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Abstract

In this paper, our aim is to establish some mean value inequalities for the Fox—Wright
functions, such as Turdn-type inequalities, Lazarevi¢ and Wilker-type inequalities. As
applications we derive some new type inequalities for hypergeometric functions and
the four-parametric Mittag—Leffler functions. Furthermore, we prove the monotonicity
of ratios for sections of series of Fox—Wright functions. The results are also closely
connected with Turdn-type inequalities. Moreover, some other type inequalities are
also presented. At the end of the paper, some problems are stated which may be of
interest for further research.
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1 Introduction

In a series of recent papers, the authors have studied certain functional inequalities
and geometric properties for some special functions, for example, the classical Gauss
and Kummer hypergeometric functions, as well as the generalized hypergeometric
functions [1], the classical and generalized Mittag—Leffler functions [2,3] and the
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Wright function [4]. Here, in our present investigation, we generalize some of these
results to the Fox—Wright function ,¥,.

Here, and in what follows, we use ,¥, to denote the Fox—Wright generalization
of the familiar hypergeometric , F;;, function with p numerator and ¢ denominator
parameters (see [5]), defined by (cf., e.g., [6, p. 4, Eq. (2.4)]),

=[5
Z =
P41, By

where A; >0, I =1,...,p; B; >0,and/ = 1, ..., q. The series (1) converges
absolutely and uniformly on any bounded subset of C, when

(o1, Ap),yees (eep, Ap)
o (M

TL(B1, B1)reonr (B By)

] an 1F(a1+kA1)z
I' (B +kBy) k!

j=1

q 14
e=1+Y B—) A >0.
=1 =1

The generalized hypergeometric function , Fy is defined by

] Z 1_[1 1(0l1)kz )
1_[[ 1(,31)k k!’

where, as usual, we make use of the following notation:

(t)o=1, and (r)kzt(r+1),...,(r+k—l)=F(;f:—)k), k e N,

to denote the shifted factorial or the Pochhammer symbol. Obviously, we find from
the definitions (1) and (2) that

(ar, 1),...,(@p, 1) I'(ay) ... (ap) PR
pq’q[ H = rFy [ﬁl ..... B4
(Bis 1)seees By 1) B, ... I'(By)

z] . 3)

We define the normalized Fox—Wright function plllq* by

“

LJ[@1 AD e (ap, Ap)
&l

Z] = ?:l ') i l_[lpzl I'(a; +kA)) Zk
LB, B1)serns(By» By)

LT ST, T B+ kB k!

The Mittag-Leffler functions with 2n parameters are defined for B; € R (B? +
<+ B2#0)andB; € C(j =1,...,n € N), by the series

zeC. ©)

Fop@ = Zn, TG, By
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When n = 1, the definition in (5) coincides with the definition of the two-parametric
Mittag—Leffler function

k

> 4
Epp,@) =Epp)=) ————. z€C, ©)
2T (B +kB)

and similarly for n = 2, where E g), (z) coincides with the four-parametric Mittag—
Leffler function

o0 Z*
EB.p),(2) = E ;8. (2) = zeC, ()
(B.B)2 1,81:B2, B2 ;F(ﬂ1+k31)F(ﬁ2+sz)
is closer by its properties to the Wright function Wpg g(z) defined by
W p(z) = —— zeC 8
84 = 2 g, kB ®

The generalized 2n-parametric Mittag—Leffler function E(p g), (z) can be represented
in terms of the Fox—Wright function , ¥, (z) by

(1,1)
Es 9D = sy g 25,0 = 1%
(5.5 Brprs-:Bu. o (B1.B1)ses (B Bn)

z], zeC. ©)
Throughout this paper, we adopt the following convention:

a=(ar,...,ap), B=1.....8y), A=(AL....,A,), B=(Bi,...,B,)

and

(ap~A1J)
p'JIQI:

:| I:(OllvAl)»(ap—lsAp—l)
(ByBy) b

(Bg-Bg)

ol

The present sequel to some of the aforementioned investigations is organized as
follows. In Sect.2, we state some useful lemmas which will be needed in the proofs
of our results. In Sect. 3, we present some Turdn-type inequalities for the Fox—Wright
functions ,¥,(z). As a consequence, we deduce the Turdn-type inequalities for the
hypergeometric functions , F;(z) and for the 2n-parametric Mittag—Leffler functions
E (g, p), (z). Moreover, we prove monotonicity of ratios for sections of series of the Fox—
Wright functions, and the result is also closely connected with Turdn-type inequalities.
In Sect.4, we give the Lazarevi¢ and Wilker-type inequalities for the Fox—Wright
function 1 ¥>(z). As applications, we derive the Lazarevi¢ and Wilker-type inequalities
for the for the hypergeometric functions 1 /> (z) and for the four-parametric Mittag—
Leffler functions Ep, g,:1g,(z). In Sect. 5, we present some other inequalities for the
Fox—Wright function , ¥, (z). Finally, in Sect. 6, we pose two open problems, which
may be of interest for further research.

(ep,Ap)
z] = ,Y, [ Z
P4l 81 1) (By—1.By-1)
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Each of the following definitions will be used in our investigation.

Definition 1 A function f : [a, b)] € R — R is said to be log-convex if its natural
logarithm log f is convex, that is, for all x, y € [a, b] and @ € [0, 1] we have

flax 4+ (1 —a)y) < [fOI* ()]

If the above inequality is reversed, then f is called a log-concave function. It is also
known that if g is differentiable, then f is log-convex (log-concave) if and only if
f'/f is increasing (decreasing).

2 Preliminary lemmas
In the proof of the main result we will need the following lemmas.

Lemma 1 Let (a,) and (b,) (n = 0, 1, 2,...) be real numbers, such that b, >

ao+--+an
bo+---+by

0,n=0,1,2,...and (Z—") is increasing (decreasing), then ( ) is also
"/ n>0 n

increasing (decreasing).

The second lemma is about the monotonicity of two power series, see [7] for more
details.

Lemma2 Let (a,) and (by) (n = 0, 1, 2,...) be real numbers and let the power

series A(x) = ZZ‘;O ayx" and B(x) = Z;ZO:O bpx™ be convergent for |x| < r.Ifb, >

0,n =0,1, 2,... and the sequence (%) o is (strictly) increasing (decreasing),
n nz

then the function ’ggg is also (strictly) increasing on [0, r).

3 Turan-type inequalities for Fox-Wright function

Our first main result is asserted by the following theorem.

Theorem1 Let o, B > 0, and A, B > 0 such that € > 0. Then the Fox-Wright
Sunction ,¥W, possesses the following Turdn-type inequality:

(o1, A1), (@p—1, Ap—1) (142, Ap), (@p—1, Ap—1)
ot 2o |
(Bg» Bg) (Bg» Bg)

() o e
— Z > U, Z € , X)).
b= (Bg By)

(10)

Proof By using the Cauchy product formula, we have
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(e1+1, Ap), (@p—1. Ap_1) 2
(] <))
(Bg: Bg)

_ ii Dle + jA1+ DI + (= DAL+ DT, T + jADT (o + (k= )A)Z

k=0j=0 j!(k—j)![ T +jBi)F(,8i+(k_j)Bi):|

(a1, Ap), (@p-1, Ap-1) (a142, Ap), (ap—1, Av)
[ <]l d
(Bq- Bg) (Bg- Byg)

_i e + jADT (o + (k= DAL+ TT0, Fei + jADT (@i + (k — AN
k=0 j

=0 Jik — j)![ i T B+ jBOT (B + (k — j)Bi)]

Thus

(a1+1, Ap), (ap—1, Ap—1) 2 (a1, A1), (ap—1, Ap—1)
(s 2]) o]

ok

(ﬁqv Bq) (ﬂlvBl)
k
(@142, AD). (@p-1. Ap_1) > N
x| =3 YKL @, ant,
P> By) i=0j=

where Tj(’lk) (a1, Ap) and K ]( 1,2 are defined by

T{ e, A = Ten + jAr+ DI (@ + (k= A1+ 1) = e + jAD)
xI'(o) + (k— j)A1 +2)
=[Q2j—k) —1I'(a1 + jADT (a1 + (k — j)A1 + 1),

and
[T, I'(ei + jADT (o + (k — j)A)

k) = :
JHk = j)![ i T(Bi+ jBIT (B + (k — j)Bi)]

Jk

Case I Let n be an even positive integer. Then

k

k 51 k
(1 (1 (1
Y KNT e, Ap =Y KT @ An+ Y KT @A)
=0 =0 =41
(1) (1
+ K21 Ty i (@1, Ar)
k/2-1

1 1 1
= Y KkN(T e Ay + 1, (o Ap)
j=0
1 1
+K1§/)2,ka</§,k(°‘1’ Ay)

@ Springer



268 K. Mehrez, S. M. Sitnik

~
|

!
L |

Nl
| S—

~
Il
(=]

1 1 1
KT W, A+ 10, (@1, AD)

1 1
+ Kb T e, A, (11)
where as usual, [k] denotes the greatest integer part of & € R.
Case 2 Let n be an odd positive integer. Then, just as in Case 1, we get
‘ ]
1) (1 1 1 1
Y kO, Ay =3 KT @A)+ T, o AD)
Jj=0 =0
1 1
+ K T e, A,

Thus, by combining Cases 1 and 2, we have

(o141, Ap), (ep—1, Ap—1) 2 (1, A1), (ap—1, Ap—1) (142, A1), (etp—1,Ap—1)
(o] <) - ] 4]
(Bq: Byg) (Bq- By) (Bq, Bg)

o 7]
1 1 1
=2 2 k(1@ a0+ 1 e AD) + K TR e, Az, (12)
k=0 j=0

which, upon simplifying, yields

i), A+ T2, (o, AD) = =[Q2k — j)* + Qo +kADIT (a1 + (k = j)A)
xI'(a1 + jA1) < O.

On the other hand, we have

7O A — kY 2 k
k/g’k(alv )= al‘}‘z r al‘}‘EAl <0,
which evidently completes the proof of Theorem 1. O

Letting in (10) the values A = B = 1 and using the formula (3), we get the following
Turén-type inequality for the hypergeometric function , Fy.

Corollary 1 Let o, B > 0. Then the following Turdn-type inequality

o1 +2, a2,...,0p o] aj+1 a0
Z]qu[ B1yesBy Z] al +1 pFa| g By

z])2>o

13)

qu [ ’,31,...,/3,1

holds true for all z € (0, 00).
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Theorem2 Leta, B > 0, and A, B > 0 such that € > 0. Then the following Turdn-
(ap, Ap)
Z:Ip‘pq[ Ap, Ap

type inequality
]
(B142, B1), (B4—1, By—1)

plpq[ A
z])2 >0 (14)

(B1, B1), (Bg—1, Bg—1)
holds true for all z € (0, 00). Moreover, the hypergeometric function , Fy satisfies
..... a

the following Turdn-type inequality
F o p F Ay, F AL seens O 2 ~0
p q[ﬂl,ﬂz ,,,,, By Z]ﬂ q[ﬂ1+2,ﬂ2 ,,,,, By Z]‘(ﬂ q[ml,ﬂz ,,,,, By Z]) =

(z € (0, 00)). 15)

‘31 ( [ (O‘I)’AI’)
B+ 1\" “Legi+1, B0, (By-1. By

Proof We set
(O‘ps Ap)

~ |:(0:,,, Ap)
(Bq- Bg)

Y,
P8y, By)
By using the Cauchy product we get

2] = rpw

z]. (16)

~ |: (ep, Ap) ] l}/l: (etp, Ap) :I
Z Z
P4l Bry, By—1, Bo-) 1P T Lig1+2, BByt By—1)
~ (O(,,A )
_plpq2|: pr»Ap ‘Z:I
(Bi+1, B), (Bg—1, Bg—1)
ook
2 2
=IO+ DY Y KA1 (B B, (17
k=0 j=0
where
o _ T M+ jAD @i+ (k= )A) -
RIT Ik — INTIL, T (Bi + jBHT(Bi + (k — j)By)
and BIBI(2j — k) + jB
1b1(2) — JD1
1,2 (B1, B1) = . : : (19)
’ I'Bi+jBi+DI'(Br+ (k- j)B1 +2)
If k is even, we have
k k/2—1 k
2 2 2 2 2 2
S kAT B By = Y KATE B B+ Y. KT (Br. B
i=0 i=0 j=k/2+1
2 2
+KIE,IZ/2Tk(,k)/2(/31’ Bl)
k/2—1 k/2—1
2 2 2 2
= > KAT B B+ Y KT (Br. By
j=0 j=0

(2) (2)
+ Kk,k/ZTk,k/2(ﬁ1 s Bl)
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[(k—1)/2] ) ) )
= > K (16 B+ 1861 BY)
=0

) 2
+ K/E,lz/sz(,k)/z(ﬁl» B1), (20)

where [-] denotes the greatest integer function. Similarly, if k is odd, then

‘ [Ge=1)/2]
2) (2 ) . i
ZKIE,}TIS,])(/?], Bl) = Z Klg,j)'(ﬂl’ B]) (Tk(,j)(ﬁ]’ Bl) + Tk(’k)_j(,B], Bl))
j=0 =
2) 2)
+ Kk 2Tk p(Prs Br).

By a simple computation we get

Bipi(k —2))* + Bi + Bi(k — ))* + k(B + B1) _

2) 2)

7.7 (B, B)) +T.7_.(B1, B) = >0,

e P BO T (1o By TG+ B+ DTG + k- DB +2)

21
and using the fact
P2, o kA

K 1O 5 By - Bik[[ioy I (04:+ 2) ~0
kk/2tk k2 \PL P1) =

2r2 (5 + 1) 1 (B + 50+ 1) 1 (1 + 40 +2) [T, 12 (y + 44

2

(22)
we deduce that
~ (eep, Ap) ~ (ep, Ap) ~ 2 (ep, Ap)
plI/q[ m ‘z]p q[ n ‘z]fplllq [ r ‘z] >0. (23)
(B1, B1),(Bg—1, Bg—1) (B1+2, B1), (Bg—1, Bg—1) (Bi+1, B1), (Bg—1, Bg—1)

Itis important to mention here that there is another proof of the inequality (14). Namely,
we consider the expression

~ rlap, Ap)
quq[ psAp
(Bg- Bg)

o0
z] = Z(SA,B,n((x» B)z",
n=0

BT, I'ai +nA)
rBr+nB) [, (B +nB;)

where 84 (o, B) =

Computations show that for each n > 0 we get

32 1og[8a.p.n(a, P)]
ap?

=v'(B1) — ¥ (B +nBy),

where Y (x) = 11:,((;‘)) is the digamma function. It is well known that the function
x > ¥ (x)is concave on (0, 00), i.e., the trigamma function x — ' (x) is decreasing

on (0, co). Therefore, the function ;1 — 84 p.n(c, B) is log-convex on (0, 00).
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. ~ [@p, Ag)
Thus, the function g1 — q[
(Bg> Bg)

o, B, B} > 0,andr € [0, 1], we get

; z] is also log-convex on (0, o). So, for all

- (@p, Ap)
qu[ , Z]
B1+(1=1)By, B1), (Bg—1, Bg—1)

L G e
= Z Z .
prd PPAL 1 Br). (Bt Byt

(B1, B1), (Bg—1, Bg—1)
Letting # = 1/2 and 8] = B1 + 2, in the above inequality we deduce that the inequal-
ity (14) holds true. The inequality (15) follows by using the inequalities (14) and (3).
So, the proof of Theorem?2 is complete. O

Choosing in (14) the values p = 1, o1 = A1 = 1, we obtain the following Turdn-
type inequality for the generalized 2n-parametric Mittag—Leffler function:

Corollary 2 Let B > 0 and B > 0. Then the following Turdn-type inequality

2
EB];ﬁI;-n;Bn’ﬂn (Z)EB],ﬁI+2§~~-§Bn,ﬁn (Z) - (EB]/gl+1§-~~;Bn»,Bn (Z)) Z O (25)

Bi
B1+1
holds true for all 7 > 0.

Corollary 3 The generalized hypergeometric function > F, possesses the following
inequality:

. 2
Bi—a1—1, f+1 Bi—ai+1, g+1 Bi—ai, h+1
2 B I:/gi i H 2P [ﬁiﬂfg ‘Z] - (2F2 [ﬂiﬂfh ‘z]) >0,

(z € (=00, 0) (26)
with
f:,BZ(l‘f‘al_,Bl), g:ﬂz(al—ﬁl—l) and h:ﬂ2(051_ﬂ1)'
a; — B a; — B a; — B

Proof The Kummer transformation for the hypergeometric function , F» reported by
Paris [8, Eq. 4],

c(l14+a—D>b)

, e+l _ a, fi+1 . _
2 P I:Zg ’Z] =P [h, f: ’ —Z:|, with f1 = PR

and the Turdn-type inequality (15) lead to the asserted inequality. O

Remark 1 (a) If we choose p = ¢ = 1, By = «, B1 = B, and A} = 0in (14), we
obtain the following Turdn-type inequality for the Wright function [4, Theorem 3.1]:

We, (@) We,p42(2) — Wozl’ﬂ“(z) >0,

@ Springer



272 K. Mehrez, S. M. Sitnik

where Wy (z) = I'(B) Wy g(2).
(b) Letting n = 2 in (25), we deduce the following Turdn-type inequality for the
Mittag—Leffler function [2, Theorem 1]:

Ea.p()Ea.p12() — B 5,,(2) > 0,

where Eqy (z) = I'(B) Ew,p(2)-
Theorem3 Leta, B, By > 0,and A, B > Osuchthate > 0.1f B < B1, (B1 < B},

then the function
(ap. Ap)
<1/ v gy 5,0
(81 B1). (Bg—1. B4—1)

is decreasing (increasing) on (0, 00). Moreover, the following inequality

(@p+A4p, Ap) (@p, Ap)
2l o] 4
(B1+B1, B1), (Bg—1+Bg—1, Bg—1) (B]- B1). (Bg—1. B4—1)

(O‘ps Ap)
(B1, B1), (Bg—1, Bg—1)

7 pllfq[

(apt+Ap, Ap) (ap, Ap)
s(z)pwq[(ﬂ,+3 i 2] ‘] 27)
1 +B1. B1), (Bg—1+Bg—1, B4—1) By Bg)
holds.
Proof Let
(ap, Ap)
r¥a [wp Bp> Z] - >
q-> Pq _ 0 . k 0 . , k
@pAp 1 D Ul A B, B)z /ZVk (a, A; B/, B)z",
p¥q Z:I k=0 k=0
By Bg)
where
14
k ) ’ ’ I_, kB q F . kB 9
(B1 +kB1) [Ti=o I'(Bi + kBi)
P
Vko((x A: /3/ B) _ i=1 F(C(i +kAi) .
B +kB) 1, I'(Bi +kB))
We set

o Ul A;s B B)  I'(B] +kB)
CT V0@ A B B) T T(BIkBY)

Using the fact that the Gamma function I"(z) is log-convex on (0, c0), we deduce

that the ratio z — r 1(3&- )“) is increasing on (0, oo) when a > 0, which implies that

the following inequality

I'(z+a) - I'(z+a+b)
I'zy — T(z+b)

(28)
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holds for all a, b, z > 0. In the case | < i, weletz = B + kB, a = By, and
b = B — B} > 0in (28) we obtain that

Wi _ T(B+ By +kBOI(Br + KBy _
WY T'(B{+kB)I'(Bi+ Bi+kBy) ~

(29)

Thus, Wl?+l < W,? for all k > 0 if and only if 8; > B{, and the function

(ap;Ap)
) /ool g
(By> B1), (Bg—1, Bg—1)

is decreasing on (0, oco) if g1 > ﬁ{, by means of Lemma?2. In the case ,3{ > By,
we set z = B1 +kBy, a = Bj,and b = ,31 — B1 > 0in (28), we conclude that

W,? = W,? for all k > 0. We thus implies that the function

(apa Ap)
(B1, B1), (Bg—1, Bg—1)

7 pllfq[

(ap, Ap) (otp, Ap)
2 o </ 4
(B1, B1), (Bg—1, Bg—1) (B} B1). (Bg—1. B4—1)

is increasing on (0, oo) if ﬁ{ > B1, by Lemma2. Therefore,

(aps Ap) (aps Ap) !
o 2| /ow] 2]) =o.
(B1, B1), (Bg—1, Bg—1) By B1), (Bg—1, Bg—1)

if B > B|. Therefore, the differentiation formula

(ap, Ap) ! (ap+A,, Ap)
(pll/q[ s Ap Z]) =p‘1/q[ pTAps Ap
(Bg» Bg) (Bg+Bg, By)

completes the proof of the asserted results immediately. O

z] (30)

Remark 2 (a) Letting in Theorem3, the values A = B = 1, we conclude that, if
B} < i1 (rep. B < By), then the function

F |:ot1,...,0(p ]/ F I:a],...,a,, ]
> z Z
L VT VAR VA 3
is decreasing (resp. increasing) on (0, co). Consequently the following inequality
holds true:
a1+1,..., ap,+1 A],...,0 A,y a a1+1,..., ap+1
] O ot o G Pt et 1 ) e
Bi+1,....Bg+1 Bls-eBy B Bl Bq Bi+1,...Bg+1

(€29)
when B < B and z > 0. Moreover, the above inequality is reversed if 8; < $] and
z>0.

(b) Choosingg = p+ 1, A; = Biy1, @ = Bi+1, i = 1,..., pin Theorem3, we
deduce that the ratios z > Wg, g,(2)/Wp, Bl (z) is decreasing (resp. increasing) on
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274 K. Mehrez, S. M. Sitnik

(0, 00) if B] < By (resp. B1 < By) (cf. see [4, Theorem 3.2]), and consequently we
obtain the following inequality [4, Theorem 3.2, Eq. 3.2]:

W15 (D Wg, g +8,(2) — Wg g (D)Wp, 145, (2) 2 0,
when 8] < Bi. The above inequality reduces to the following Turdn-type inequality:

Wiy (@) — Wii(@Wi3(2) =20, (2> 0).

(c) Choosing p = o) = A} = 1 and g = 1 in Theorem 3, we deduce that the ratios
z+ Ep g, (Z)/EBl,ﬂi (z) is decreasing (resp. increasing) on (0, 00) if B < B (resp.
B1 < ﬁ;) (cf. see [2, Theorem 4]), and we get

2,1) 2,1

Ep, g, (Z)1‘1’1[

z] — Ep, g, (Z)l‘l’l[

z] >0, (32)

(B+B1. B1) (B1+B1, By)

when B] < pi. By using the familiar relationship:

w[ 5V ] = Esp e

i (B1+B1, By) T B AR

and
d Ep, g -1(2) — (B1 — DEp, g (2)
—EBI,,BI (z) = 1,81 1,81 ’

dz Biz

we obtain [2, Theorem 4, Eq. 10]

Ep, g () Ep, g—1(2) — Ep, g (2)Epy p-1(2)
+(B1 — ﬁ{)EBl,ﬂl(Z)EB],,g; () =0, (z>0).
(d) By a similar argument to the proof of Theorem 3, we obtain the following results:

leta, B, @) > 0,and A, B > Osuch thate > 0. If o) < ], (resp. o} < «1), then
the function
d

is decreasing (increasing) on (0, oo). Furthermore, the following inequality

]

(a1, A (ap—1. Ap—1) (@}, A1), (@p—1.Ap—1)
</ v
(Bg» Bg) (Bg» Bg)

T Plpr[

(a14+A1. A, (@p-1+Ap—1. Ay—1) (@}, A, (@p—1. Ap—1)
P q[ ‘Z]p q[

(By+By. By) Bg- By)
(a+A1 A, (@p-1+Ap—1, Ag-1) (ap, Ap)
= @] SR P B (33)
(By+Bp. By) Bg By)
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Functional inequalities for the Fox-Wright functions 275

holds true for all z > 0. Letting A = B = 1 in the above inequality, we obtain the
following inequality for the hypergeometric function , F,

ar+1,..,ap+1 o) o) +1,.ap+1 o],
oFo| Jori] Jori]

Z
Bi+1,....Bg+1

2| = @y

Bit+l,..., ﬂq+l By .Bq B, .Bq
(34)
Theorem4 Leta, B > 0, A, B > 0andn € N, we define the function p'J/(f by
n[(a,,,Ap) z] _ v [(a,,,A,,) z] B Z ]_[';=1 I(aj+kAjzk
P74 L, By P79 L, By K1, T (Bj +kBj)
B i D Taj+ kAt
= 7 )
Sl k! l—[j:1 I'(B; +kBj)
Then, the following Turdn-type inequality
.0 2 .0 .0
(plpn+1 [<“1 ) ZD _— [% ) ‘Z]pwnﬂ[(“? ) Z] -0 @5
7 Ly By 7Ly By L. By

is valid for all z € (0, 00).

Proof By taking into account the obvious equations:

o [(ap,O) ] 3 lp"+1[(a"’0) ] ]_[j.’:1 I(aj)z"!
»¥ | =pY¥, Z|+ 7
(Bq: Bq) (Bq> Bg) (n+ D! j=1 I'Bj+ @+ 1)Bj)
and
q/"“[(ap’o) z] B 'pn+1|:((xp,0) z] - ]‘[;’:1 INCT i
P74 L, By P74 Lg,, By (n+ 2T, T(Bj + (n+2)B))’
we get

(@p.0) 2 (@p.0) S [@p.0)
(i g F1) = il i
q. Bg Bq. Bq) (Bq- Bq)
4 Nn+2
-, n+1[<ﬂp~0> H [Tj=i Iz
9 Lgg. Bg) (n+2)!]_[‘]1.=11"(ﬂ_,'+(n+2)8j)
- l_[f:] F(aj)z"Jrl
(+ DTS2, T(Bj + (n + DB))
l—[le FZ(aj)z2ﬂ+3

+
(+ D+ DI T8+ + DBHI(B) + (n +2)B))

14 20y N2
l_[jzlf(oé]k &0 Zk

T +2)!1‘[jl=1 I(Bj+(n+2)B)) k:;z k!]‘[’jf.=1 I(Bj +kBj)
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Hle 2@z i Jk
(n+ 1)! 1‘[‘}1.:1 FBj+a+108) 2=, klnjzl I'(Bj+kBj)
_ b T pt? i -1
(n+ 2)!11;1.:1 FBj+n+DB)) L=k~ 1)!]‘[‘]1.=l rBj+&—1B;)
H,p'=1 Fz(aj)zn-H Y k

TSN 1‘[‘11.=1 I'Bj+ @+ 1B)) k§r3 k!nj.=1 (B +kBj)

0 Hl/’=1 Fz("‘j)An.k(ﬂv B)Zk+n+1
k!'(k—D!(n+ DHi(n +2)!H(JI.:1 FBj+kB)HIrBj+k—-1DB)HIB;+mn+DB)IB;+(n +2)Bj)'

k=n+3

where A, x (B, B) is defined for all k > n + 3 by

q
Ank(B. B) = (n+ DK [ I (Bj + kBT (Bj + (n+ 1)Bj) — (n + 2)!(k — 1)!
j=1

q
<[]+ &—=1BHIB;+ (n+2)B))
j=1

q
> (n+2)(k — 1)!( [1r® +kBHIB;+ (n+1)B))
j=1

q
—[1r®;+&=DBHre; +n+ 2)B,-)).

Jj=1

Now, letz =B +(n+1)Bj, a = Bj,and b = Bj(k — (n + 2)) in (28) we deduce
that

I'(Bj +kB)I'(Bj+ (n+1)B;) =T B+ (*k—1)B)I'(B;+ (n+2)B)).

The desired inequality (35) is thus established. O

Theorem5 Let a, 8 > 0, A, B > 0 and n € N. We define the function
KA, B, 2) by
d

n I:(O‘[n Ap)

z] wn+2r“”A”)
Poa L, 8y 71770 Lig,, B,

2
(ap, Ap)
(T 21
(Bq- Bg)

Then, the function 7 +— K,(la’ﬁ) (0, B, 7) is increasing on (0, 00). Moreover, the fol-
lowing Turdn-type inequality

KP(A, B, 2) =

(36)
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<n+2> I T2(Bj+(n+2)B)) <qm+1[(“”’°’ ])2
n+3) \TI_, T B+ n+ VBT B+t By ) \" 7 Legy.mpl”

j=1
(@.0) (@p.0)

S N 7 (37)
(8. By) (8. By)

holds for all «, B > 0, n € Nand z € (0, 00). The constant in LHS of inequality
(37) is sharp.

Proof By applying the Cauchy product, we find that

ook 0ok
KeP©, B, =Y Ul 8. B)z"/ZZV)(a, 8, B)Z,

k=0 i=0 k=0 i=0
where
P 2.

Ul B, B)= M= P
R (+n+ DUk —i+n+MNTI_ (DB + G +n+DBHT B+ (k—i+n+3)B))
and

1—[1321 ;)
Vi@ B. B) !

Tt n 2k — i+ T (T +G+nt2) BT (Bj+(k — i+nt2)B))

Next, we define the sequence (Wl.l (o, B, B) = Ul.l(a, B, B)/Vl.1 (a, B, B))i>o0. Thus

W,-1+1<'1v B. B) (i+n+2)k—i+n+2)

W’.I(a,ﬂ, B) (G+n+D)k—i+n+1)

X]‘[‘JI.=l FBj+G+n+DBHIBj+k—i+n+DB)CBj+G+n+3)BHIBj+k—i+n+3)Bj))

M (P2B) + G +n+2B)I2(B) + k=i +n+2)B))

]‘[‘j’.=l FBj+G+n+DBHrBj+k—i+n+HBHI(Bj+G+n+3)B)rB;+k—i+n+3)Bj)

T2 (2B + G+ n+2B)I2(B) + (k=i +n+2)B))

(”3:1 I(8; +(i+n+1)3j>r(ﬁj+<i+n+3>8j))
M (P2@) + G +n+2B))

(38)

q . .
X(“j:l F(ﬁj +(1<—t+n+1)Bj)F(ﬁj+(k—1+n+3)Bj))
M9_; r26) + k=i +n+2)B))

Letz =8; 4+ (i +n+1)B; anda = b = B; in (28) we deduce that
FBj+G+n+DB)I B+ G+n+3)Bj)>T*B;+ (i +n+2)B)). (39)

Upon replacing i by k — i in (39), we obtain
r'Bj+k—i+n+1)B;)I"(B;j+(k—i+n+3)B;) > Fz(ﬂj+(k—i+n+2)Bj). (40)
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In view of (38)—(40) we deduce that the sequence (Wl.1 (a, B, B))i>0) is increasing,
and consequently Zf;o Ul.1 (a, B, B)/ Zf;o Vl-1 (a, B, B) is increasing by means of
Lemma 1. Hence, the function z +— IC,(la’ﬂ ) (0, B, z) is increasing on (0, co), by
Lemma?2. Finally, since

q 2c@. .
lim K©P) (0, B, z):(” +2) . ( =t [+ 0+ 2)B)) ) ,
x—0

n+3 T B+ +DBHC (B + (n+3)B))

and it follows that the constant

(n +2> . ( foi T2(Bj + (n+2)B)) )

n+3) NI B + (0 + DBYT (B + 01+ 3)B))

is the best possible for which the inequality (37) holds for all @, 8 > 0, B > 0 and
z > 0. With this the proof of Theorem5 is complete. O

4 Lazarevi¢ and Wilker-type inequalities for the Fox-Wright function

Theorem 6 Let «y, B > 0and By > 0. If ay > Ba, then the function

- (1 +1, 1)
111/2[ By, B 1,1 ’Z:I
(B1+B1, B1),(B2+1, 1) (41)

(a1, 1)
& ]
(B1, B1), (B2, 1)

B = x(B1) =

is increasing on (0, 00).

. . ~ rlag, Ap), (a2, A2)
Proof By using the fact we that the function 8| — zllfz[
(B1. B1), (B2, B2)

convex on (0, 0o) (see the proof of Theorem 2), and hence the function

z] is log-

- I:(UI»AI)»(ULAZ)

~ (o, A, (a2, A2)
B1 — loga¥s z] [
(B1+B1, B1), (B2, B2)

—log ¥
(B1, B1), (B2, B2)

d

is increasing on (0, o). Consequently the function

~ (o, A, (a2, A2)
|

d
(B1+B1, By), (B2, B2)
~ rlar, Ap), (a2, A2)
dl d

(B1, B1), (B2, B2)

B1— ¢ (B1) =
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is increasing on (0, oo) for all z > 0. In particular, the function

~ (a1, 1)
111/2[ ‘z]
(B1+B1, B), (B2, 1)
(a1, 1)
] d
(B1, B1), (B2, 1)

is increasing on (0, oo) for all z > 0. On the other hand, we set

B1 = x1(B1) =

- (a1+1,1) (141, 1)
| ] 8
(B1) = (B1+B1, B), (B2+1, 1) _ (B1+B1, By), (B2+1, 1)
X24P1 T @D @
| ] ]
(B1+By1, By), (B2, 1) (B1+B1. B1), (B2, 1)
Then,
(1. 1) 2 3B
2 = <1l1’2[ \z]) LR
(B1+B1, B1), (B2, 1) 81

d (a1 +1, 1) (a1, 1)
— 1¢Q[ ‘z] -1¢Q[ P]
9B (Bi+B1. B1), (B2+1, 1) (Bi+B1. B1). (B2, 1)

3 (a1, 1) (@1+1, 1)
- 1‘1/2[ ‘Z ]1‘1/2[ )Z] (42)
9B (Bi+Bi1, B1), (B2, 1) (Bi+Bi1, B1), (B2+1, )

Moreover, we have

9 w[ @+l 1) H > Y(Br+ B +kB) (a1 +k+1)

_ = — <,

31" 2L B, a1 1 < KIT By + By + kBT (B + k + 1)
(43)

k

and

a <1‘1’2|: (a1, 1) ‘Z)]:_i Y(B1+ B +kB)I (a1 +k)
k=0

—_ zZ.
9B1 (Bi+B1, B), (B2, D k'I'(B1 + B1 + kBT (B2 + k)
(44)
By applying the Cauchy product, we find that
0 (141, 1) (a1, )
(———1¢Q[ ‘z]) -1¢Q[ ‘z]
9B (Bi1+B1. B1). (B2+1, 1) (Bi+Bi1. B, (B2, 1)
k . .
Yy LB B By )

B2+ J)

k=0 j=0
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and
d (a1, 1), (@1+1, 1)
—(1‘1’2[ ’Z)]'I‘I’Z[ H
9B1 (Bi+Bi1. BD). (B2. 1) (B1+Bi1, B1), (B2+1, 1)
k . .
- iz )1V (B + Bi + jB) (@1 + (k = j)z* 46)
=0 =0 B2+ (k—j))
where
o I'(ay + I (e + (k= j))
.k

KT k= )T B+ Bi+ jBOT (B + B+ (k— NBOT (B + NI (B2 + (k — )

In view of (42), (45), and (46), we obtain

2080

ook . .
. oy + (k- j) a1+.1] k
> >R + B+ jB -
k=0 j=0 s B l)[ﬂz-i-k—j prvil”

oo [(k—1)/2]

(k—2j)(a1 — B)(W(B1 + B + (k— j)B1) — ¥ (B1 + B1 + jB1))
2 )
/; /2:(:) " Bt k— )t )

47

From the fact that the digamma function v is increasing on (0, co) we deduce for
k—j=>jGe.,[(k—=1)/2] = )),

Vv (B1 + B+ (k= j)B1) =¥ (B1 + B1 + jB1) > 0,

and k — 2j > 0. Hence the function £2(81) is positive under the conditions stated.
Furthermore, the function 8; +— x2(fB1) is increasing on (0, 00). So the function
x(B1) = x1(B1)x2(B1) is increasing on (0, 0o), as a product of two positive and
increasing functions. O

Theorem7 Letay, B > 0, suchthat By > 0.Ifa; > Bo. Then the following inequality

B I'(B1+B1) L(B1+B1+1)
T\ A s (a1, 1) T (3D - (1, 1) TT@FD
Xlll’z[ H < 1%[ H

I'(B2) (B1, B1), (B2, ) (Bi+1. B1). (B2 1)
(48)

holds true for all z € (0, 00).

Proof Suppose that ; > B, and we define the function & : (0, co) —> R with the
following relation:

Bi + B [ S @ R
E() = 1o tp[ ’z] —lo q/[ H .
@ B Pl ). ) 12 8. 1)
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Make use of the following formula

. (@1, 1) ' r'B) - (@141, 1)
111/2[ ’Z] =—1l1/2[ ‘Z],
(B1. B, (B2, 1) I'(B1 + By) (Bi+B1. B1). (B2+1, 1)

we thus get

L @+l D N CIRE )
| ] B

=) = I"(B1) (Bi+Bi+1, B, (Ba+1, D11 (Bi1+B1. By). (Ba+1. 1)
=T - (a1, 1) - (@1, 1)

(B + By) 1‘1’2[ a1 ‘Z:I 14/2[ o ‘Z] (49)

(Bi+1. B1). (2. 1) (B1. B1). (B2.1)
r'(By)
= (x B+ D = x(B)).
F(ﬂ1+81)( P P

By taking into account Theorem 6 we deduce that Z’(z) > 0, and consequently the
function Z (z) is increasing on (0, co). Hence

Bi, (F(“l)). (50)

~ 8 2\

By these observation and using the relationship:

,31+31=<F(,31+B1+1)>.( (B )
B1 rgr+1 r'Bi+B))’

we can complete the proof of the above-asserted results immediately. O

Corollary4 Let o, B > 0, such that a1 > By. Then the following inequality

>2 (581

7 [ (a1, 1) ’ :I 5
Y2 it B, (o [F(,Bz) @2[ (1, 1) ‘z”ﬂl
7 [ @D ‘ ] I(ar) (Bi+1. B, (B D)
1¥2 z
(B, B1), (B2, 1)
is valid for all z € (0, 00).
Proof From the inequality (50), we have

B1+B)

- (a1, b - (a1, D
RN | R s
(Bi+1, B1), (B2, 1) _ (Bi+1, B1), (B2, 1)

raplm g [ @D - w[ D H
Llog) (71 Z
[nm] 1“’2[ H 2 B, 8o 1)

(B1, B1), (B2, 1)
By
r S (@D Bl
|: (B2) X 111/2[ 1 ‘ZH > 1.
I'(ay) (Bi+1, B1), (B2, 1)
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If we use the above inequality and the Arithmetic—Geometric Mean Inequality, we
find that

'f/[ (o1, 1) ‘ ] 5
! 2l g1 8. g )| [F(,Bz) w[ (@, 1) H]ﬁl

T (@D T 2
1%[ H (a1)
(B1. B1)., (B2. 1)

(B1+1, By), (B2, 1)

B1+By
- (a1, 1) Bl
111/2[ ‘z]
(B1+1, BY), (B2, 1)

I:F(o“)]/?} '1"'/ I: (a1, 1) ’ ]
x 1% z
I'(B2) (B1, B1), (B2, )

(52)

> 1.
This completes the proof. O

Letting in the inequalities (48) and (51) the value By = 1, we obtain the Lazarevi¢
and Wilker-type inequalities for the hypergeometric function | F>.

Corollary 5 Let a1, B > 0. Then the following inequalities

a B aj B+l

[1F2( z)] < [1F2< Z)] (53)

B1, B2 Bi1+1, B2
and

o)

1F2< 1 Z) a1 B

Bl gy [le( z)]ﬂl >2 (54)

1F2< Z) Bi+1, B>

B1, B2

hold true for all z € (0, 00).

Letting o1 = 1 in the inequalities (48) and (51), we get the Lazarevi¢ and Wilker-
type inequalities for the four-parametric Mittag—Leffler function Ep, g,.1,,(2).

Corollary 6 Let 81 > 0 and By > 0.If 0 < By < 1, then the following inequalities

T'(B1+B1)
1 A e Fy+84)
EB, pi:1.,(2) < [EB’ HLL (Z):I B+ (55)
(F(ﬂz)) 1.A;1.A LB+ 1,8

and B

Eppi+1;1,6(2) B
— AL I:F(,BZ)EBl,ﬁl-i-l;l,ﬂz(Z):I >0 (56)

EB]sﬁlilyﬂZ(Z)

hold true for all z > 0.
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Remark 3 (1) Letting By = 1 in Theorem 6, we conclude that the function
+1
B 1P (5 | ) /1P (52

is increasing on (0, c0).

(2) If we choose a1 = f2, in (48) [resp. in (51)], we conclude that the inequality
(48) [resp. (51)] is a natural generalization of the Lazarevié-type inequality for the
Wright function [4, Theorem 4.1, p. 138]

T(B1+B)) rB1+B1+1)

[Wap (@] TP < Wy g ()] TR (57)

(3) Choosing By = 1 and 81 = v + | where v > —1 in (57), we obtain [9, Theorem
1]:
[Z,(]1V TV < 7,40 2), (58)

where z € R. It is worth mentioning that in particular we have Z_1/2(z) = cosh z and
Z12(z) = sinh z/z; thus if v = —1/2, we derive the Lazarevi¢-type inequality [10, p.

270]:
coshz < (sm Z) .
z

(4) If we choose a1 = f2, in (51), we deduce that the inequality (51) is a natural
generalization of the Wilker-type inequality for the Wright function

Whg g+1(2)
Wh g(2)

B
B

+ W gr1()1F =2, B,B,z>0. (59)

(5) Taking in (59) the values « = 1 and 8 = v + | where v > —1, we obtain the
following inequality [9, Theorem 1]:

Zy11(2)

1/(v+1)
7,0 +[Zv+1(2)] >2, (60)

where z € R. If v = —1/2, we derive the Wilker-type inequality [11,12]:

. 2
(smhz) +tanhz - 1)

Z Z

where z € R.

5 Further results

In this section we show other inequalities for the Fox—Wright functions.
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Theorem 8 Let o, B > 0, such that a; > Bi+1, i = 1,..., p. Then, the function
(ap, 1)
Z plIJ*H[ ! ‘z] is log-concave on (0, 00). Furthermore, the following
LB BY). (B 1)
inequalities
(ap, 1) (ap, 1)
| @]l =]
PEPEL g1 B, 8, 01T 1P TP L8y, B, By 1)
(ap, D) 21+ 22
= W] e (62)
PEPH g B, By 0] 2
(ap, D ( P g )(%)
Y [ H < e\ P ATGIEED z >0, (63)
PEPE LBy B, By, 1)

(@p+1.1) L r
plI/pH[ » H < (11> < (B1) )
(Bi+B1. B1). (Bp+1.1) iy Bi+1 J NI (B + By)

(ap, 1)

‘z], z>0 (64)
B, B, (Bp, 1)

p‘pp+l[
hold true.
(ap7 1)
(B1, B1), (Bp, )

(ap. 1)
(0, o0), it suffices to prove that the logarithmic derivative of o z
Yreilg, . Bp: D
isdecreasing on (0, 0o). Making use of the power series of the normalized Fox—Wright

function, we get

Proof To prove that the function z plI/[’,k +1[ ‘Z] is log-concave on

(@p. 1) /
<p11/*+1[ ‘Zl]) o .
14 (lgl»Bl)v(ﬁp,l) Z l 1F(ai +k+ I)Z
»¥y 1[ oy H B+ e+ DB) T2 T+ k+1)
P, BY). By 1)

/Z 17 (@i + k)2

SKIC (B + kBT T+ k)

Now, we define the sequence (uy)k>0 by ux = ( ?:1 (f(i?[iﬁl)c)) ' (F(I/f;ff-l(;crf—llg)lgh)) )
Thus,

Uil _ ﬁ (@i +k+DBiv1+K)\ ( I'?(B1 + (k+ 1)By) )
Ui (@i +b)(Bi +k+1) I'(B1 +kB)I (B + (k+2)B;

I'?(B1 + (k+ 1)By)
T I'(Bi+kB)I (B + (k+2)B))’

i=1

(65)
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foro; > Bit1, i =1, ..., p. Onthe other hand, taking in (28) the values z = B1+k B
and @ = b = Bj, we deduce the following Turdn-type inequalities

I(Br+kB) (B + (k+2)B1) — I'*(B1 + (k+ 1)B1) = 0. (66)

In view of (65) and (66), we deduce that the sequence (u)r>0 is decreasing. Thus,
the function

( g [ (aep, 1) ‘ ]>// W [ (ap, 1) ‘ :|
= Z P Z
PR gy By, By 1) Py, By, (Bp. 1)

(ep, 1)
is decreasing on (0, o), and consequently the function z — ¥ | [ ! ‘z]
PTELB1. B, (Bpo 1)
is log-concave (0, oco). This implies that for all # € [0, 1] and z;, zo > 0, we have

(@p, D ! (@p, ) 1=
v 111]} [w* [ \zz]}
[” PHL g1, B, By 1) PR g B, (By. 1)

" I: (Olp; 1)

<, 121+ (1= 2],
PR gy By, By, 1)

setting ¢ = 1/2 we get the inequality (62). Now let us focus on the inequality (63), to
prove this, let

(ep, 1)

z] and g(z) = z.
(B1, B1), (Bp, 1)‘ &

f@) =log ;|

By using the fact that the function f’(z) is decreasing on (0, 0o), we deduce that

the function x — f(z)/g(z) = (f(z) — f(0))/(g(z) — g(0)) is also decreasing on
(0, 00). On the other hand, from the Bernoulli—1’Hospital’s rule and the differentiation
formula (30), it is easy to deduce that

p .
- f@) _ l—[ o ( I'(B1) )
x—0 g(x) Bi+1 I'(B1 + B1)

i=1

Finally, for the proof of inequality (64), we appeal again the monotonicity for the ratio

F/(0)/g(x). we get
P < 15[ o ( r ) )
B Bi+1 ) \I'(B1+B1) )"

i=1

By again the differentiation formula (30) the proof of inequality (64) is done, which
evidently completes the proof of Theorem 8. O

Taking in Theorem 8 the value B; = 1, we obtain the following inequalities for the
hypergeometric function , Fpy1.
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Corollary 7 Let oy, B1, B2 > 0. If &; > Bix1, i = 1,..., p, then the function
Z > pFpi1(2) is log-concave on (0, 00), and satisfies the following inequalities:

< O] yeeey ap ; F AL, Op . - F AL, lp | 7] +22 . . ()
pLp+1 1)pLp+1 2) = plp+l B 1, 22 s
13] ----- ,3/)+1 ﬂls"»vﬂ/7+l /31 <<<<< ﬂp+l 2
A yeeny ap Ao ®p z
P p+1< 1) el 2> 0,
BiseesBpti
aj+1,..,0p+1 oAy, ApyeenOp
F < ‘z <P R z).
plp+l )= plp+l
Br+1,....Bpr1+1 /31,...,,31)+1 Bl Bpri

Next we show new inequalities for the four-parametric Mittag—Leffler function
Ep, 1,8, (2) as follows.

Corollary8 Let By > O and By > 0. If 0 < By < 1, then the function 7 +>
Eg, By:,,1(2) is log-concave on (0, 00). Moreover, the following inequalities

Ep, g1:1,8, (21 EB p1:1,8,(22) < EB, g1:1,8, (21 +22)/2),

T'(B1)z
e P2T(B1+By)

_— 67
I"(B1) ©n

EB g1, =

hold true.

Proof Setting 1 = 1 in Theorem 8 we deduce that the function z = Ep, g,.1,4,(2) is
log-concave on (0, co). This completes the proof of the two inequalities (20) asserted
by Corollary 8. O
6 Open problems

Finally, motivated by the results of Sects. 3 and 4, we pose the following problems:

Problem 1 To prove the monotonicity of the function IC,(fl’ﬂ ) (A, B, z)definedin (36).

Problem 2 To prove the monotonicity of the function & : (0, co) — R defined

ﬂ] + B] [ ~ (O‘p»Ap) ~ (Ofp»Ap)
E(z) = lo '4 [ ‘z] —lo '4 [ ‘z] ,
( Bi BT 141, B0, By By 81771, By, Byt By

3 [ @p+Ap, Ap) ‘ ] ; [<ap+A,,,Ap> ]
Z Z
(s = LBV P+, B, By 4B, B0l ) P L4y, By
ST R+ By . [ @p. 4p) H s [@‘Mﬂ) Z]
POl 8141, B1), (By-1. By—1) P, B,
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