We say that the function Ad.Qx/ is
the kernel of the discrete operator Ad. This kernel may be summable, i.e. it can be
generated by integrable function

Z

�m

jA.x/jdx < C1;

but for this case we deal with ordinary convolution. The author has considered
the more interesting and complicated case when the generating function A.x/ is a
Calderon–Zygmund kernel [VaEtAl15-2, VaEtAl15-3]. These Calderon–Zygmund
operators play an important role as the simplest model of a pseudo-differential
operator [MiPr86, Es81]. Taking into account our forthcoming considerations of
discrete pseudo-differential operators we shall restrict to this simplest case.
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28 Discreteness, Periodicity, Holomorphy, and Factorization 317

We assume that our generating function A.x/ is a Calderon–Zygmund kernel,
i.e. it is homogeneous of order �m and has vanishing mean value on unit sphere
Sm�1 � �m, also it is continuously differentiable out of the origin and by definition
A.0/ D 0.

The first question which arises in this situation is the following. Is there a certain
dependence on a parameter h for a norm of the operator Ad ? Fortunately the answer
is negative (see also [VaEtAl15-3] for the whole space �m).

Theorem 1 Let D be a bounded domain in�m with a Lipschitz boundary @D. Then
the norm of the operator Ad W L2.Dd/! L2.Dd/ doesn’t depend on h.

This property leaves us hope to describe the spectra of the operator Ad using
methods developed for this purpose in a continuous case.

28.3 Periodicity

Roughly speaking the Fourier image of the lattice h�m is a periodic structure with
basic cube of periods „�m, where „ D h�1

2

. More precisely if we introduce a discrete

Fourier transform by the formula

eud.�/ � .Fdud/.�/ D
X

Qx2h�m

e�iQx��ud.Qx/hm (28.3)

taking partial sums of the series (28.3) over cubes QN , we can use this construction
to give a definition of a discrete pseudo-differential operator by the formula

.Adud/.Qx/ D
Z

„�m

eiQx��eAd.�/eud.�/d�;

where the functioneAd.�/ is called the symbol of the operator Ad.
Let us note that this discrete Fourier transform preserves all basic properties of

standard Fourier transform. Only one principal distinction is periodicity of Fourier
images.

Definition 1 The symbol eAd.�/ is called an elliptic symbol (and operator Ad is
called an elliptic one) if ess inf

�2„�m
jeAd.�/j > 0.

Proposition 1 The operator Ad W L2.h�m/ ! L2.h�m/ is invertible iff it is an
elliptic operator.

Many interesting properties of the operator Ad related to a comparison between
continuous and discrete cases can be found in [VaEtAl15-2].
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318 V.B. Vasilyev

28.4 Holomorphy

The property of holomorphy arises if we try to obtain a Fourier image for a so-called
paired equation

.AdPC C BdP�/Ud D Vd; (28.4)

where P˙ are projectors on some canonical domains (see below), Ad;Bd are discrete
operators similar to (28.2).

If, for example, P˙ are projectors on discrete half-spaces h�m
˙ D fQx 2 h�m W

Qx D .Qx1; � � � ; Qxm/;˙Qxm > 0g, and we want to use standard properties of the Fourier
transform related to a convolution then, in order to find a Fourier image of the
product �C.Qx/U.Qx/ where �C is an indicator of the h�mC, we need to go out in a
complex domain [VaEtAl15-1, VaEtAl15-3].

We introduce for fixed � 0 D .�1; � � � ; �m�1/

˘˙ D f�m ˙ i� 2 � W �m 2 h�1Œ�
; 
�; � > 0g:

Theorem 2 Let H˙ be subspaces of the space L2.„�m/ consisting of functions
which admit holomorphic extensions into upper and lower complex half-strips ˘˙
on a last variable �m under almost all fixed � 0 D .�1; � � � ; �m�1/. Then we have the
following decomposition

L2.„�m/ D HC ˚ H�:

Indeed the decomposition is given by the following operators

.Hper
�0 Qud/.�m/ D 1

2
 i
p:v:


h�1Z

�
h�1

Qud.�
0; t/ cot

h.t � �m/

2
dt;

Pper
�0 D 1=2.I C Hper

�0 /; Qper
�0 D 1=2.I � Hper

�0 /;

so that

FdPCud D Pper
�0 eud; FdP�ud D Qper

�0 eud:

28.5 Factorization

The concept of factorization is needed if we consider an original equation in a non-
whole lattice, i.e. D ¤ �m. We extract from �m some so-called canonical domains.
The fact that to obtain Fredholm conditions for an elliptic operator (or equation)
on a manifold, and in particular in a domain of m-dimensional space, we need to
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obtain an invertibility conditions for a local representative of original operator, is
called a local principle [MiPr86, Va00]. Roughly speaking such local representatives
are simple model operators in canonical domains. If for example we are interested
in studying a Calderon–Zygmund operator on a manifold with a boundary of the
type (28.1), we need to describe invertibility conditions for the following model
operators in the following canonical domains:

• for inner points x0 of a manifold

u.x/ 7�! p:v:
Z

�m

K.x0; x � y/u.y/dy;

• for boundary points x0 on smooth parts of a boundary

u.x/ 7�! p:v:
Z

�m
C

K.x0; x � y/u.y/dy;

where �mC D fx 2 �m W x D .x1; � � � ; xm/; xm > 0g,
• for boundary points x0 for which their neighborhood is diffeomorphic to CaC D
fx 2 �m W x D .x0; xm/; x0 D .x1; � � � ; xm�1/; xm > ajx0j; a > 0g

u.x/ 7�! p:v:
Z

Ca
C

K.x0; x � y/u.y/dy:

It is natural to expect similar properties for general discrete operators. That’s why
we consider here the simplest model operators in cones. So we have the following
canonical domains:�m; �mC; CaC. It is essential that all these domains are cones but
the first two include a whole straight line.

The case D D �m is very simple (from modern point of view; there was a lot of
mathematicians whose papers have helped us to clarify this situation). If a symboleAd.�/ of the operator Ad from (28.2) is elliptic, then such operator Ad is invertible
at least in the space L2.h�m/. We apply the discrete Fourier transform (28.3) and
obtain immediately that the operator Ad is unitary equivalent to a multiplication
operator on its symbol.

We proceed to describe the half-space case. First we recall the following
definition.

Definition 2 Factorization of an elliptic symboleAd.�/ is called its representation in
the form

eAd.�/ DeAC
d .�/ �eA�

d .�/;

where the factorseAḋ .�/ admit a bounded holomorphic continuation into upper and
lower complex half-strips ˘˙ for almost all � 0 D .�1; � � � ; �m�1/ 2 �m�1.
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Now we come back to the equation (28.4), we apply the discrete Fourier
transform Fd and we obtain the following equation

eAd.�
0; �m/CeBd.�

0; �m/

2
QUd.�/C

eAd.�
0; �m/ �eBd.�

0; �m/

4
 i
p:v:


h�1Z

�
h�1

QUd.�
0; �/ cot

h.� � �m/

2
d� D QVd.�/: (28.5)

where eAd.�/;eBd.�/ are symbols of discrete operators Ad;Bd. Of course, equa-
tion (28.5) is related to the corresponding Riemann boundary value problem
[Ga81, Mu76, VaEtAl13, VaEtAl15-1, VaEtAl15-3], so the following result is valid.

Theorem 3 For m � 3 the equation (28.5) is uniquely solvable in the space
L2.h�m/ iff operators Ad;Bd are elliptic and

IndeAd.�; �m/eB�1
d .�; �m/ D 0:

The key role for a proof of the theorem is played by the concept of factorization
for an elliptic symbol, and it can be constructed exactly by means of operator Hper

�0

[VaEtAl15-1, VaEtAl15-3].

28.5.1 Conical Case

This section is devoted to the last and most complicated case. Let �C.Qx/ be a
characteristic function of the discrete cone Dd and Sd.z/ be the following function

Sd.z/ D
X
Qx2Dd

�C.Qx/eiQx�z; z 2 T.
�
D/; z D � C i�;

where
�
DD fx 2 �m W x � y > 0;8y 2 Dg, T.D/ is a specific domain in a

multidimensional complex space �m so that T.D/ D „�m C iD.
The infinite sum exists for � ¤ 0 but does not exist for � D 0 because it is

formally the discrete Fourier transform (28.3) of the nonsummable indicator �C.
If we fix a certain function ud 2 L2.h�m/, then we have �C ı ud 2 L2.Dd/, and
therefore the discrete Fourier transform B�C ı ud is defined and belongs to L2.„�m/.
So, according to properties of the discrete Fourier transform (28.3), we have

.Fd.�C ı u//.�/ D lim
�!0C

Z

„�m

Sd.z � y/Qud.y/dy;

and the last integral exists at least in L2-sense.
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Thus we study a corresponding analogue of the equation (28.4) and we also
need complex variables and relevant analogue of Riemann boundary value problem
[BoMa48, Vl07, Va00].

Let A.„�m/ be a subspace of L2.„�m/ consisting of functions which admit an

analytical extension into T.
�
D/, and B.„�m/ is an orthogonal complementation of

the subspace A.„�m/ in L2.„�m/ so that

L2.„�m/ D A.„�m/˚ B.„�m/:

First of all we deal with a jump problem formulated in the following way: finding
a pair of functions ˚˙; ˚C 2 A.„�m/; ˚� 2 B.„�m/; such that

˚C.�/ � ˚�.�/ D g.�/; � 2 „�m; (28.6)

where g.�/ 2 L2.„�m/ is given.

Proposition 2 The operator Sd W L2.„�m/ ! A.„�m/ is a bounded projector. A
function ud 2 L2.Dd/ iff its Fourier transform Qud 2 A.„�m/.

Proof According to standard properties of the discrete Fourier transform Fd we have

Fd.�C.Qx/ud.Qx// D lim
�!0

Z

„�m

Sd.z � �/eud.�/d�;

where �C.Qx/ is the indicator of the set Dd. It implies the boundedness of the operator
Bd. The second assertion follows from holomorphic properties of the kernel Sd.z/.
In other words for arbitrary function v 2 A.„�m/ we have

v.z/ D
Z

„�m

Sd.z � �/v.�/d�; z 2 T.
�
D/:

It is an analogue of the Cauchy integral formula. ut
Theorem 4 The jump problem has unique solution for arbitrary right-hand side
from L2.„�m/.

Proof Indeed there is an equivalent unique representation of the space L2.Dd/ as a
direct sum of two subspaces. If we denote �C.x/; ��.x/ the indicators of the discrete
sets Dd; h�m n Dd, respectively, then the following representation

ud.Qx/ D �C.Qx/ud.Qx/C ��.Qx/ud.Qx/

is unique and holds for an arbitrary function ud 2 L2.h�m/. After applying the
discrete Fourier transform we have

Fdud D Fd.�Cud/C Fd.��ud/;
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322 V.B. Vasilyev

where Fd.�Cud/ 2 A.„�m/ according to the proposition 2, and thus Fd.��ud/ D
Fdud � Fd.�Cud/ 2 B.„�m/ because Fdud 2 L2.h�m/.

Example 1 If m D 2 and C2C is the first quadrant of �2, then a solution of a jump
problem is given by formulas

˚C.�/ D 1

.4
 i/2
lim
�!0


Z

�



Z

�

cot

�1 C i�1 � t1
2

cot
�2 C i�2 � t2

2
g.t1; t2/dt1dt2

˚�.�/ D ˚C.�/ � g.�/; � D .�1; �2/ 2 C2C:

The last decomposition will help us to formulate the periodic Riemann boundary
value problem which is very distinct for one-dimensional case and multidimensional
one. The principal non-correspondence is that the subspace B.„�m/ consists of
boundary values of certain analytical functions in one-dimensional case, but this
set has an unknown nature for a multidimensional case.

A multidimensional periodic variant of Riemann boundary value problem can be
formulated as follows: finding two functions ˚˙.�/ such that ˚C.�/ 2 A.„�m/,
˚�.�/ 2 B.„�m/ and the following linear relation holds

˚C.�/ D G.�/˚�.�/C g.�/; (28.7)

where G.�/; g.�/ are given functions on „�m. We assume here that G.�/ 2 C.„�m/,
G.�/ ¤ 0;8� 2 „�m.

Definition 3 Periodic wave factorization of a function G.�/ is called its represen-
tation in the form

G.�/ D G¤.�/GD.�/;

where factors G˙1
¤ .�/;G˙1D .�/ admit a bounded analytical continuation into com-

plex domains T.
�
D/;T.� �

D/, respectively.

Theorem 5 If G.�/ admits periodic wave factorization, then multidimensional
Riemann boundary value problem has a unique solution for arbitrary right-hand
side g.�/ 2 L2.„�m/.

Proof We rewrite a multidimensional Riemann boundary value problem in the form

G�1
¤ .�/˚C.�/ � GD.�/˚�.�/ D G�1

¤ .�/g.�/

and obtain a jump problem (28.6).
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Indeed for arbitrary two functions f ; g 2 L2.h�m/ such that supp f � h�m n
.�Dd/; supp g � .�Dd/ according to properties of discrete Fourier transform Fd we
have

.F�1
d .f ı g//.Qx/ D ..F�1

d f / � .F�1
d g//.Qx/ �

X
Qy2h�m

f1.Qx � Qy/g1.Qy/ D
X

Qy2�Dd

f1.Qx � Qy/g1.Qy/;

where f1 D F�1
d f ; g1 D F�1

d g and according to the proposition 2 supp g1 � �Dd.
Further since we have supp f1 � h�m n .�Dd/ then for Qx 2 Dd; Qy 2 �Dd we have

Qx � Qy 2 Dd so that f1.Qx � Qy/ D 0 for such Qx; Qy. Thus supp .f1 � g1/ � h�m nDd. ut
This solution can be constructed by means of the kernel Sd.z/.

Remark 1 If m D 1 the required factorization exists and can be constructed by the
periodic analogue of Hilbert transform (see above). If m � 2 there is no an effective
algorithm for constructing the required periodic wave factorization. One can give
some sufficient conditions, for example, supp F�1

d .ln G.�// � Dd [ .�Dd/.
Now we consider the elliptic equation (28.4) with eAd.�/;eBd.�/ 2 C.„Tm/. As

above, one can establish the needed relationship between periodic multidimensional
Riemann boundary value problem (28.7) and the corresponding integral equation in
Fourier images similar to one-dimensional case [Ga81, Mu76, VaEtAl15-1] and can
obtain the following result.

Theorem 6 If eAd.�/eB�1
d .�/ admit the periodic wave factorization, then the equa-

tion (28.4) has a unique solution in the space L2.hZm/.

Proof Applying the discrete Fourier transform to the equation (28.4), we obtain the
following integral equation with operator Sd

eAd.�/.SdeUd/.�/CeBd.�/.I � SdeUd/.�/ D eVd

which is equivalent to certain periodic Riemann boundary value problem similar
to (28.7). It was done in [Va00] for non-periodic case, and it looks the same for a
periodic case. Then, according to Theorem 5, we obtain the required assertion. ut

Conclusion

The author hopes these consideration will be useful for constructing basic elements
of discrete theory of elliptic pseudo-differential equations and boundary value
problems on manifolds with a boundary (possibly non-smooth) taking into account
latest author’s results [Va11, Va13, Va15].
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