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Optimal control over geomorphological systems

A. M. TroriMoOv and V. M. MoskovkIN, Kazan, USSR

with 3 figures

Zusammenfassung. Ehe man kiistenmorphologische Prozefireaktionssysteme kiinstlich beeinflussen
kann, ist es notwendig zu wissen, wieviel Zeit fiir den Ubergang eines solchen Systems von einem
»Anfangsstadium* zu einem dynamischen Gleichgewichtszustand erforderlich ist. Diese Fage wird hier
fir ein aus KLff und Strand bestehendes System untersucht; das dabei benutzte theoretische Modell
beruht auf einer normalen Differentialgleichung, welche die Massenbilanz am Fuff des Kliffs beschreibt.
Dabei dient die Zu- oder Wegfithrung von Schutt als Kontrollfaktor.

Die hier vorgestellte Methode lifit sich in der Planung von Kiistenschutzmafinahmen ohne Schutz-
mauern oder andere Kliffschutzkonstruktionen anwenden; sie ist besonders dort geeignet, wo sich das
System schlieflich durch das Einspielen auf ein dynamisches Gleichgewichtsregime selbst regulieren soll.

Abstract. In order to control coastal geomorphological process-response systems it is necessary to know
how much time is required for such a system to change from an ,,initial state® to a state of dynamic
equilibrium. This question is investigated here for a cliff-beach system by means of a theoretical model
based on an ordinary differential equation that describes the mass balance at the foot of the cliff. The
addition or removal of riprap serves as a control factor.

The method presented can be used for the planning of shore protection measures without seawalls
or other cliff-protecting structures; it is particularly appropriate in cases where the system is eventually to
contro] itself by adjustment to a dynamic equilibrium regime.

Résumé. Dans le but de contréler des systémes de réponses de processus de géomorphologie cotiere, il
est nécessaire de savoir combien de temps prend un systéme pour passer d'un état initial 2 un état
d’équilibre dynamique. Cette question est étudiée ici sur un systéme plage-falaise au moyen d’un modéle
théorique, basé sur une équation différentielle ordinaire qui décrit le bilan sédimentaire au pied de la
falaise. L'accumulation ou P’enlévement de “riprap” sert de facteur de contrdle. La méthode présentée
peut étre utilisée pour planifier les mesures de protection de la plage sans construction de digues ou
d’autres structures de protection de falaises; elle est particulierement appropriée dans des cas ot le systeme
est éventuellement auto contrdlé par ajustement i un régime d’équilibre dynamique.
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The mathematical theory of optimal control (PONTRYAGIN et al. 1961) very likely
will be widely applied to the control of geomorphological systems in the future.
The possibility of using this theory for problems of the control of exogenic proces-
ses has been discussed by the authors at the 24" International Geographical Congress
(TrorFIMOV & MoskovkIN 1980). This idea requires a definite level of formalization:
it is necessary to construct models of the dynamics systems of these processes with
due regard to a control factor. Under conditions of more or less constant inputs, the
evolution of geosystems progresses toward a state of dynamic equilibrium because
of negative feedbacks. For the purpose of control of such systems it is important to
determine the minimum time they need to change from an initial state to a state of
dynamic equilibrium (TROFIMOV & MOSKOVKIN 1980, 1983). This task is particular-
ly relevant for rapidly evolving systems that are frequently subjected to control
measures, such as coastal shore processes, stream processes and intensive slope
processes.

This paper deals with the question of optimal control in the case of coastal cliff-
Eeach systems; it has direct relevance to the intensity of the use of such coastal zones

y man.

The model is based on the balance equation of the material present at the foot of

the cliff (Esiv 1980)

M - fWH - kw,

where W is the volume of clastic beach material per unit of length (m’/m); f(W) is
the rate of cliff retreat as the function of the volume of material (m/year); H is the
height of the cliff (m); a is the part of beach-forming material that is derived from
bedgrock; k is the abrading coefficient (hardness index for beach pebbles, 1/year); t is
time (year).

Now we introduce the control factor E (t) in the right part of equation (1). This
factor expresses (according to its sign) the intensity of addition of riprap material to
the beach or the intensity of removal of such material from the beach. Differentia-
ting equation (1) on time with the inclusion of the control factor E (t) we obtain the
following system of equations (secondorder dynamic system)

AV - S VH — kW ),
2 dw _
& =V

where u(t) is the control factor connected with E (t) by u(t) = d E (t)/dt, /u/ < B (some
positive constant, m¥/vear?). The condition of restriction of the control factor is due
to physical consideration.

The problem of optimal time control can now be expressed as a transfer of the
dynamic system (2) from its initial state (Wo,V,) to the state (Ws,, O) in a minimum
of time. Here W, is the stationary point of equation (1). It can be found from the
solution of af(W)K-kW' = O. It is possible to develop some non-linear equation as
the function f(W) for easily-destroyed and for stable rock (Esin 1980). We use
instead the linear function (TROFIMOV & MOSKOVKIN 1983)
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(3) f(w) = Y(Wmax - W),

where v is some coefficient (1/m year); W, is the maximum volume of material at
which there is no abrasion (or some other value W which is needed for the linear
approximation of the non-linear function f(W).

In order to tranform this problem of optimal control to the classical case, we
must make a substitution of the variables in the system equations (2): W' =
(W=Ws, /B, V' = V/B, v’ = u/B. With the use of equation (3) df/dW = — v, the
classical problem is then expressed as

dv’ . .
=~ AV’ +u',

) v, <,

where A = aHy+k.

The problem of optimal time control is now reformulated as the transform of
the dynamic system (4) from the state (Wo~Ws, )/B, Vo/B) to the state (0.0). The last
one is the coordinate set of the phass surface (W', V’).

In accordance with PONTRYAGIN’s maximum principle there exists as the only
synthesis of optimal controls that which can be constructed on the basis of the
solution of system equations (4) for v’ = 1 and u’ = -1 (v’ has no more than two
intervals of constancy). “Synthesis of optimal control” refers to the point trajectory
on a phase surface which leads from a set state to the origin. It occurs in the
minimum of time. We give here only final results for the region I (fig. 1), for initial
variables when Vy = O. Results for regions I and IV are analogues.

Fig. 1. A complete calculation synthesis of optimal control.
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1. The equation of the point trajectory that leads from the initial state to the turning
point B (fig. 1) is the solution of dynamic system (4) when u’ = -1

) W=W°+—%ln(l+%—v)——%,

where 1 + A—BV # 0.

2. The equation of the point trajectory that leads from the turning point to the final
(stationary) state is the solution of dynamic system (4) when u’ = 1

(6) W=W5,A——1%ln(l-%! —%,
where 1 — A_ﬁV #0, W = (Ax—k) Wmax,

3. The coordinates of the turning point B (Wp, V) are
Wp=-Lrmn (: —%vg) -+ W,
D v = =B exp~ YW, — W )/B]

4. The optimal time of system transform from point (W,, O) to the point B along
the curve (5) is

®  twes =~ In (1~ (1 = exp[~A(W, — W5 /B]").

5. The optimal time of system transform from the point B to the stationary state
along the curve (6) is

9 wo=—d In(1+ (1 — exp[~AAW, — W5, )/B]").

6. The general optimal time of system transform from the initial to the final point is
(10) T = twoo = twop + W0-

With the help of Loptile’s law and when W, > Ws,_ we can find a limit
(11) limT = 2 [(Wo — W5 )/B])"2%

It has been shown that the asymptotes V = + B/A are the phase trajectories of
the complete synthesis of optimal controls, i.e. the dynamic system that is studied
here is controlled in the entire rectangle O < W < W,,,, /V/ < const. of phase
surface (W,V). The direction of motion by these asymptotes is shown in fig. 1. For
instance, the general optimal time of motion from the inital point (which %ies on a
straight line V = -f/A) to the stationary point can be written as follows:

(12) T=- @In2—-1)+A W+ Ws)/p.
A
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Fig. 2. The synthesis of optimal
control for different values of f§ and

o

Fig. 3. The optimal time
dependence of T from 8
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For application to practical problems, which correspond to the geological con-
ditions of the Novorosiysk region (Esin 1980), experimental calculations according
to expressions (5-10) have been made with the help of a computer. The results of
one of these series are shown in figures 2 and 3. Thely were obtained with the
following parameter values: A = 0.2 year' (k = 0.1 year’); a = 0.3; H = 100m; y =
1/3002(m year)™; Wy = 50 m?, Ws, = 25 m?, W, = 30; 40; 50 m?; § = 0.1; 10 m¥/
year-2,

The calculations have shown that the most effective control region exists when
A = 0.2 year!, W5 = 25 m? < W, < 50 m? occur with the range of the control
Farameter u = B between 1 to 10 m¥/year?. In that case the optimal time T necessary

or a transform of the shore system to a stationary state does not exceed 20 years.

For A,W, = const., the ratio ty_g/tso tends towards the value 1 with increa-
sing B, and for A, = const., this ratio increases with increasing W, (the increase is
large if B is small).

The optimal time T is a linear function of the initial volume of beach material
W, and increases with decreasing B; the functional relationship T = £(8) is well
?pproximated by hyperbolas. These relationships are shown in the diagrams of

igure 3.

Figure 1 demonstrates the complete synthesis of optimal controls for A = 0.2
year!, E = 0.1 m%/year? and Wy, = 50 m? This synthesis appears to be sensitive to
the change of A.

The physical sense of the initial control parameter £ (t) is this: for a given case
(Vo = O, W, > Ws,) in a natural shore system it is necessary to remove the material
artficially in the course of time ty_g (8) and then to slow down this process with the
time tg o (9), whereby the intensity changes in proportion to this time so that € (t) =
-Brand & (v) = B(t-T). _

It is important to note that the problem of control in a minimum of tme is
equivalent to the problem of optimal control with functional minimization [7
f(W)dt, as the function s(t) = ¢ f(W)dt, s(0) = O increases monotonously (the
distance over which a cliff retreats, s(t), can only increase with time).

The approach considered here can be applied to the planning of shore protec-
tion measures that rely on the formation oF beach materials rather than on the
strengthening of cliffs by the construction of protective walls (in this latter case, the
negative feedbacks are automatically removeg). This approach is especially appro-
priate in cases where the control consists of the adjustment of undisturbed natural
systems to a dynamic equilibrium regime.
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