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A series of titanium-based coatings (50–550𝜇m thick) on an aluminium substrate was deposited via multichamber detonation
sprayerwith different barrel lengths (300, 400, and 500, all inmm).The titanium-based coatings obtained in these three experiments
were examined by optical microscopy, scanning electron microscopy, and X-ray phase analysis.The hardness tests were carried out
by the Vickers method with a test load of 50 g. The multichamber detonation sprayer with a barrel length of 500mm produced the
dense layers of coating with hardness of 1300 ± 250HV

0.05
and porosity of 0.24%, the best result in the experiments.

1. Introduction

Aluminium and its alloys are important materials of research
because it is abundant in nature, cost effective, and easy to
handle and represents an important category of materials due
to its high technological value, electrical capacity, and wide
range of industrial applications [1], especially in aerospace
and household industries. By nature, aluminium alloys are
highly reactive [2, 3].The challenge now is to protect surfaces
of the aluminium parts under the most severe atmospheric
conditions for a term of not less than 6–8 years.

A possible approach to increase their corrosion resistance
is the deposition of a titanium coating layer [4, 5]. A thin layer
of the titanium-based coating will have no substantial effect
on the weight of a structure [6].

Theunique properties of titanium such as high strength to
weight ratio, excellent corrosion resistance, and biocompati-
bility have made this material a favourable option for many
applications in aerospace [7], implants [8], and corrosive
environments [9]. In view of better physical-mechanical
properties of titanium and its compounds, it is of interest to
deposit a coating of titanium-based materials on aluminium
[10, 11]. Due to the unique properties of titanium, the
titanium-based coatings are commonly used in aircraft, pipes

for power plants, armour plating, naval ships, spacecraft, and
missiles [12, 13].

At present, the process of titanium-based coatings for-
mation is usually performed by means of thermal spray
processes such as APS [14, 15], CVD [16], HVOF [17–19], cold
spray [10, 20, 21], and warm spray [22, 23]. In conventional
thermal spray processes, sprayingmaterials are heated to high
temperatures to induce complete or partial melting.

The critical velocity necessary to form the bonding of
powder and substrate is relatively high for titanium due to its
lower deformability related to its hcp crystal structure [24];
the reported microstructures of titanium coating tend to be
porous as compared to more easily sprayable materials such
as copper and aluminium [25].Therefore, the development of
newmethods formaking thick coatings of titaniumwith high
density is indispensable formany industrial applications [26].

Our previous research [27] has shown that the titanium-
based coatings obtained using multichamber detonation
sprayer (MCDS) are uniform and dense, with porosity below
1% and high hardness; the bulk of the coatings material
is generally deformed and closely packed; however, coarse
inclusions in the form of nondeformed discrete particles were
detected.
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Figure 1: Titaniumpowder particles (100wt.%Ti): SEM image (a),micrograph of an as-polished powder cross section (b), cumulative powder
size distribution measured by laser diffractometry (c), and XRD spectra (d).

The aim of this paper is to investigate the microstructure
and microhardness of titanium-based coatings which were
obtained by multichamber gas-dynamic accelerator with
different barrel lengths (300, 400, and 500, all in mm).

2. Experimental Procedure

The titanium-based coatings were deposited using commer-
cial pure titanium powder Gr 1 produced by plasma atomiza-
tion (Raymor Industries Inc.). To study the microstructures
andmorphologies of the titaniumpowder, cross sectionswere
prepared and analyzed by electron ion microscope (SEM:
Quanta 200 3D, Quanta 600 FEG) (Figures 1(a) and 1(b)).The
titanium particles had a spherical morphology (Figure 1(a)).
The particle size wasmeasured by laser diffractometry (Anal-
ysette 22 NanoTec, FRITSCHGmbH, Germany) and showed
that 90% of the particles were in the supplier specified size
range of −45 to +5 𝜇m with approximately 10 vol.% below
9 𝜇m (Figure 1(c)).

Hardness of titanium powder particles was measured
and was found to be at the level of 257 ± 25 HV

0.01
. The

spray powders are dense and show no internal porosity
(Figure 1(b)). The titanium powder of the phase composition
and structure tested by X-ray diffraction have been certified
at angle 2𝜃 of 10 to 1000 by scanning with step Δ(2𝜃) =

0.020 and an exposure time of 2.5 seconds at a point on a
diffractometer Rigaku Ultima IV (Cu-K𝛼, 𝜆 = 0,154059 nm).
The phase analysis shows that the main phase in the titanium
powder is Ti with hexagonal structure (Figure 1(d)).

Flat specimens of an aluminium alloy 6063 (Fe-0.35Cr-
0.06Cu-0.10Mg-0.05Ti-0.15, all in wt.%) were used as sub-
strates being sandblasted by 250 F360 alumina grits prior
to spraying. The dimensions of the samples were 30 × 30 ×
5mm.The specimens were transversally cut by spark erosion,
mechanically polished, and prepared by standard metal-
lographic sample preparation methods [28] of sectioning,
mounting, and polishing [29]. The samples were prepared by
grinding with abrasive SiC paper (200, 500, 800, and 1,000
grades), followed by polishing with 1𝜇m diamond slurry.

In the present study, a multichamber, vertically mounted
detonation sprayer (MCDS) was employed to deposit
the titanium-based coatings. The automated equipment
(Figure 2) consists of (1) device for spraying, (2) standard
powder feeder with a feed rate of up to 3 kg/h, (3) a standard
low-pressure (max. 0.3MPa) gas panel for feeding oxygen,
propane-butane, and air, (4) an automated control system for
the technological process, (5) an automated manipulator for
moving MCDS, and (6) a specimen holder [27, 30, 31].

A characteristic feature of MCDS is that the powder is
accelerated by using the combustion products, which are
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Figure 2: Equipment for deposition of coatings: (1) device for
spraying; (2) standard powder feeder with feed rate of up to 3 kg/h;
(3) standard low-pressure (maximum0.3MPa) gas panel for feeding
oxygen, propane-butane, and air; (4) an automated control system
for the technological process; (5) an automated manipulator for
moving MCDS; (6) a specimen holder.

formed in the MCDS chambers and are converged before
entering the barrel, where they interact with the two-phase
gas-powder cloud. A standard powder feeder of the Metco
Company is used to feed powder to the barrel. A continuous
gas-powder jet is divided into portions and fed to the
barrel by using a special device: gas-dynamic synchronizer.
The process of detonation mode of combustion of the fuel
mixture (propane-butane, oxygen, and air) is initiated in a
special chamber by using a spark plug at a frequency of 20–
50Hz. Then, the detonation mode of combustion spreads
to the other chambers. Such initiation system and powder
feeding scheme synchronize both the processes of detonation
combustion and the injection of the powder into the barrel
[32].

The titanium-based coatings (50–550𝜇m thick) were de-
pos-it-ed in 6 passes in the three experiments differing in
barrel length (300, 400, and 500, all in mm). In all cases, the
powder feed rate was 800–1050 g/h, the detonation initiation
frequency was 20Hz, the distance from the exit section of
the barrel to the plate treated was 50mm, and the diameter
of barrel was 18mm. Flow rate of fuel mixture components
was oxygen (2.2–2.7m3/h), propane 30% + butane 70% (0.5–
0.7m3/h), and air (1.2–1.4m3/h).

Examinations of microstructure were carried out by
scanning electron microscope (SEM: Quanta 200 3D and
Quanta 600 FEG) and opticalmicroscopy (OM,OlympusGX
51). Porosity was determined by the metallographic method
with qualitative and quantitative analysis of pore geometry
using an inverted optical microscope (Olympus GX51) [33].
Ten arbitrarily selected micrographs for each experimental
point were registered in the optic microscope (in the bright
field, magnified 500x) using SIAMS Photolab software. Local
phase and analyses were conducted by X-ray powder diffrac-
tometry (Rigaku Ultima). An X-ray powder diffractometer
Rigaku Ultima IV using Cu-K𝛼 monochromatic radiation
(wavelength 𝜆 = 0.154178 nm) operating at 40 kV and 40mA

was employed to determine the X-ray diffraction patterns.
X-ray diffraction spectrum for phase analysis was shooting
by the scheme 𝜃-2Θ scan focusing by Brega-Brentano in the
angular range 5–95 deg. Investigations were carried out in the
𝜃/2𝜃 step scanmodewith a step of 0.02 degrees in the 2𝜃 range
and a rate of 0.6 deg./min. Crystalline phases were identified
using the ICCD PDF-2 (2008) powder diffraction database
[34].

Measuring of microhardness was done using an auto-
maticmicrohardness tester (DM-8B,AFFRI) viaVickers’s test
with a test load 50 g (HV

0.05
). Indentation was carried out on

cross sections of samples of the coatings, with the distance
between the indents being 20 𝜇m.The average of ten tests was
used as an indicator of coating hardness.

3. Results and Discussion

The typical lamellar microstructure of titanium-based coat-
ings obtained in our experimental study is presented in
Figure 3. The coatings have a thickness of about 50–550 𝜇m.
The analysis performed allows us to make a conclusion that
the fine powder particles were heated and deformed to a state
of fine lamellae and that they filled the spacing between the
coarse particles to form a dense coating (Figure 3).

Electron microscopy studies of transverse sections of
the system “coating-substrate” (Figures 3(a) and 3(b)) show
that the bulk of the coating material deposited using barrel
length of 300mm is not deformed; it consists of the non-
deformed discrete particles and has the porosity of 13.49%
(Figure 3(c)). Some of the reactive products may solidify
into a semimelt state when barrel length is 300mm. The
coating layer deposited using barrel length of 400mm was
denser (Figures 3(d) and 3(e)) and had a porosity of 0.92%
(Figure 3(f)) [35]. However, a lot of coarse inclusions in the
form of nondeformed discrete particles were detected.

Themicrostructure of the coatings deposited using barrel
length of 500mm is dense and homogeneous (Figures 3(g)
and 3(h)). The coatings (barrel length: 500mm) had porosity
of 0.24% (Figure 3(i)).

Comparing the microstructures presented in Figure 3, it
can be seen that the apparent porosity decreases with the
increase of barrel length from 300 to 500mm and dense
coatings with porosity 0.24% are produced at barrel length
of 500mm. The absence of porosity and a largely deformed
splat structure in Figure 3(h) confirms that barrel length was
used correctly to achieve an optimal dense material.

The spectrum shown in Figure 1(d) indicates that the
process used in producing the titania feedstock resulted in the
presence of Ti with hexagonal structure. Figure 4 shows the
XRD patterns of the titanium coatings.

The phase analysis shows that after spraying the main
phase in the coatings layer is Ti with hexagonal structure
(Figure 4). The distinguished interplanar spacing calculated
from reflections makes it possible to identify the following
phases in the coatings: TiO with a cubic lattice, Ti

2
O
3
with

hexagonal structure, Ti
3
O
5
with orthorhombic structure,

anatase with tetragonal structure, and rutile with tetragonal
structure.
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Figure 3: Continued.
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Figure 3: SEM micrographs of cross sections of titanium-based coatings and histogram plot of the pore size distribution: ((a), (b), and (c))
barrel length 300mm; ((d), (e), and (f)) barrel length 400mm; ((g), (h), and (i)) barrel length 500mm (SEM, backscattered electron mode).

Titanium exists in different oxidation states: Ti2+, Ti3+,
and Ti4+. The corresponding oxides are TiO, Ti

2
O
3
, Ti
3
O
5
,

TiO
2
, and a complex combination of oxides called Magneli

phases, which correspond to the general formula Ti
𝑛
O
2𝑛−1

(𝑛 > 3). The Magneli phases are formed when TiO
2
is

annealed in a reducing atmosphere [36].
It can be seen (Figure 4) that the coating fabricated with a

barrel length of 300mm is mainly composed of unreacted Ti,
TiO, and Ti

2
O
3
.When the barrel length increases to 400mm,

the coating is composed of unreacted Ti, TiO, Ti
2
O
3
, and

Ti
3
O
5
. This is because, during the spraying process, the

reaction between particles and gas is not complete and the
intermediate and/or metastable oxides may be produced at a
faster rate [37, 38].With the increase of the barrel length up to
500mm, the coating is composed of some unreacted Ti, TiO,
and Ti

2
O
3
, and, as a new component, TiO

2
(anatase, rutile)

was found in the coating. It means that, with the increase of
the barrel length, more reaction time (higher temperature)
and more reaction gas can be provided for the reactions of
oxidation [39, 40]. As a result, more Ti oxides and stable Ti
oxides will be produced.

An average microhardness of the coatings is given in
Table 1. A wide range of hardness values in obtained coatings
is caused by their different phase composition and porosity.

Table 1: Microhardness of samples, data based on HV0.05 test.

Substrate (aluminium 6063) 100 ± 25
Titanium-based coatings
Barrel length, mm
300 685 ± 250
400 820 ± 250
500 1300 ± 250

The fine powder fraction is almost completely melted, while
the larger particles fraction might remain solid. In practice,
this leads to the formation of a material with some local
differences in mechanical properties.

The microhardness increases with the increase of barrel
length in the range of 300–500mm. This relationship can
be explained as follows: with the increase of barrel length,
more reaction time and more reactants are provided. This
promotes the reactions of Ti with oxygen in the air and more
Ti composite hard phases may be synthesized as mentioned
in the former section [39].

Microhardness was similar in experiment #1 (barrel
length: 300mm) and in experiment #2 (barrel length:
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400mm), ranging from 435 to 1070 HV
0.05

. These coatings
were fairly porous and their cross section micrographs
(Figures 3(a)–3(f)) clearly revealed numerous spherically
shaped particles, which is an indication of the lack of plastic
deformation.

Thus, strain hardening was not prevalent, particularly
when compared to denser coatings, as for barrel length
of 500mm. In these situations, the microhardness values
increase significantly (1300 ± 250HV

0.05
). The highest value

recorded was 1550HV
0.05

and it was observed in experiment
#3 (barrel length: 500mm). In particular, under these condi-
tions, a significant amount of material jetting occurred (Fig-
ures 3(g) and 3(h)). This facilitated the plastic deformation
of the titanium particles and, consequently, a denser coating
is produced. Thus, the likelihood of the decreased coating
microhardness caused by weaker interparticle bonding is
reduced. Second, a tamping effect in which the initially
sprayed particles would be further flattened and strain-
hardened by the subsequent impacting particles would occur.
It means that a significant strain hardening would take place.
As a result, the coating microhardness would increase [40].

4. Conclusions

In the present investigation, the multichamber detonation
sprayer was used for the deposition of the titanium-based
coatings of titanium powder on aluminium substrate. The
multichamber gas-dynamic sprayer (MCDS) has replaceable
barrels (lengths 300, 400, and 500mm) and operates on a
fuel mixture of gases: propane (30%) + butane (70%), oxygen,
and air. It was established that the apparent porosity and
microhardness increasewith an increase in barrel length from
300 to 500mm and the densest coatings with the porosity of
0.24% and microhardness of 1300 ± 250 HV

0.05
are produced

at barrel length of 500mm. At that spraying experiment,
the fine powder particles were heated and deformed to a
state of fine lamellae, and they filled the spacing between
the coarse particles to form a dense homogeneous coating.
Also it has been found that, with the increase of barrel
length up to 500mm, TiO

2
(anatase, rutile) appear in the

coating besides Ti, TiO, and Ti
2
O
3
. This corresponds to

the following phase transformation taking place during the
spraying: TiO → Ti

2
O
3
→ Ti

3
O
5
→ phase Magnelli →

TiO
2
. It means that, with the increase of barrel length, more

reaction time (higher temperature) and reaction gas can be
provided for reactions of oxidation. It was established that the
microhardness growth associated with a change in porosity,
with the quantitative phase ratio in the coatings, and with the
appearance of TiO

2
(anatase, rutile).
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