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The process of diffracted x-ray transition radiation by a high-energy “half-bare” electron in a crystalline
target is considered in Bragg geometry. The electron is supposed to appear in the mentioned state, in which
the field around it is significantly suppressed comparing to the equilibrium Coulomb one, in the result of
preliminary penetration through an upstream amorphous target situated on some distance from the crystal.
It is shown that the process of the electron’s field regeneration after its exit from the upstream target
dramatically modifies both the diffracted transition radiation angular distribution and its total yield making
them dependent on the distance between the targets. Analytical expressions for these quantities, as well as
their simple approximations, are derived. Almost arbitrary crystal orientation is considered. Special
attention is drawn to the case of backward radiation geometry when the emitted radiation has to penetrate
through the upstream target on its way to the detector.
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I. INTRODUCTION

A charged particle which enters a solid from vacuum (or
gas) produces transition radiation. Its spectrum extends to
frequencies of the order of γωp (where γ is the particle’s
Lorenz-factor and ωp is the solid plasma frequency) and for
high-energy particles reaches the x-ray band. In a crystal-
line solid a small part of these waves experiences diffrac-
tion on crystallographic planes forming a radiation burst
(which is usually called reflex) in the vicinity of the Bragg
direction (the one specular to the particle velocity with
respect to the planes). Such diffracted transition radiation
(DTR) has been deeply studied theoretically (see, e.g.,
[1–4]) and observed experimentally [5]. It is shown that
DTR is highly monochromatic, having frequency, which
naturally equals the Bragg one, depending on the obser-
vation angle and the parameters of the crystalline lattice. It
has a narrow angular distribution around the Bragg direc-
tion with the maximum intensity emitted at the angles
ϑ ∼ 1=γ with respect to this direction.

Transition radiation is not a single field which undergoes
diffraction in the considered case. Another part of the
emission in the Bragg direction, known as parametric x-ray
radiation (PXR) [2–4,6–11], comes from the diffraction of
virtual photons constituting the particle’s proper field inside
the crystal. At high particle energies its distribution has the
angular width ∼ωp=ω (where ω is the radiation frequency)
which significantly exceeds the one ∼1=γ of DTR. These
types of emission also have slightly different frequencies
and the interference between them is usually very weak.
The mentioned facts provide a principle possibility to
consider these emissions separately from each other. At γ ≫
ω=ωp the PXR intensity saturates while the one of DTR
continues growing with the increase of γ. This makes DTR
dominating at high particle energies, at least at the angles
ϑ ≪ ωp=ω, and it is this type of emission which we will
focus upon in the present paper.
In this work we study the properties of DTR in a special

case, when they considerably differ from the usual proper-
ties of this radiation described above. In this case DTR is
produced by a so-called “half-bare” electron (the term was
firstly introduced in [12]) impinging upon a crystal. Such
electron does not have an ordinary Coulomb field around
itself, which, as we show, results in a modified angular
distribution and yield of DTR. The electron can appear in
the “half-bare” state in the result of interaction (before
impinging upon the crystal) with substance or external
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fields. For instance, the electron traversal of an exit window
of a vacuum chamber or any other obstacles on the beam
line (scintillators, telescopes etc.) can serve as examples of
such interaction and may be unavoidable in the experiment.
The particle preserves such a state within the distance from
the interaction region known as formation length lF. It can
be roughly estimated as lF ∼ γ2=ω. At sufficiently high
particle energies lF can be macroscopically large even in
the x-ray band of frequencies. In the present paper we
investigate the modification of DTR characteristics in the
case when the crystal is situated within the formation
distance from the region where the electron “undresses.”
The effects associated with the discussed state of a

particle and large size of the formation distances were first
studied theoretically [13–16] and observed experimentally
[17,18] for the electron bremsstrahlung in amorphous
media. In recent years the analogous effects were con-
firmed to exist for the millimeter wavelength diffraction
radiation [19]. In [20,21] the modification of the coherent
x-ray emission by a high-energy electron in an ultrathin
crystal in the result of the particle preliminary penetration
through a thick amorphous target was investigated. Here
the discussed emission consisted of a strongly interfering
(due to small crystal thickness) sum of DTR and PXR
which could not be separated from each other. In the
present work we consider a case which seems to be more
appropriate from the experimental point of view. We still
apply an upstream target to “undress” the particle, but the
studied emission is DTR in Bragg geometry from a crystal,
which can be arbitrarily thick. Such emission is formed in a
thin boundary layer of the crystal known as extinction
length. Thus its characteristics are sensitive to the state of
the impinging electron’s field, just like in the mentioned
case of an ultrathin crystal (it is not the case for PXR
formed in a much thicker layer of the crystal). Almost
arbitrary crystal orientation is considered here. Special
attention is drawn to the backward radiation geometry.
The process of DTR from several successively located

targets has been considered either theoretically or exper-
imentally in a series of papers (see, e.g., [22–24]). The main
attention in these works is rather paid to the purpose of an
intense x-ray sources development on the basis of the
combined DTR and PXR emission from multilayer struc-
tures. For instance, in [24] as a particular case the authors
discuss a two-target geometry (analogous to the one
considered in the present paper). The major attention there
is drawn to the study of radiation angular distribution under
conditions of the most constructive interference of emis-
sions from the both targets. In our work it is the evolution of
DTR properties (such as its angular distribution and
integrated radiation yield) with the change of the distance
between the targets within the formation length which we
focus on. Such evolution is studied as a manifestation of the
process of the electron’s field regeneration after the particle
penetration through the amorphous target. The optimal

conditions for the experimental observation of the consid-
ered effect are discussed.
Let us also note that a comprehensive study of DTR is

not only of fundamental interest but of practical one as well.
For instance, in [25,26] it was proposed to use such
emission for diagnostics of high-energy charged particle
beams. This is expected to bring new possibilities for
diagnostics of beams of micrometer-scale (and smaller)
transverse size together with the analogous techniques
based on PXR [27,28] and optical transition radiation
(see, e.g., [29,30]).

II. ELECTRON’S FIELD EVOLUTION

Let us consider a process in which a high-energy
electron, moving along the z axis with the velocity v
penetrates through an upstream target and impinges upon a
downstream crystal producing here a DTR reflex (Fig. 1).
We will consider this process in the Bragg geometry
assuming that the chosen set of crystallographic planes
is parallel to the crystal surface. The crystalline target may
have an arbitrary inclination with respect to the z axis,
which defines the Bragg angle θB in the present case.
The upstream target is regarded here as amorphous in the
sense that its crystalline structure (in case it exists) does not
manifest itself in the properties of radiation from the
downstream crystal. Both targets are assumed to be
installed in vacuum. The properties of the discussed reflex
are defined by the field around the electron in vacuum
which falls on the crystal generating the transition radiation
field, which undergoes diffraction. Therefore, let us first
discuss some aspects of evolution of the field in the region
between the targets.
For simplicity in Secs. II and III we assume that the

upstream target is thick enough to absorb the transition
radiation which is emitted on its upstream surface. In this

FIG. 1. Electron penetration through the upstream target and
its further incidence upon the crystal, accompanied by DTR
emission.
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case it is only the boundary condition on its downstream
surface that defines the field around the electron in vacuum.
In ultrarelativistic case this field can be approximately
considered as perpendicular to the z axis. At frequencies
under consideration, which are higher than the characteristic
atomic ones, we can use an asymptotic form of the dielectric
permittivity of the upstream target: εðωÞ ¼ 1 − η2p=ω2,
where ηp is the target plasma frequency. By ωp we will
denote such frequency of the crystal. In this case the field
between the targets reads [6,20]:

Eðω; rÞ ¼ −
ie
π

Z
d2qq

n
FðqÞeiωz=v

þGðq; ηpÞeiz
ffiffiffiffiffiffiffiffiffiffi
ω2−q2

p o
eiqρ; ð1Þ

in which FðqÞ ¼ 1=ðq2 þ ω2=γ2Þ and Gðq; ηpÞ ¼ 1=ðq2 þ
η2p þ ω2=γ2Þ − FðqÞ and thebeginningof the z axis is chosen
at the downstream surface of the amorphous target. Here ρ is
the radius-vector of the observation point in the xy plane,
while q is thewave-vector component in this plane.We use a
system of units in which the speed of light and the Planck
constant equal unity. However, for convenience, these
quantities will be recovered in the expressions describing
the main results of the paper.
At z → 0, just after the electron exits from the upstream

target, the field (1) is simplified to

Eðω; rÞ ≈ 2eηp
ρ
ρ
eiωzK1ðηpρÞ; ð2Þ

and is still equal to the Fourier component of the electron’s
proper field inside the target. Here K1ðxÞ is the Macdonald
function. The expression (2) indicates that in the considered
region the Fourier components of the field around the
electron with frequencies ω < γηp are suppressed compar-
ing to such components of the electron’s proper field in
vacuum (which is defined by (2) with a substitution
ηp → ω=γ). This makes such electron “half-bare.” With
the increase of z the regeneration of these low-frequency
components takes place. This process can be most directly
illustrated if consider the electromagnetic energy flux
associated with the field (1) which crosses a plane z ¼ const.
In the considered ultrarelativistic limit the magnetic

field around the electron is just Hðω; rÞ ≈ ez ×Eðω; rÞ.
It allows us to write the amount of energy which traverses a
unitary surface during the whole observation time interval
in a standard form, like in the case of an electromagnetic
wave:

dJðω; rÞ
dωd2ρ

¼ jEðω; rÞj2=4π2: ð3Þ

The integration of this quantity over the entire plane z ¼
const with the use of (1) gives the total amount of energy in
the unitary range of frequencies which traverses this plane.
According to (2), the field around the electron inside the
target (and immediately after the particle exit from it) is

different from the Coulomb field in vacuum on distances
ρ > 1=ηp from the electron trajectory, while it remains
intact by the substance polarization at smaller ρ. Therefore
in order to estimate just the varying (with the increase of z)
part of the discussed energy flux it is enough to integrate (3)
applying as a lower limit ρ ∼ 1=ηp. Then in the region of
distances ω=η2p ≪ z ≪ γ2=ω with the logarithmic accuracy
we obtain:

dJðω; zÞ
dω

¼ 2e2

π
ln
η2pz

ω
: ð4Þ

Here we see that within the formation length lF ∼ γ2=ω
there occurs a logarithmic growth of the electromagnetic
energy flux around the electron with the increase of z. The
energy balance is provided by the decrease of the electron
kinetic energy in this case (which we, naturally, neglect).
Such change of the energy flux leads to variation of the
DTR yield with the change of the crystal position within
z ∼ lF. Moreover, the discussed field evolution is accom-
panied by the redistribution of the energy of the field (1)
with respect to q, which leads to variation of the DTR
angular distribution. The mentioned effects are studied
further in detail.

III. DTR FROM AN INCLINED TARGET

Let us consider the properties of DTR in the geometry
depicted on Fig. 1, when the crystalline target has some
inclination θB to the z axis. For this aim it is necessary to
calculate the transition radiation field inside the crystal,
which undergoes diffraction. This can be done with the
use of the expression (1) for the impinging field and the
boundary conditions at the crystal surface. These con-
ditions imply a continuity of the electric field tangential
components and the normal ones of the induction.
Accounting for the proximity of the crystal dielectric
permittivity to unity in the considered frequency range (ω
is about several keV) the latter condition can be approx-
imately rewritten to state the continuity of the electric
field normal components. This results in the approximate
continuity of the total electric field vector on the crystal
surface.
The field inside the crystal consists of the transition

radiation field and the electron’s proper field. The first one
can be presented in a standard form [6] as

Etrðω; rÞ ¼
Z

d2qEtrðω;qÞeiz
ffiffiffiffiffiffiffiffiffiffiffi
ω2ε−q2

p
þiqρ; ð5Þ

while the second one is defined by the first term in (1) with
the substitution FðqÞ→ Fðq;ωpÞ ¼ 1=ðq2 þω2

p þω2=γ2Þ.
The crystal boundary equation can bewritten as z ¼ zðρÞ ¼
lþ ρexctgθB, where ex is a unit vector in the direction of
the x axis. The boundary condition gives the following
expression for the transition radiation field in the immediate
vicinity of the crystal surface for a certain value of ρ:
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Etrðω; ρÞ ¼
ie
π

Z
d2qqfðq; ρÞeiqρ ð6Þ

with

fðq; ρÞ ¼ Gðq;ωpÞeiωzðρÞ=v −Gðq; ηpÞeizðρÞ
ffiffiffiffiffiffiffiffiffiffi
ω2−q2

p
:

With the use of (3) and (6) the total spectral density of the
electromagnetic energy associated with the transition radi-
ation can be calculated as

dJtrðωÞ
dω

¼
Z

d2ρd2qd2q0qq0fðq; ρÞf�ðq0; ρÞ=4π2: ð7Þ

The terms in the integrand in (7) containing Gðq;ωpÞ
Gðq0; ηpÞ and the complex conjugate of it possess expo-

nents of the type eiρexctgθBðω=v−
ffiffiffiffiffiffiffiffiffiffi
ω2−q2

p
Þ. In ultrarelativistic

case the condition q ≪ ω is valid for the values of q making
the main contribution to (6). It illustrates the fact that the
transition radiation emission happens predominantly at
small angles with respect to the particle velocity (namely,
q=ω ∼ 1=γ). Thus the discussed exponent can be written as
eiρexctgθBðγ−2þq2=ω2Þω=2. The characteristic transversal (with
respect to the z axis) size of the electron’s Coulomb field in
vacuum is of the order of γ=ω. This makes the effective
values of the expression in the discussed exponent not
exceed ctgθB=γ. Therefore, if the crystalline target incli-
nation satisfies the condition θB ≫ 1=γ, which we will
further assume to be valid, the discussed exponent can be
set to equal unity. In this case the integrals in (7) with
respect to ρ and q0 can be simply calculated which gives

dJtrðωÞ
dω

¼ e2

π2

Z
d2qq2fG2ðq;ωpÞ þG2ðq; ηpÞ

− 2Gðq;ωpÞGðq; ηpÞ
× cos½ωlðγ−2 þ q2=ω2Þ=2�g: ð8Þ

Presenting transversal component q of the transition radi-
ation wave vector as q ¼ ωβ (here again we apply εcr ≈ 1
for the dielectric permittivity of the crystal) from (8) the
angular distribution of the radiation energy is directly
obtained:

d2JtrðωÞ
dωdo

¼ e2β2

π2
fG2

1ðβ;ωpÞ þ G2
1ðβ; ηpÞ

− 2G1ðβ;ωpÞG1ðβ; ηpÞ
× cos½ωlðγ−2 þ β2Þ=2�g; ð9Þ

where G1ðβ; xÞ ¼ ðβ2 þ γ−2 þ x2=ω2Þ−1 − ðβ2 þ γ−2Þ−1.
The resulting DTR angular distribution can be obtained

multiplying (9) by the crystal reflection coefficient RðωÞ
and integrating the obtained expression with respect to ω.
Such procedure can be easily done with the use of the

following relation [31], valid in the case when the consid-
ered crystallographic planes are parallel to the crystal
surface: Z

RðωÞdω=ω ¼ 16

3

�
ωB

cg

�
2

jχgjP; ð10Þ

in which, for convenience, we preserved the speed of light
c. Here g is the absolute value of the reciprocal lattice
vector g corresponding to the chosen set of planes, χg are
the coefficients in the Fourier series decomposition of the
crystal dielectric susceptibility χ ¼ 1 − εcr with respect to
g, P is the polarization factor which equals unity for
perpendicular polarization and j cosϕj for the parallel one.
The type of polarization is defined here with respect to the
plane of vector g and the particle velocity vector v, while ϕ
is the angle between the DTR wave vector k and the z axis
(see Fig. 1).
The reflection coefficient RðωÞ is different from zero,

being very close to unity, within a very narrow frequency
region (known as Darwin table) around the Bragg fre-
quency ωB. Such frequency is defined by the formula ωB ¼
cg=½2 sinðϕ=2Þ� and determines the DTR frequency in the
direction of observation. In the considered case of suffi-
ciently high electron energies we will neglect ωB variation
within the major part of the reflex and put here ϕ ¼ 2θB. A
small width of the Darwin table (which is of the order of
1 eV in the present case) allows also neglecting the
frequency variation in the integrand in (10) within the
effective integration region. In the result, with the use of (9)
and (10), the angular distribution of the number of DTR
photons can be obtained in the following form:

dN
dΩ

¼ 16αjχgj
3π2

�
ωB

cg

�
2

ðϑ2⊥ þ j cosϕjϑ2jjÞfG2
1ðϑ;ωpÞ

þG2
1ðϑ; ηpÞ − 2G1ðϑ;ωpÞG1ðϑ; ηpÞ cosðl=lFÞg;

ð11Þ
where lF ¼ 2ω−1=ðγ−2 þ ϑ2Þ is the formation length and α
is the fine-structure constant. Here also ϑjj; ϑ⊥ ≪ 1 are
the components of the emission angle ϑ (counted from the
Bragg direction ϕ ¼ 2θB) parallel and perpendicular to the
plane of the vectors v and g.
Further we will make estimations for (220) plane of a

silicon crystal (ωp ≈ 31 eV) for which the numerical value
of (10) for P ¼ 1 is 7.45 × 10−5. It does not depend on the
crystal orientation and ωB (the ωB dependence of the
quantity χg contracts with the one in the prefactor).
Figure 2 shows the examples of the DTR angular

distribution for the case of pure perpendicular polarization
(ϑjj ¼ 0) for different values of the particle path length l
between the targets (solid lines). The electron energy is taken
to equal 10 GeV. In the presented angular range (ωBϑ⊥ ≪
ωp; ηp) these distributions do not depend on the angle of
the crystalline target inclination. For comparison, the dotted
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line shows the corresponding DTR distribution [4,26] in the
case of the impinging electron with Coulomb field (in the
absence of the upstream target). Herewe see that at l < lF (lF
is defined for ϑ ¼ 1=γ) the DTR angular distribution is
much wider than the customary one with the maximum
position at ϑ ¼ 1=γ (in case γ ≫ ω=ωp). With the increase
of l the main maximum position shifts to the smaller values
of ϑ⊥ and the additional maxima grow in their amplitude.
At l ≫ lF the distribution turns into quick oscillations. In this
case it is practical to average it with respect to small angular
intervals. Such asymptotic average behavior of the number
of radiated quanta is presented by the dashed line.
As the figure shows, at l ≫ lF the radiation intensity still

exceeds the one typical for the electron with the Coulomb
field (dotted line). This happens due to the additional
contribution of the transition radiation from the upstream
target which experiences Bragg diffraction in the crystal.
At z < lF the forming field of this radiation cannot be
separated from the electron’s proper Coulomb field. The
destructive interference of these fields leads to the sup-
pression of the electron’s proper field and causes the effect
of “half-bareness.” At z > lF the mentioned interference
disappears and we deal with an incoherent sum of the
contributions from the electron’s proper field and the field
of the discussed transition radiation.
In the intermediate range of distancesω=η2p ≪ z ≪ γ2=ω,

corresponding to the applicability region of (4), the expres-
sion (11) for the DTR angular distribution can be simplified.
In this case characteristic values of the emission angles are
ϑ ≫ 1=γ. At the considered high electron energies (γ ≫
ω=ωp) such angles are still much less than ωp=ω (as well as
ηp=ω). This gives G1ðϑ;ωpÞ ≈G1ðϑ; ηpÞ ≈ ϑ−2 and (11)
transforms into

dN
dΩ

¼ 16αjχgj
3π2

�
ωB

cg

�
2 4ðϑ2⊥ þ j cosϕjϑ2jjÞ

ϑ4
sin2

�
lϑ2

4ωB

�
:

ð12Þ

On the basis of this expression the formula for the main
maximum position of the radiation angular distribution in
the considered region of l can be derived. For simplicity let
us consider the radiation with a pure perpendicular polari-
zation (ϑjj ¼ 0). In this case the main maximum position
ϑ⊥ ¼ ϑm of (12) is defined by a transcendental equation
tgx ¼ 2xwith x ¼ lϑ2m=ð4ωBÞ. Its numerical solution gives

ϑmðlÞ ≈
ffiffiffiffiffiffiffiffiffi
4.66
ωBl

s
: ð13Þ

The same result is naturally obtained in the case of a pure
parallel radiation polarization (ϑ⊥ ¼ 0). It is also valid in
the case j cosϕj ≈ 1, which takes place if θB is not far either
from π=2 or from zero, provided the condition θB ≫ 1=γ
is fulfilled. In this case ϑm is the value of ϑ corresponding
to the maximum of an almost azimuthally symmetric DTR
distribution.
Figure 3 shows the dependence of ϑm on l. It depicts the

result of numerical calculation for the case ϑjj ¼ 0 (as in
Fig. 2) and θB¼75° (which corresponds to ωB≈3.343keV)
on the basis of (11) for arbitrary l, which nicely coincides
with (13) in the applicability region of this formula. For the
chosen electron energy (10 GeV) the formation length for
ϑ ¼ 0 is presently lF ≈ 4.5 cm. The figure shows that at
high electron energies with the change of the distance
between the targets the value of ϑm experiences a variation
by several orders of magnitude. At very small values of l
this variation is not monotonic. At l ≫ lF the value of ϑm
ceases to characterize the angular distribution since, as
mentioned previously, dN=dΩ in this case has a lot of
maxima and turns into quick oscillations. However, after
the averaging over such oscillations the maximum position
naturally settles at 1=γ, as Fig. 2 shows.
The limit value of ϑm at l → 0 is uniquely defined by ωp,

ηp and ωB and can be easily obtained from (11). We do not
present here the corresponding formula. It is worth noting

FIG. 2. Angular distribution of the number of DTR photons for
different distances l between the targets for ϑjj ¼ 0. The electron
energy is 10 GeV.

FIG. 3. Evolution of the maximum position of DTR angular
distribution with the increase of l for two values of the upstream
target plasma frequency ηp. The electron energy is 10 GeV.
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that in the considered case of an inclined crystalline target
sufficiently small values of l are, certainly, experimentally
unachievable and present just a theoretical interest.
However, the situation changes in a modified statement
of this problem discussed in Sec. IV. In this section the case
of a backward radiation geometry is studied in more detail.
Such geometry allows, in principle, performing measure-
ments at arbitrary values of l.
The evolution of the electron’s field in the considered

process after the particle exit from the upstream target can
be visualized most explicitly if consider the dependence of
the angle-integrated DTR yield on distance l between the
targets. Fig. 4 shows the result of the angle integration
of the distribution (11) in the interval −ϑ0 < ϑ⊥; ϑjj < ϑ0,
with ϑ0 ¼ 200=γ. The electron energy is chosen as
100 GeV, which makes the variation range of ϑ⊥ and ϑjj
equal 2 mrad. The figure indicates a noticeable increase of
the DTR yield with the increase of the distance between the
targets up to l ∼ lF, while in the case under discussion lF ≈
4.5 m (for ϑ ¼ 0).
On the basis of (12) it is possible to derive a simple

analytical expression for the DTR yield in the intermediate
range of distances ω=η2p ≪ l ≪ γ2=ω. For the additional
simplification let us assume the approximation j cosϕj ≈ 1
to be valid. In this case, integrating (12) with respect to ϑ up
to ϑ ¼ ϑ0, for the radiation yield we obtain:

Nðl; ϑ0Þ ¼
32αjχgj
3π

�
ωB

cg

�
2
�
Γþ ln

ωBlϑ20
2

�
; ð14Þ

where Γ ≈ 0.577 is the Euler’s constant and it is assumed
that ϑ0 ≫ 1=γ. This expression indicates the logarithmic
character of the DTR yield increase, which reflects the
analogous character of the electromagnetic energy flux
variation (4) in the region between the targets.

IV. BACKWARD RADIATION GEOMETRY

Let us consider the discussed process in the case when
θB ¼ π=2, or close to it, and the targets are parallel to each
other. This case is of special interest since it provides a
principle possibility to perform measurements at arbitrary
distances l between the targets. Previously, for simplicity,
we considered the upstream target as rather thick and
supposed that DTR did not have to penetrate through it on
its way to a detector. In the present case the radiation is
emitted in the backward direction with respect to the
particle velocity and such penetration becomes unavoid-
able. Presently the upstream target has to be thin enough to
let a considerable part of DTR to penetrate through it, as
well as sufficiently thick to “undress” the electron. This
means that the value of the target thickness L should lie
between the DTR absorption length Labs and the radiation
formation length inside it, which we denote as LF.
Let us, for the sake of convenience, choose the beginning

of the z axis on the upstream surface of the amorphous
target. In the considered case the transition radiation from
this surface is not considerably absorbed in this target and
the boundary condition at z ¼ 0 should be taken into
account in the calculations of the field in this process.
Taking this into account and performing a procedure
analogous to the one from the previous section, for the
field of transition radiation inside the crystal in the
immediate vicinity of its surface (z ¼ Lþ l) we obtain:

Etrðω; ρÞ ¼
ie
π
eiωðLþlÞ=v

Z
d2qqeiqρfGðq;ωpÞ

−Gðq; ηpÞe−iωlðγ−2þq2=ω2Þ=2

× ð1 − e−L½iωðγ−2þðq2þη2pÞ=ω2Þþσ�=2Þg; ð15Þ

where σ is the energy absorption coefficient for the
considered frequency. With the use of (15), (3), and (10)
the expression for the DTR angular distribution (after its
penetration through the upstream target) in the present case
can be derived:

dN
dΩ

¼ 16αjχgj
3π2

�
ωB

cg

�
2

e−Lσϑ2fG2
1ðϑ;ωpÞ

þG2
1ðϑ; ηpÞ½1þ e−Lσ − 2e−Lσ=2 cosðL=LFÞ�

− 2G1ðϑ;ωpÞG1ðϑ; ηpÞ

×

�
cos

�
l
lF

�
− e−Lσ=2 cos

�
l
lF

þ L
LF

���
; ð16Þ

where LF ¼ 2ω−1
B =ðγ−2 þ ϑ2 þ η2p=ω2

BÞ is the formation
length inside the upstream target.
The analogue of the simplified expression (14) in the

present case, approximately describing the DTR yield
evolution in the range of distances ω=η2p ≪ l ≪ γ2=ω,
reads:

FIG. 4. Dependence of the angle-integrated DTR yield on l for
the electron energy 100 GeV and the acceptance angle
2ϑ0 ¼ 2 mrad. Calculation on the basis of (11) for θB ¼ 75°.
Dashed line—asymptote at l ≫ lF. Dotted line—DTR yield in
the absence of the upstream target.
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Nðl;ϑ0Þ ¼
32αjχgj
3π

�
ωB

cg

�
2

e−Lσ
�
½lnðγϑ0Þ − 1=2�e−Lσ

þ
�
1 − e−Lσ=2 cos

�
Lη2p
2ωB

���
Γþ ln

ωBlϑ20
2

�

−
π

2
e−Lσ=2 sin

�
Lη2p
2ωB

��
: ð17Þ

Let us make estimations for the case of a beryllium
upstream target. It is very suitable since in this case Labs ≈
320 μm and LF ≈ 2ωB=η2p ≈ 1.8 μm and there is a huge
gap between these quantities to be occupied by the values
of L. Here we took ηp ¼ 26.1 eV and ωB ¼ 3.229 keV,
which corresponds to 2θB ¼ π. The estimation of LF is
made for ϑ ≪ ηp=ωB. The expressions (16) and (17)
manifest an oscillatory dependence on the upstream target
thickness. These formulas indicate that it is natural to
expect the highest radiation intensity for L ≈ ð2nþ 1ÞπLF,
where n is an integer. Figure 5 shows the angular
distributions of the number of DTR photons for the case
L ¼ 5πLF ≈ 28 μm. For convenience the curves are pre-
sented for the same values of l as in Fig. 2. Here we see
that in the present case the DTR angular distribution is
analogous to the one in the case of the inclined geometry.
The difference is, however, significant for ϑ ∼ 1=γ due to
the influence of the upstream surface of the beryllium
target. Moreover, in the considered case the radiation
intensity is noticeably higher.
The curves depicting the evolution of the DTR yield in

the present case are shown in Fig. 6. Here three cases
are presented, corresponding to a beryllium upstream target
of thickness L ¼ 5πLF, L ¼ 15πLF and L ¼ 6πLF. In the
first two cases, which are the special ones of L≈
ð2nþ 1ÞπLF (n is an integer) we observe a noticeable
change of the DTR yield within l ∼ lF. In the third case,

like in the analogous ones in which L ≈ 2nπLF (provided
L ≪ Labs), the impact of the upstream target is very small.
In this case the contributions form the both upstream target
surfaces almost contract and the DTR intensity is close to
the one in the absence of this target. Therefore in order to
observe the increase of the DTR yield with the increase
of l the uncertainty in the upstream target thickness should
be noticeably less than πLF, which in the present case is
about 5.5 μm.

V. CONCLUSIONS

In the present paper the process of the diffracted
transition radiation (DTR) generated by a high-energy
electron in a crystalline target in the Bragg geometry
was examined. Before impinging upon the crystal the
electron was assumed to penetrate through an upstream
target situated on some distance l from the crystal, which
made the particle “half-bare.” It was shown that the
subsequent process of the electron’s field regeneration in
the region between the targets dramatically modifies the
DTR angular distribution and its angle-integrated yield
comparing to the case of the upstream target absence. With
the increase of l within the formation length lF (at multi-
GeVelectron energies it can be macroscopically large even
in the x-ray range of frequencies) the yield grows loga-
rithmically. Meanwhile the angular distribution narrows in
such way that its maximum position shifts approximately
as l−1=2. First, the discussed effects were studied in the
case of an inclined crystalline target when the emitted DTR
was supposed to miss the upstream target on its way to the
detector. Then the case of a backward radiation geometry
(parallel targets), in which the emitted radiation has to
penetrate through the upstream target, was investigated in
more detail.

FIG. 5. Angular distribution of the number of DTR photons
for the backward radiation geometry and a beryllium upstream
target of L ¼ 5πLF ≈ 28 μm. The electron energy is 10 GeV.
The curves have the same meaning as in Fig. 2.

FIG. 6. Dependence of the angle-integrated DTR yield on l for
the electron energy 100 GeV and the acceptance angle 2ϑ0 ¼
2 mrad in the backward radiation geometry. Calculation on the
basis of (16) for a beryllium upstream target thickness L ¼
5πLF ≈ 28 μm (thick blue line), L ¼ 15πLF ≈ 84 μm (thin
orange line) and L ¼ 6πLF ≈ 33.5 μm (dot-dashed line). Dotted
line—the same as in Fig. 4.
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