ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ»

(НИУ «БелГУ»)

ИНСТИТУТ ФАРМАЦИИ, ХИМИИ И БИОЛОГИИ КАФЕДРА БИОЛОГИИ

ИЗУЧЕНИЕ СУТОЧНОЙ ДИНАМИКИ НАБУХАНИЯ СЕМЯН В УСЛОВИЯХ АЛЛЕЛОПАТИЧЕСКОГО ВЛИЯНИЯ ДРУГИХ РАСТЕНИЙ

Выпускная квалификационная работа обучающегося по направлению подготовки 06.03.01 Биология очной формы обучения, группы 11001519 Зятевой Елизаветы Сергеевны

Научный руководитель к. с.-х. н., доцент Глубшева Т. Н.

Содержание

Введение	3
1. Аналитический обзор источников литературы	5
1.1. Морфо-анатомические особенности семян	5
1.2. Физиология семян	8
1.3. Аллелопатическое взаимодействие растений	. 12
2. Материал и методы исследования	. 17
2.1. Морфобиологическая характеристика объектов исследования	. 17
2.2. Морфобиологическая характеристика аллелопатических агентов	. 17
2.3. Методика исследований	. 17
3. Полученные результаты и их обсуждение	. 20
3.1. Динамика набухаемости семян овощных культур под влиянием укр	
3.2. Динамика набухаемости семян овощных культур под влиянг петрушки кудрявой	
3.3. Динамика набухаемости семян овощных культур под влияни сельдерея пахучего	
Заключение	. 40
Список использованных источников	4 1

Введение

К сложным природным явлениям, имеющим огромное эволюционное, экономическое и практическое значение, относятся взаимоотношения растений при их совместном произрастании [17]. В биологии это явление называется аллелопатия. Она связана с выделением между растениями различных органических веществ. В зависимости от многочисленных взаимодействующих компонентов и факторов среды эти вещества могут выступать в роли как стимуляторов, так и ингибиторов жизненных процессов [37]. Аллелопатическое влияние распространяется на все физиологические явления. Особый интерес среди которых представляют начальные этапы развития, а именно набухание. Набухание семян является одним из основных условий для их прорастания, так как во время этого процесса помимо изменения физического состояния семян создаются условия для начала жизненных процессов в семени [2]. С момента появления в семенах свободной влаги начинается фаза набухания семян. Эта фаза характеризуется активацией жизнедеятельности клеток, усилением гидролитических процессов, переводом ферментной системы в активное состояние и перестройкой коллоидов. На уровне биохимических изменений процесс набухания представляет собой проникновение молекул воды в среду высокомолекулярных соединений и раздвигание отдельных звеньев в цепи их молекул. В итоге оболочки семян приобретают эластичность, а само семя увеличивается в объеме [36]. Ранее набухаемость под влиянием аллелопатических агентов была рассмотрена на примере бархатцев [16].

Практический интерес представляет вопрос изучения влияния растительного опада растений семейства Сельдерейные на всхожесть семян овощных культур. Известна аллелопатическая активность семян овощных сельдерейных культур [9].

Цель данной работы — изучить суточную динамику набухания семян в условиях аллелопатического влияния других растений.

Исходя из цели работы были выделены следующие задачи:

- 1. Изучить динамику набухаемости семян овощных культур под влиянием укропа пахучего.
- 2. Изучить динамику набухаемости семян овощных культур под влиянием петрушки кудрявой.
- 3. Изучить динамику набухаемости семян овощных культур под влиянием сельдерея пахучего.

1. Аналитический обзор источников литературы

1.1. Морфо-анатомические особенности семян

Семя, развивающееся из семязачатка, представляет собой орган размножения и расселения растений. Составные части семени представлены зародышем, запасающей тканью и семенной кожурой. Семена многих растений лишены как таковой запасающей ткани. В таком случае запасные вещества откладываются в самом зародыше [24].

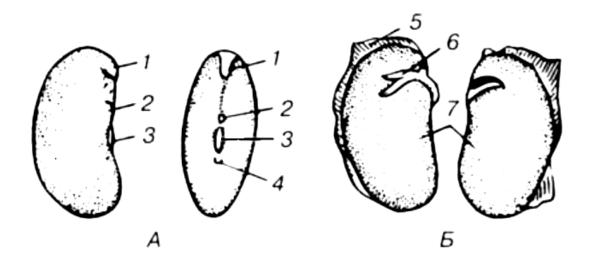


Рис. 1. Строение семени фасоли: А – общий вид; Б – зародыш; 1 – зародышевый корешок; 2 – пыльцевход; 3 – рубчик; 4 – семяшов; 5 – спермодерма; 6 – зародышевая почечка; 7 – семядоли

Зигота, из которой и развивается зародыш, образуется в процессе двойного оплодотворения. Вследствие того, что женский гаметофит цветковых растений не содержит запаса питательных веществ, именно за счет двойного оплодотворения возможно быстрое развитие запасающей ткани [24].

По окончании периода покоя, длительность которого у всех растений различна, начинается митотическое деление зиготы. После первого деления образуются две клетки — базальная, которая находится ближе к микропиле и образует вертикальный ряд клеток путем поперечного деления, и терминаль-

ная, образующая шаровидный предзародыш за счет деления в разных направлениях. Из мелких клеток предзародыша формируются органы зародыша, которые представлены зародышевой почечкой, зародышевым стебельком, зародышевым корешком и семядолями [18].

Развитие же запасающей ткани семени (вторичного эндосперма) начинается сразу после оплодотворения и предшествует образованию зародыша [1]. Существуют две разновидности вторичного эндосперма: нуклеарный и целлюлярный.

Формирование нуклеарного эндосперма, характерного для однодольных и некоторых двудольных растений, происходит в процессе многократного деления триплоидных ядер без обособления клеток. Клеточные стенки возникают позднее или вообще не образуются [24]. Целлюлярный эндосперм, типичный для двудольных, формируется с образованием клеточных стенок непосредственно после каждого митотического деления.

Вторичный эндосперм может как полностью поглощаться развивающимся зародышем, как например у представителей семейств Астровых, Бобовых, и Капустных, так и становиться крупноклеточной запасающей тканью семени, как у представителей семейств Мятликовых и Сельдерейных [30].

В том случае, когда зародыш в процессе развития поглощает большую часть эндосперма, под семенной кожурой остается лишь тонкий его слой. Это характерно для многих растений в том числе для яблони, миндаля, груши и картофеля [39].

Запасными веществами семени являются крахмал, жиры, белки и гемицеллюлоза, процентное соотношение которых сильно варьируется [45]. Именно в зависимости от преобладающего запасного вещества семена подразделяются на крахмалистые (злаковые), маслянистые (горчица, подсолнечник), белковые (соя, фасоль) и семена с запасной гемицеллюлозой (кофе). Воды в зрелых семенах содержится всего 6-12%.

Семенная кожура служит семени в качестве защиты от воздействия таких неблагоприятных факторов внешней среды, как механические поврежде-

ния, высыхание и преждевременное насыщение водой [53]. В зависимости от строения околоплодника варьируется толщина семенной кожуры.

Образование различных форм выростов на семенной кожуре способствуют распространению семян ветром, насекомыми и птицами [21].

Принадлежность семян цветковых растений к одному из четырех морфологических типов зависит от расположения в них запасных питательных веществ (рис. 2) [24].

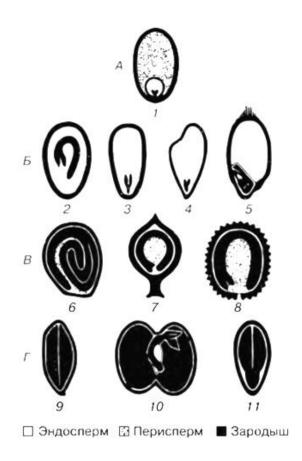


Рис. 2. Типы семян: A-c эндоспермом и периспермом; B-c эндоспермом; B-c периспермом; $\Gamma-$ без эндосперма и перисперма; 1- кубышка; 2- томат; 3- морковь; 4- виноград; 5- пшеница; 6- свекла; 7- шпинат; 8- куколь; 9- тыква; 10- фасоль; 11- лен.

Семена с эндоспермом и периспермом характерны для представителей семейств Имбирные, Кувшинковые и Перечные. Этот тип семян является наиболее примитивным, вследствие чего редко встречается.

Семена с эндоспермом являются наиболее распространенными. Этот тип семян характерен для 70% покрытосеменных растений. Семена представителей таких семейств как Маковые, Мятликовые, Пасленовые, Сельдерейные и др. относятся именно к этому типу.

В семенах представителей таких семейств как Гвоздичные и Маревые эндосперм не развивается. Следовательно, запасные вещества откладываются только в перисперме.

Вследствие того, что семена представителей таких семейств как Астровые, Бобовые, Капустные, Тыквенные и др. относятся к наиболее высокоорганизованным, запасные вещества семени откладываются в его семядолях. Соответственно развития эндосперма и перисперма не происходит [46].

1.2. Физиология семян

Даже созревшие семена большинства растений, находящиеся в благоприятных условиях, проростают не сразу. Это объясняется тем, что данные семена находятся в состоянии покоя. Наиболее распространенная причина такого состояния семян в недоразвитости зародыша. Также причиной может служить особенность строения семенной кожуры.

Процесс перехода семян из состояния покоя к активной жизнедеятельности характеризуется различными физическими и биохимическими изменениями. Именно совокупность этих изменений называется прорастанием семян. Прорастание семян является сложным биологическим процессом, который, несмотря на обилие накопленного экспериментального материала, до сих пор вызывает большой интерес, связанный с огромной экологической значимостью данного явления.

Как и любой процесс прорастание состоит из последовательных этапов – фаз прорастания (рис. 3). Каждый из этих этапов является неотъемлемой частью, так как характеризуется своеобразными физическими и биохимическими изменениями. Выделяют следующие фазы прорастания семян:

- 1) фаза водопоглощения;
- 2) фаза набухания;
- 3) фаза роста первичных корешков;
- 4) фаза развития ростка;
- 5) фаза становления проростка.

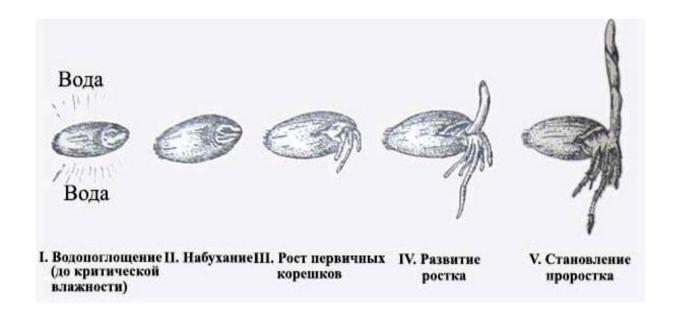


Рис. 3. Фазы прорастания семян

Суть фазы водопоглощения состоит в том, что сухие семена, находясь в состоянии покоя поглощают определенное количество влаги из воздуха или субстрата. Для каждой культуры характерна строго определенная величина, называемая критической влажностью. Данная фаза не характеризуется заметной активацией биохимических процессов и морфологическими изменениями, так как поглощенная гидрофильными коллоидами семени вода включается в содержимое клетки, связываясь ее различными соединениями [33]. Основой фазы водопоглощения является такое физико-химическое явление как сорбция. Продолжительность данной фазы проростания семян зависит от таких факторов, как влажность, температура и состояние семени.

С момента появления в семенах свободной влаги начинается фаза набухания семян. Набухание семян является одним из основных условий для их прорастания, так как во время этого процесса помимо изменения физиче-

ского состояния семян создаются условия для начала жизненных процессов в семени [2]. Эта фаза характеризуется активацией жизнедеятельности клеток, усилением гидролитических процессов, переводом ферментной системы в активное состояние и перестройкой коллоидов. На уровне биохимических изменений процесс набухания представляет собой проникновение молекул воды в среду высокомолекулярных соединений и раздвигание отдельных звеньев в цепи их молекул. В итоге оболочки семян приобретают эластичность, а само семя увеличивается в объеме [36]. Заканчивается фаза наклевыванием, для которого требуется определенное количество поглощенной воды, различное, в зависимости от состава семян, для каждой культуры (табл. 1).

Таблица 1 Поглощение воды семенами различных культур

Культура	Количество погло-	Культура	Количество погло-
	щенной воды (в %		щенной воды (в %
	на воздушно-сухой		на воздушно-сухой
	вес семян)		вес семян)
пшеница	45,6	подсолнечник	56,5
ячмень	48,2	мак	91,0
рожь	57,7	горох	106,8
овес	59,8	фасоль	104,0

В случае подсыхания наклюнувшиеся семена возвращаются в исходную фазу.

Всхожесть семян в большей степени зависит от влажности [26]. Всхожесть семян многих культурных растений в течении некоторого периода времени (8-10 лет) может значительно снизиться из-за недостаточной влажности (12-14%). Однако, всхожесть семян многих сорных растений может сохраняться десятки лет.

Процесс набухания, предшествующий прорастанию семян, протекает даже в семенах, не обладающих всхожестью. Набухание таких семян приводит к их загниванию [8].

Ввиду того, что в клетках находится много веществ, впитывающих воду, при помощи осмоса осуществляется насасывание воды в клетки зародыша и эндосперма через семявход. Количество воды, поглощаемое семенами, зависит от преобладающих в них запасных веществ [28]. Известно, что, маслянистые (горчица, подсолнечник) семена поглощают 30-40% воды, крахмалистые (злаковые) — около 50 — 70%, а белковые (соя, фасоль) — от 100% и более [34]. Помимо состава семян, количество воды, поглощаемой семенем зависит от строения его кожуры.

Вследствие того, что набухание и прорастание семян культурных растений имеет важное значение в сельском хозяйстве, существуют некоторые приемы для ускорения этих процессов.

Скарификация — нарушение целостности семенной кожуры трудно набухающих семян с целью облегчить поступление в них воды, что впоследствии ускорит процесс набухания и прорастания этих семян.

Стратификация — выдерживание семян во влажной среде при низкой температуре в течении нескольких месяцев. Данный прием имитирует природные зимние условия и используется для нормального прорастания семян и получения из них хорошо развитых сеянцев.

Ранее в литературе, описывающей поглощение воды семенами, фазы водопоглощения и набухания не были обособлены, так как более подробно описать значение критической влажности стало возможно только в последнее время [29].

Начало фазы роста первичных корешков характеризуется первым делением клеток первичного корешка, однако путем наблюдения его можно определить позже по появлению над оболочкой семени первичного корешка [23]. Помимо роста корешков данная фаза включает в себя подготовку условий для возможности роста и развития ростка за счет перестройки биохимических процессов.

Начало фазы развития ростка определяется появлением ростка. Рост корешков продолжается и возвращение семян в состояние покоя из этой фа-

зы уже невозможно [42]. Появление у проростков семян культур отличных от злаков сформированной почечки характеризует окончание фазы развития ростка.

Фаза становления проростка является последней фазой прорастания семян и оканчивается она переходом проростка на автотрофное питание [35].

Рассматривая биохимические изменения стоит упомянуть о возрастании содержания в проростающем семени витаминов, органических кислот и других веществ за счет биосинтеза и освобождения их из связанной формы. Гидролиз питательных веществ в зависимости от преобладающего в семени запасного вещества несколько отличается [43]. Например, прорастание крахмалистых семян характеризуется снижением содержания крахмала, свидетельствующем о его распаде и использовании.

1.3. Аллелопатическое взаимодействие растений

Аллелопатия, как и другие взаимодействия растений, является основой для большинства процессов, происходящих в растительных сообществах. Аллелопатические взаимодействия можно подразделить на физические и химические.

Примером физического взаимодействия является образования определенного микроклимата путем создания частичного затенения и повышенной влажности высокими растениями для растений нижнего яруса.

Во всех растительных сообществах возникают химические взаимодействия между отдельными представителями, созданные путем влияния органических веществ, выделяемых растениями в почву и накапливающихся в ней [17]. Помимо этого возможно взаимодействие этих веществ напрямую. Известно как стимулирование, так и угнетение роста и развития различных растений при их совместном произрастании. Известны случаи использования культурными растениями собственных химических веществ, накапливающихся в почве, для защиты от атак некоторых представителей сорных трав

[9]. Однако подобная схема работает и в обратном направлении, то есть угнетение сорными растениями сельскохозяйственных культур. Например, выделения гречихи и овса способны угнетать прорастание мари белой, а для огурцов опасны выделения полыни [6]. Также одни культурные растения могут оказывать как ингибирующее, так и стимулирующее действие на рост и развитие других. Следовательно, взаимоотношения растений в искусственно созданных фитоценозах могут иметь весьма неоднозначный характер.

Как уже было упомянуто, растениями, а точнее их корневыми системами, выделяются в почву различные органические вещества. К таким веществам относятся ферменты, витамины, органические кислоты и фенольные соединения. Фенольные соединения связанные с аллелопатией называются колинами. Давая определение этим веществам, Быков Б. А. автор издания «Экологический словарь» писал: «Колины (от лат. collide – сталкивать враждебно) – одна из групп биолинов, органические вещества, выделяемые высшими растениями и подавляюще действующие на другие виды высших растений; напр., выделяемый плодами яблони газ этилен, задерживающий прорастание семян и развитие проростков многих видов растений» [13]. Почво-утомление является результатом их накопления в почве. Подобное происходит при выращивании одного вида растения на одном и том же месте. Для решения этой проблемы используются севообороты, то есть чередование определенных сельскохозяйственных культур [4].

В сообществах бывают взаимно полезные или просто не мешающие друг другу виды. Однако, когда в сообщество попадает «чужое» растение, начинается борьба не на жизнь, а на смерть. Семена его с трудом всходят. Они могут много лет лежать, не прорастая, а потом, дав всходы, погибнуть, так как молодые растения не выдерживают влияния непривычных для них соседей [12].

Если же чужое для сообщества растение все-таки уцелеет и окрепнет, то оно начнет изменять растительность вокруг себя. Возле него появятся привычные для такого вида соседи. Вскоре здесь образуется небольшой ост-

ровок нового сообщества [37]. Все разрастаясь, оно в конце концов вытеснит старое сообщество с его собственной территории. Итак, не только отдельные растения взаимодействуют между собой, но и целые растительные сообщества сменяют друг друга, наступают или отступают. Так степь сменяется лесом, который затем снова может стать степью, если изменится климат, и т. д. С переменным успехом побеждают то одни, то другие растения. Этот процесс идет миллионы лет, длится он и теперь среди дикой растительности.

Огромные площади давно уже заняли культурные сообщества — посевы. Развитие их направляется человеком. Тем не менее определенные взаимоотношения растений существуют и здесь. Достаточно вспомнить вред, который приносят посевам сорняки, или, напротив, преимущества совместного выращивания растений в смешанных посевах.

Растения с высокой аллелопатической активностью (например, пырей, ясень, лох) легко внедряются в сообщества, подавляя другие виды, но вызывают при этом почвоутомление и не могут быть доминантами [11]. Роль аллелопатии необходимо учитывать при создании смешанных посевов и посадок при обосновании севооборотов (чтобы избежать почвоутомления). Аллелопатические взаимодействия могут быть существенны между интродуцированными растениями и растениями местной флоры. Например, эвкалипты, завезенные на Кавказ из Австралии, аллелопатически воздействуют на травянистые растения кавказской флоры, и здесь под их кронами травы не растут; грецкий орех в садах отрицательно влияет на все прочие культуры.

Возможны аллелопатические взаимодействия между корнями растений, в результате чего корни равномерно распределяются в объеме почвы и практически не сталкиваются. Роль сигнала «занято» могут выполнять выделяемые из корней в почву органические кислоты. Очень важно также, что растения могут поглощать выделения других растений. В опытах с мечеными атомами наблюдалось, что усвоенный кукурузой в процессе фотосинтеза углерод уже через несколько часов обнаруживался в соседних бобовых растениях [22]. Это означает, что совместно растущие растения, переплетаясь кор-

нями, имеют общий обмен веществ, питаются и живут как одна сложная система. Путем такого обмена растения влияют друг на друга химически и изменяют свой химический состав.

Например, кукуруза, растущая вместе с бобами, обогащается белком, что очень важно для кормления сельскохозяйственных животных. Иногда эти изменения химических свойств бывают и нежелательными. Так, культурные растения могут снизить свои качества, если они поглотят какие-то ядовитые вещества, выделенные другими растениями. Как показывают многочисленные исследования, физиологически активные вещества встречаются в выделениях каждого растения [10]. По качеству эти вещества различны, к тому же у одного растения их больше, у другого — меньше. Таким образом, каждое растение в течение своей жизни создает вокруг себя химическую защиту.

Вещества, выделяемые деревьями, привлекают определенные виды растений, которые находят себе защиту под их сенью. Для других подобные выделения — сильный яд, и они не могут расти в этом месте. Мы хорошо знаем, например, запах соснового бора, дубового леса, луга, степи. Было замечено, что летучие и водорастворимые органические вещества, выделяемые растениями леса, вредны для произрастания степных растений [5]. В свою очередь древесные растения, отчасти из-за веществ, выделяемых степными растениями, отчасти из-за засухи, не в состоянии проникнуть в степь и т. д.

Взаимодействуя между собой растения перехватывают друг у друга пищу, воду, свет, но и в этом случае химические выделения дают одним видам преимущества над другими. Вода и питательные вещества, которые растения поглощают корнями из почвы, всегда смешаны с корневыми выделениями соседних растений [7]. Эти выделения могут ускорять или замедлять физиологические процессы.

Так действуют, например, выделения тополя на посеянный рядом овес. Ближайшие растения совершенно угнетены, на краю гибели; немного дальше – растения выше, еще дальше – достигают нормальной величины, вслед за ними идет полоса, где растения стимулированы – они выше, зеленее, чем на остальном поле. Такое явление часто наблюдается по краям лесополос из дуба, тополя, ивы, лоха — их выделения угнетают рост не только овса, но и подсолнечника, кукурузы, свеклы, фасоли, сои, древесных саженцев и т. д [17].

Особенно большое количество веществ-тормозителей выделяется сорняками. Так, например, пырей выделяет чрезвычайно ядовитый для растений агропирен, а горькая полынь — множество различных соединений (абсинтин, артеметин и др.) [3]. Грецкий орех выделяет листьями вещество юглон, которое, смываясь каплями росы и дождя, угнетает все, что всходит под этим деревом. Однако небольшое количество веществ-тормозителей полезно для растений — усиливает их рост, повышает накопление хлорофилла и интенсивность фотосинтеза и т. д. Все это в целом положительно сказывается на урожайности.

Следовательно, регулируя количество этих веществ в почве, можно достичь значительного повышения урожайности [15]. Регулировать содержание тормозителей в почве не так сложно. Для того чтобы тормозителей было больше, надо высевать растения, которые выделяют их много, или вносить в почву органические остатки. А если мы хотим уменьшить количество тормозителей, то для этого следует усилить микробиологические процессы - провести рыхление почвы, внести удобрения и др [16]. Так, изучение химического взаимодействия — аллелопатии, раскрывая перед человеком законы жизни растительных сообществ, помогает управлять ими, дает возможность получать высокие и устойчивые урожаи на полях и на пастбищах.

Однако в изучении вопросов аллелопатии много нерешенных вопросов: правильный подбор соседствующих растений, выявление аллелопатически зависимых фаз развития. Следствием этого является изучение суточной динамики набухания семян в условиях аллелопатического влияния других растений.

2. Материал и методы исследования

2.1. Морфобиологическая характеристика объектов исследования

В качестве объектов исследования использовались семена тыквы обыкновенной (*Cucurbita pepo L.*) сорта «Улыбка», дыни обыкновенной (*Cucumis melo L.*) сорта «Торпеда», лука репчатого (*Allium cepa L.*) местного сорта, перца стручкового (*Capsicum annuum L.*) сорта «Ласточка» [44].

2.2. Морфобиологическая характеристика аллелопатических агентов

В качестве аллелопатических агентов использовались водные вытяжки укропа пахучего (Anethum graveolens L.), петрушки кудрявой (Petroselinum crispum L.) и сельдерея пахучего (Apium graveolens L.) [44].

2.3. Методика исследований

Испытуемые семена тест-культур помещали по 50 штук (тыква и дыня) или по 100 штук (лук и перец) в химические стаканы объемом 150 мл и заливали 1%-ми суточными водными настоями укропа, петрушки или сельдерея (Приложение). Экстрагирование физиологически активных веществ проводили по методике А.М. Гродзинского. Для этого высушивали и измельчали надземные части аллелопатических агентов до цветения и настаивали в течение 24 часов при комнатной температуре в соотношении навески и воды 1:100 (1,2 г растения на 120 г воды). Взвешивание набухших семян тестобъектов проводили каждые два часа в течение суток. В качестве контроля использовали отстоянную водопроводную воду. Исследования проводились в лабораторных условиях, при комнатной температуре и одинаковом солнечном освещении.

Под набухаемостью понимается отношение массы набухших семян к массе сухих семян, выраженное в процентах. Суточная динамика набухаемости семян культурных растений складывалась из значений, полученных через

каждые два часа в течение суток. Существенность различия оценивалась разностным методом.

Статистическая обработка разностным методом:

- 1. Рассчитывались средние арифметические по повторностям.
- 2. Между значениями опыта и контроля вычислялись разности (d).
- 3. Рассчитывались средние арифметические разностей (\bar{d}).
- 4. Вычислялись отклонения между разностями и средними $(d \bar{d})$.
- 5. Отклонения возводились в квадрат $(d \bar{d})^2$.
- 6. Рассчитывались суммы квадратов отклонений $\sum (d \bar{d})^2$.
- 7. Вычислялись средние квадратические отклонения (σ) по формуле (2.1).

$$\sigma = \sqrt{\frac{\sum (d - \bar{d})^2}{(n - 1)}},\tag{2.1}$$

где (n-1) – число степеней свободы.

8. Рассчитывались ошибки репрезентативности разностей средних арифметических (m_d) по формуле (2.2).

$$m_d = \frac{\sigma}{\sqrt{n}},\tag{2.2}$$

где n — объем выборки.

9. Вычислялись критерии Стьюдента (t_d) по формуле (2.3).

$$t_d = \frac{|\bar{x}_2 - \bar{x}_1|}{m_d},\tag{2.3}$$

где \bar{x}_2 и \bar{x}_1 — средние арифметические опыта и контроля соответственно.

10. Полученные при расчетах значения t-критерия Стъюдента (t_d) , сравнивались с его стандартными значениями (t_{st}) (табл. 2) при принятом для лабораторных исследований уровне вероятности P=0,98. О существенности различий принято утверждать при выполнении условия: $t_d \ge t_{st}$ [41].

Стандартные значения критерия Стъюдента (t_{st})

Число	Уровень доверительной вероятности (Р)							
степеней свободы	0,90	0,95	0,98	0,99	0,999			
(v)								
1	6,31	12,71	31,82	63,66	636,61			
2	2,92	4,30	6,96	9,92	31,60			
3	2,35	3,18	4,54	5,84	12,92			
4	2,13	2,78	3,75	4,60	8,61			
5	2,02	2,57	3,36	4,03	6,87			
6	1,94	2,45	3,14	3,71	5,96			
7	1,89	2,36	3,00	3,50	5,41			
8	1,86	2,31	2,90	3,36	5,04			
9	1,83	2,26	2,82	3,25	4,78			
10	1,81	2,23	2,76	3,17	4,59			
11	1,80	2,20	2,72	3,11	4,44			

В ходе лабораторного опыта использовались химические стаканы объемом 150 мл и лабораторные весы Ohaus Scout PRO SPU402.

3. Полученные результаты и их обсуждение

Использование суточной динамики набухания семян позволяет более детально изучить начальные жизненные процессы, протекающие в семени. Это очень видоспецифичные показатели.

3.1. Динамика набухаемости семян овощных культур под влиянием укропа пахучего

Результаты, полученные в ходе эксперимента с семенами дыни и тыквы, представлены в таблице 3.

 Таблица 3

 Средние значения набухаемости семян дыни и тыквы

Время, ч	Набухание семян, %							
	ды	кн	ТЫ	ква				
	контроль	опыт	контроль	опыт				
2	44,835±0,116	44,254±0,116	56,075±0,463	56,273±0,463				
4	46,561±0,112	45,982±0,112	65,957±0,484	63,360±0,484				
6	49,635±0,433	47,341±0,433	71,868±0,973	69,361±0,973				
8	50,984±0,348	48,329±0,348	75,225±0,879	73,133±0,879				
10	51,721±0,051	49,938±0,051	78,629±0,705	76,995±0,705				
12	52,704±0,177	50,928±0,177	81,372±0,928	80,813±0,928				
14	53,196±0,183	52,164±0,183	83,356±1,380	85,038±1,380				
16	54,177±0,357	52,784±0,357	86,242±1,521	91,076±1,521				
18	54,546±0,308	53,278±0,308	87,660±1,279	93,262±1,279				
20	55,283±0,308	53,773±0,308	89,315±1,223	95,313±1,223				
22	56,022±0,415	54,266±0,415	91,017±0,970	98,450±0,970				
24	56,515±0,362	55,130±0,362	93,051±1,080	101,406±1,080				

^{*} все значения достоверны на уровне вероятности 0,99.

По результатам наших исследований, которые представлены графически (рис.4), настой укропа пахучего не оказывает воздействия на набухание семян дыни.

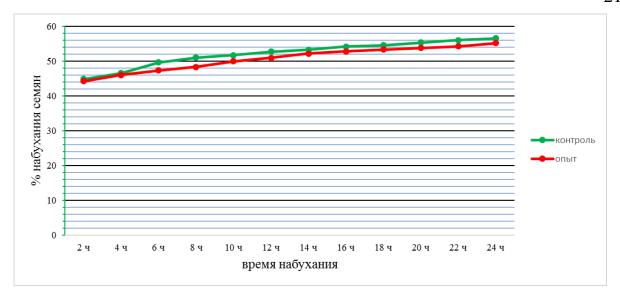


Рис. 4. Аллелопатическое влияние укропа на набухаемость семян дыни

Статистическая обработка разностным методом (табл. 4) показывает, что полученные при расчетах значения t-критерия Стъюдента (t_d) между контролем и опытом больше стандартных значений критерия Стьюдента $t_{0,99}$ =3,71. Следовательно, все значения достоверны на уровне вероятности 0,99.

Таблица 4 Статистическая обработка набухания семян дыни в настое укропа

Время,	Набухание семян, %		$ar{d}$	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт				
2	44,835	44,254	-0,5810	0,0803	0,116	5,022
4	46,561	45,982	-0,5788	0,0748	0,112	5,185
6	49,635	47,341	-2,2938	1,1226	0,433	5,303
8	50,984	48,329	-2,6547	0,7280	0,348	7,621
10	51,721	49,938	-1,7832	0,0157	0,051	34,915
12	52,704	50,928	-1,7769	0,1872	0,177	10,061
14	53,196	52,164	-1,0311	0,2016	0,183	5,625
16	54,177	52,784	-1,3929	0,7652	0,357	3,900
18	54,546	53,278	-1,2672	0,5692	0,308	4,114
20	55,283	53,773	-1,5101	0,5678	0,308	4,909
22	56,022	54,266	-1,7552	1,0328	0,415	4,231
24	56,515	55,130	-1,3844	0,7853	0,362	3,827

Опыт показал, что настой укропа пахучего оказывает стимулирующее действие на набухание семян тыквы (рис.5) только после 16 часов. К этому времени набухаемость в опыте составила 91%, а в контроле 86%, то есть разница составила 5%. В последующие часы с 18 до 24 разница между опытом и контролем увеличивалась равномерно и в итоге составила 8%.

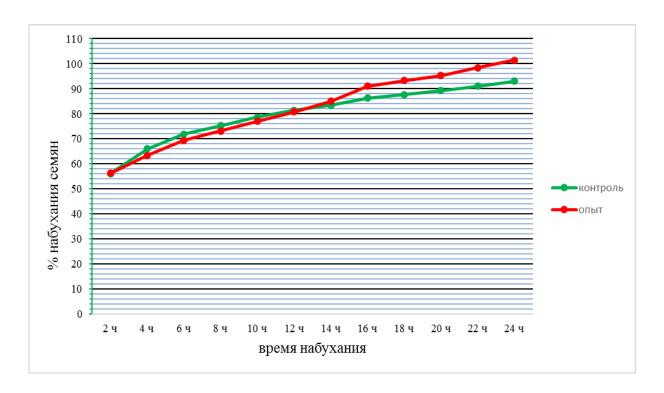


Рис. 5. Аллелопатическое влияние укропа на набухаемость семян тыквы

Статистическая обработка разностным методом (табл. 5) показывает, что полученные при расчетах значения t-критерия Стьюдента (t_d) между контролем и опытом больше стандартных значений критерия Стьюдента $t_{0.99}$ =3,71. Следовательно, все значения достоверны на уровне вероятности 0,99. Исходя из этого, мы можем достоверно утверждать об отсутствии влияния настоя укропа пахучего на активацию биохимических процессов и морфологических изменений, так как поглощенная гидрофильными коллоидами семени тыквы вода включается в содержимое клетки, связываясь ее различными соединениями [33]. Вместе с тем их набухаемость незначительно прогрессирующе стимулируется настоем укропа.

Время,	Набухани	е семян, %	\bar{d}	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт				
2	56,075	56,273	0,2306	1,2848	0,463	120,977
4	65,957	63,360	-3,1416	1,4043	0,484	132,117
6	71,868	69,361	-2,8606	5,6836	0,973	72,858
8	75,225	73,133	-2,4996	4,6404	0,879	84,140
10	78,629	76,995	-2,2468	2,9837	0,705	107,861
12	81,372	80,813	-1,2560	5,1649	0,928	84,135
14	83,356	85,038	0,9001	11,4253	1,380	56,000
16	86,242	91,076	2,6279	13,8839	1,521	34,254
18	87,660	93,262	3,9893	9,8112	1,279	53,402
20	89,315	95,313	4,9786	8,9748	1,223	64,120
22	91,017	98,450	6,4632	5,6409	0,970	84,098
24	93,051	101,406	7,5570	6,9941	1,080	78,565

Таблица 6 Средние значения набухаемости семян лука и перца

Время,	Набухание семян, %							
Ч	лу	ук	пер	рец				
	контроль	опыт	контроль	опыт				
2	33,354±1,142	37,631±1,142	101,231±2,496	91,168±2,496				
4	46,431±1,519	48,093±1,519	126,000±3,156	95,608±3,156				
6	55,528±1,313	54,661±1,313	133,128±3,928	108,238±3,928				
8	59,602±1,806	61,229±1,806	138,974±2,924	122,816±2,924				
10	65,666±1,073	65,996±1,073	141,590±1,598	136,705±1,598				
12	70,720±0,817	70,683±0,817	143,538±1,033	138,580±1,033				
14	76,784±0,929	72,536±0,929	144,179±0,772	141,762±0,772				
16	78,775±0,477	76,350±0,477	145,487±1,659	144,302±1,659				
18	79,817±0,888	76,350±0,888	146,795±1,488	147,460±1,488				
20	81,839±1,913	80,085±1,913	147,436±1,282	150,000±1,282				
22	82,849±1,679	81,938±1,679	149,385±1,330	151,258±1,330				
24	86,861±0,772	86,625±0,772	149,385±1,527	152,540±1,527				

^{*} все значения достоверны на уровне вероятности 0,999.

Результаты, полученные в ходе эксперимента с семенами лука и перца, представлены в таблице 6.

Наши исследования показали, что настой укропа пахучего не оказывает воздействия на набухание семян лука (рис.6). Максимальная разница между опытом и контролем составила 4% через 2 часа и через 14 часов набухания, но и она к концу наблюдения снизилась до нуля.

Статистическая обработка разностным методом (табл. 7) показывает, что полученные при расчетах значения t-критерия Стьюдента (t_d) между контролем и опытом больше стандартных значений критерия Стьюдента $t_{0,999}$ =5,96. Следовательно, все значения достоверны на уровне вероятности 0,999.



Рис. 6. Аллелопатическое влияние укропа на набухаемость семян лука

Настой укропа пахучего оказывает тормозящее воздействие на период первых десяти часов водопоглощения семян перца (рис. 7). Разница между опытом и контролем составила 10% через первые 2 часа набухания, 30% через 4 часа, 25% через 6 часов, 16% через 8 часов. Однако в последующие часы разница между опытом и контролем стала не существенной.

Статистическая обработка набухания семян лука в настое укропа

Время,	Набухани	е семян, %	$ar{d}$	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт				
2	33,354	37,631	6,0368	7,8195	1,142	10,850
4	46,431	48,093	2,0065	13,8497	1,519	30,032
6	55,528	54,661	-0,2931	10,3486	1,313	39,429
8	59,602	61,229	2,4299	19,5636	1,806	27,326
10	65,666	65,996	0,7601	6,9140	1,073	59,209
12	70,720	70,683	0,9747	4,0079	0,817	77,341
14	76,784	72,536	-2,6185	5,1793	0,929	62,829
16	78,775	76,350	-1,4844	1,3644	0,477	151,879
18	79,817	76,350	-2,5261	4,7357	0,888	82,694
20	81,839	80,085	-0,5491	21,9654	1,913	35,781
22	82,849	81,938	0,9119	16,9100	1,679	34,034
24	86,861	86,625	2,1682	3,5716	0,772	58,431

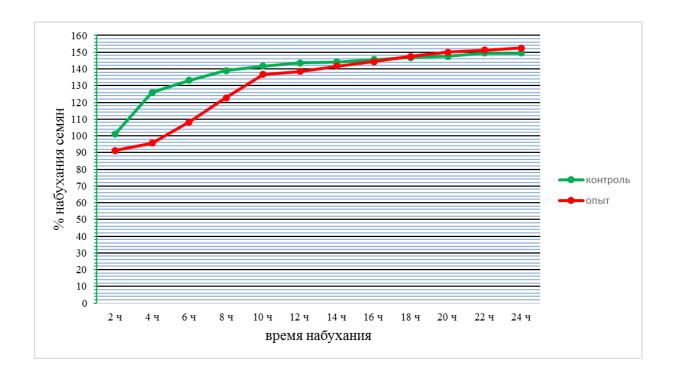


Рис. 7. Аллелопатическое влияние укропа на набухаемость семян перца

Статистическая обработка разностным методом (табл. 8) показывает, что полученные при расчетах значения t-критерия Стъюдента (t_d) между контролем и опытом больше стандартных значений критерия Стъюдента

 $t_{0,999}$ =5,96. Следовательно, все значения достоверны на уровне вероятности 0,999.

Таблица 8 Статистическая обработка набухания семян перца в настое укропа

Время,	Набухани	е семян, %	$ar{d}$	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт				
2	101,231	91,168	-9,3029	37,3817	2,496	37,514
4	126,000	95,608	-29,3871	59,7734	3,156	37,467
6	133,128	108,238	-24,6129	92,5861	3,928	31,640
8	138,974	122,816	-15,3435	51,3105	2,924	43,144
10	141,590	136,705	-4,9959	15,3277	1,598	88,535
12	143,538	138,580	-5,6784	6,3977	1,033	134,720
14	144,179	141,762	-2,6948	3,5737	0,772	184,949
16	145,487	144,302	-1,2327	16,5133	1,659	87,688
18	146,795	147,460	0,4353	13,2815	1,488	97,805
20	147,436	150,000	2,5641	9,8619	1,282	112,115
22	149,385	151,258	1,6758	10,6158	1,330	105,852
24	149,385	152,540	3,3852	13,9892	1,527	92,151

Таким образом, укроп пахучий оказывает неоднозначное влияние на овощные культуры. Опыт показал достоверное стимулирующее действие настоя укропа пахучего на семена тыквы, отсутствие влияния на семена дыни и лука и торможение набухаемости семян перца в первые часы.

3.2. Динамика набухаемости семян овощных культур под влиянием петрушки кудрявой

Результаты, полученные в ходе эксперимента с семенами дыни и тыквы, представлены в таблице 9.

По результатам наших исследований, которые представлены графически (рис.8), настой петрушки кудрявой оказывает незначительное воздействие на набухание семян дыни. Наблюдалась стабильная разница между опытом и контролем в пределах 2-3% в течении всего опыта.

Средние значения набухаемости семян дыни и тыквы

Время,	Набухание семян, %							
Ч	ды	Р	ТЫ	ква				
	контроль	опыт	контроль	опыт				
2	$44,835\pm0,427$	$42,948\pm0,427$	56,075±1,117	29,605±1,117				
4	$46,561\pm0,359$	$45,423\pm0,359$	$65,957\pm0,620$	$42,828\pm0,620$				
6	49,635±0,615	46,539±0,615	71,868±0,958	50,509±0,958				
8	$50,984\pm0,863$	47,900±0,863	75,225±0,676	57,508±0,676				
10	51,721±0,773	49,138±0,773	78,629±0,436	61,473±0,436				
12	52,704±0,569	50,126±0,569	81,372±0,996	65,501±0,996				
14	53,196±0,256	$50,868\pm0,256$	83,356±1,418	$70,117\pm1,418$				
16	54,177±0,213	51,610±0,213	86,242±1,873	74,795±1,873				
18	54,546±0,213	51,982±0,213	87,660±1,726	76,498±1,726				
20	55,283±0,265	52,601±0,265	89,315±1,773	78,636±1,773				
22	56,022±0,592	53,097±0,592	91,017±2,222	80,867±2,222				
24	56,515±0,687	53,839±0,687	93,051±2,634	83,004±2,634				

^{*} все значения достоверны на уровне вероятности 0,98.

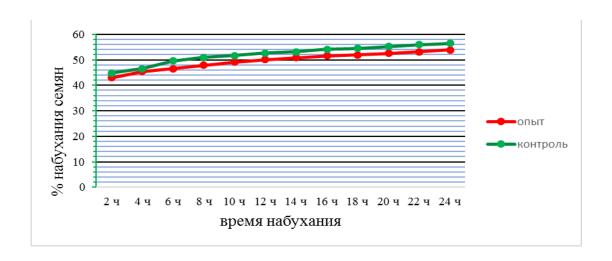


Рис. 8. Аллелопатическое влияние петрушки на набухаемость семян дыни

Статистическая обработка разностным методом (табл. 10) показывает, что полученные при расчетах значения t-критерия Стъюдента (t_d) между контролем и опытом больше стандартных значений критерия Стъюдента $t_{0.98}$ =3,14. Следовательно, все значения достоверны на уровне вероятности 0,98.

Таблица 10 Статистическая обработка набухания семян дыни в настое петрушки

Время,	Набухани	е семян, %	$ar{d}$	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт				
2	44,835	42,948	-1,8871	1,0931	0,427	4,421
4	46,561	45,423	-1,1382	0,7715	0,359	3,174
6	49,635	46,539	-3,0964	2,2723	0,615	5,032
8	50,984	47,900	-3,0838	4,4733	0,863	3,571
10	51,721	49,138	-2,5836	3,5862	0,773	3,342
12	52,704	50,126	-2,5782	1,9436	0,569	4,530
14	53,196	50,868	-2,3277	0,3946	0,256	9,076
16	54,177	51,610	-2,5665	0,2716	0,213	12,062
18	54,546	51,982	-2,5638	0,2727	0,213	12,027
20	55,283	52,601	-2,6818	0,4205	0,265	10,131
22	56,022	53,097	-2,9251	2,1012	0,592	4,943
24	56,515	53,839	-2,6755	2,8350	0,687	3,892

Опыт показал, что настой петрушки кудрявой оказывает угнетающее действие на набухание семян тыквы (рис.9). Уже через первые два часа набухаемость в воде составила 56%, а в настое петрушки 29%. Разница между опытом и контролем составила 27%. В последующие часы с 4 по 16 разница равномерно уменьшалась до 11%, а в последние снизилась до 10%.

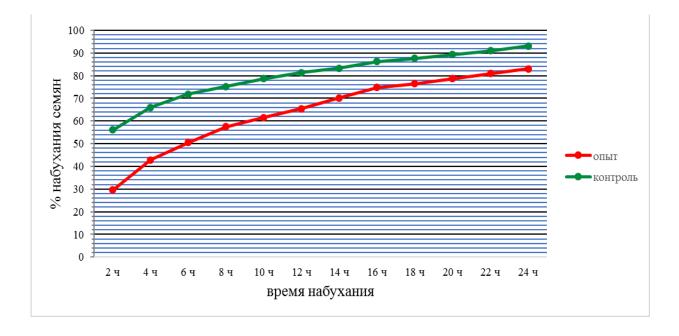


Рис. 9. Аллелопатическое влияние петрушки на набухаемость семян тыквы

Статистическая обработка разностным методом (табл. 11) показывает, что полученные при расчетах значения t-критерия Стьюдента (t_d) между контролем и опытом больше стандартных значений критерия Стьюдента $t_{0.98}$ =3,14. Следовательно, все значения достоверны на уровне вероятности 0,98.

Таблица 11 Статистическая обработка набухания семян тыквы в настое петрушки

Время,	Набухани	е семян, %	$ar{d}$	$\sum_{i} (d - \bar{d})^2$	m_d	t_d
Ч	контроль	ОПЫТ				
2	56,075	29,605	-26,4702	7,4916	1,117	23,689
4	65,957	42,828	-23,1287	2,3040	0,620	37,323
6	71,868	50,509	-21,3589	5,5114	0,958	22,286
8	75,225	57,508	-17,7168	2,7386	0,676	26,224
10	78,629	61,473	-17,1559	1,1398	0,436	39,361
12	81,372	65,501	-15,8710	5,9519	0,996	15,935
14	83,356	70,117	-13,2393	12,0613	1,418	9,338
16	86,242	74,795	-11,4467	21,0513	1,873	6,111
18	87,660	76,498	-11,1621	17,8784	1,726	6,466
20	89,315	78,636	-10,6790	18,8555	1,773	6,024
22	91,017	80,867	-10,1508	29,6249	2,222	4,568
24	93,051	83,004	-10,0471	41,6258	2,634	3,814

Результаты, полученные в ходе эксперимента с семенами лука и перца, представлены в таблице 12.

Наши исследования показали, что настой петрушки кудрявой оказывает угнетающее воздействие на набухание семян лука (рис.10). Через первые два часа набухаемость в воде составила 33%, а в настое петрушки 16%. Разница между опытом и контролем составила 17%. К концу наблюдения разница между опытом и контролем снизилась до 10%. Следовательно, водопоглощение семян лука угнетается 1% суточным водным настоем петрушки кудрявой. В то же время набухание угнетается в меньшей степени.

Средние значения набухаемости семян лука и перца

Время,	Набухание семян, %							
Ч	лу	ук	перец					
	контроль	ОПЫТ	контроль	ОПЫТ				
2	$33,354\pm0,669$	$15,899\pm0,669$	$101,231\pm1,810$	125,162±1,810				
4	$46,431\pm0,974$	$28,995\pm0,974$	$126,000\pm2,138$	139,681±2,138				
6	55,528±0,217	35,529±0,217	$133,128\pm2,856$	148,592±2,856				
8	59,602±1,117	42,989±1,117	138,974±1,764	152,159±1,764				
10	65,666±1,173	51,402±1,173	141,590±2,306	154,872±2,306				
12	$70,720\pm1,224$	58,862±1,224	143,538±2,229	157,584±2,229				
14	76,784±0,507	63,545±0,507	144,179±2,640	159,316±2,640				
16	78,775±0,493	66,349±0,493	145,487±2,898	161,173±2,898				
18	79,817±0,576	69,153±0,576	146,795±2,860	163,886±2,860				
20	81,839±1,389	71,958±1,389	147,436±2,899	164,740±2,899				
22	82,849±1,337	72,910±1,337	149,385±2,774	166,598±2,774				
24	86,861±1,734	75,714±1,734	149,385±2,693	169,310±2,693				

^{*} все значения достоверны на уровне вероятности 0,99.

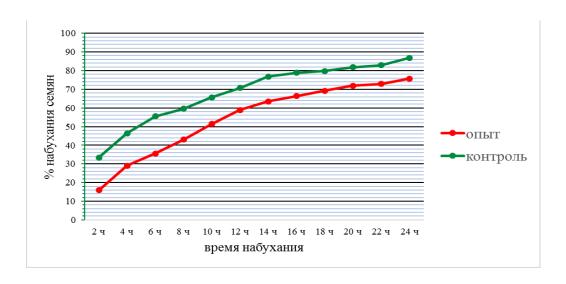


Рис. 10. Аллелопатическое влияние петрушки на набухаемость семян лука

Статистическая обработка (табл. 13) показывает, что полученные при расчетах значения t-критерия Стъюдента (t_d) между контролем и опытом больше стандартных значений критерия Стъюдента $t_{0,99}$ =3,71. Следовательно, все значения достоверны на уровне вероятности 0,99.

Статистическая обработка набухания семян лука в настое петрушки

Время,	Набухание семян, %		\bar{d}	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	ОПЫТ				
2	33,354	15,899	-17,4543	2,6814	0,669	26,109
4	46,431	28,995	-17,4365	5,6910	0,974	17,904
6	55,528	35,529	-19,9986	0,2831	0,217	92,062
8	59,602	42,989	-16,6121	7,4804	1,117	14,878
10	65,666	51,402	-14,2637	8,2576	1,173	12,159
12	70,720	58,862	-11,8576	8,9879	1,224	9,688
14	76,784	63,545	-13,2394	1,5409	0,507	26,125
16	78,775	66,349	-12,4257	1,4576	0,493	25,210
18	79,817	69,153	-10,6631	1,9888	0,576	18,521
20	81,839	71,958	-9,8809	11,5823	1,389	7,112
22	82,849	72,910	-9,9387	10,7290	1,337	7,432
24	86,861	75,714	-11,1470	18,0346	1,734	6,430

Несмотря на угнетающее действие настоя петрушки кудрявой на предыдущие аллелопатические тестеры, на набухание семян перца (рис. 11) он оказывает стимулирующее действие. В процессе опыта разница между опытом и контролем колебалась в пределах 13-18%, а к концу опыта составила 20%.

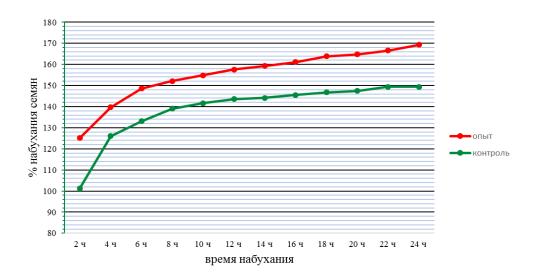


Рис. 11. Аллелопатическое влияние петрушки на набухаемость семян перца

Статистическая обработка разностным методом (табл. 14) показывает, что полученные при расчетах значения t-критерия Стьюдента (t_d) между контролем и опытом больше стандартных значений критерия Стьюдента $t_{0,99}$ =3,71. Следовательно, все значения достоверны на уровне вероятности 0,99.

Таблица 14 Статистическая обработка набухания семян перца в настое петрушки

Время,	Набухани	е семян, %	$ar{d}$	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт				
2	101,231	125,162	23,9313	19,6472	1,810	13,225
4	126,000	139,681	13,6814	27,4299	2,138	6,399
6	133,128	148,592	15,4641	48,9472	2,856	5,414
8	138,974	152,159	13,1849	18,6778	1,764	7,473
10	141,590	154,872	13,2818	31,9038	2,306	5,760
12	143,538	157,584	14,0454	29,8227	2,229	6,300
14	144,179	159,316	15,1362	41,8196	2,640	5,733
16	145,487	161,173	15,6861	50,4034	2,898	5,412
18	146,795	163,886	17,0907	49,0655	2,860	5,977
20	147,436	164,740	17,3044	50,4394	2,899	5,968
22	149,385	166,598	17,2133	46,1576	2,774	6,206
24	149,385	169,310	19,9255	43,5213	2,693	7,398

Следовательно, изучение динамики набухаемости семян под влиянием петрушки демонстрирует неоднозначную картину. Она угнетает лук, тыкву и незначительно дыню. В то время как стимулирует перец. По всем тестовым культурам наблюдается сходная динамика в опытном и контрольном вариантах.

3.3. Динамика набухаемости семян овощных культур под влиянием сельдерея пахучего

Результаты, полученные в ходе эксперимента с семенами дыни и тыквы, представлены в таблице 15.

Таблица 15 Средние значения набухаемости семян дыни и тыквы

Время,	Набухание семян, %							
Ч	ды	RHI	тыква					
	контроль	ОПЫТ	контроль	опыт				
2	44,835±0,376	$35,765\pm0,376$	$56,075\pm1,327$	22,679±1,327				
4	46,561±1,124	41,770±1,124	65,957±0,594	34,090±0,594				
6	49,635±0,511	45,653±0,511	71,868±0,694	43,349±0,694				
8	50,984±0,486	46,241±0,486	75,225±0,588	49,557±0,588				
10	51,721±0,135	47,296±0,135	78,629±0,541	54,386±0,541				
12	52,704±0,034	47,765±0,034	81,372±0,382	58,928±0,382				
14	53,196±0,213	48,353±0,213	83,356±0,984	62,961±0,984				
16	54,177±0,400	48,470±0,400	86,242±0,538	67,452±0,538				
18	54,546±0,357	48,825±0,357	87,660±0,880	69,511±0,880				
20	55,283±0,354	49,531±0,354	89,315±1,013	71,813±1,013				
22	56,022±0,725	50,476±0,725	91,017±1,163	73,899±1,163				
24	56,515±0,519	50,946±0,519	93,051±1,149	75,049±1,149				

^{*} все значения достоверны на уровне вероятности 0,99.

По результатам наших исследований, которые представлены графически, настой сельдерея пахучего оказывает угнетающее действие на набухание семян дыни (рис.12). Уже через первые два часа набухаемость в воде составила 45%, а в настое сельдерея 36%. Разница между опытом и контролем составила 11%. В последующие часы с 4 по 10 разница составляла 5%, а в последние 6%.

Статистическая обработка (табл. 16) показывает, что полученные при расчетах значения t-критерия Стьюдента (t_d) между контролем и опытом больше стандартных значений критерия Стьюдента $t_{0,99}$ =3,71. Следовательно, все значения достоверны на уровне вероятности 0,99.

Рис. 12. Аллелопатическое влияние сельдерея на набухаемость семян дыни

Таблица 16 Статистическая обработка набухания семян дыни в настое сельдерея

Время,	Набухани	е семян, %	$ar{d}$	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт				
2	44,835	35,765	-9,0698	0,8464	0,376	24,149
4	46,561	41,770	-5,0323	7,5821	1,124	4,477
6	49,635	45,653	-3,9817	1,5656	0,511	7,795
8	50,984	46,241	-4,7435	1,4199	0,486	9,751
10	51,721	47,296	-4,4255	0,1087	0,135	32,880
12	52,704	47,765	-4,9392	0,0069	0,034	146,163
14	53,196	48,353	-4,8430	0,2712	0,213	22,780
16	54,177	48,470	-5,7066	0,9586	0,400	14,277
18	54,546	48,825	-5,7201	0,7668	0,357	16,001
20	55,283	49,531	-5,7514	0,7499	0,354	16,269
22	56,022	50,476	-5,5456	3,1547	0,725	7,648
24	56,515	50,946	-5,5690	1,6164	0,519	10,729

Также настой сельдерея пахучего оказывает угнетающее действие на набухание семян тыквы крупноплодной (рис. 13). Через первые два часа в опыте набухаемость составила 23%, а в контроле 56%, то есть разница составила 33%. Затем угнетающее действие сельдерея несколько ослабевало до конца суток, и разница падала от 32 до 17%.

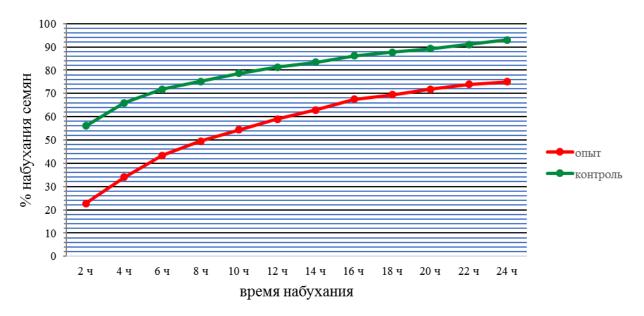


Рис. 13. Аллелопатическое влияние сельдерея на набухаемость семян тыквы

Статистическая обработка разностным методом (табл. 17) показывает, что полученные при расчетах значения t-критерия Стьюдента (t_d) между контролем и опытом больше стандартных значений критерия Стьюдента $t_{0,99}$ =3,71. Следовательно, все значения достоверны на уровне вероятности 0,99.

Таблица 17 Статистическая обработка набухания семян тыквы в настое сельдерея

Время,	Набухание семян, %		$ar{d}$	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт		$\sum_{i} (u - u)^{i}$		
2	56,075	22,679	-33,3964	10,5687	1,327	25,163
4	65,957	34,090	-31,8671	2,1157	0,594	53,665
6	71,868	43,349	-28,5191	2,8866	0,694	41,117
8	75,225	49,557	-25,6682	2,0777	0,588	43,619
10	78,629	54,386	-24,2432	1,7586	0,541	44,780
12	81,372	58,928	-22,4436	0,8749	0,382	58,774
14	83,356	62,961	-20,3952	5,8103	0,984	20,725
16	86,242	67,452	-18,7900	1,7389	0,538	34,903
18	87,660	69,511	-18,1499	4,6415	0,880	20,636
20	89,315	71,813	-17,5019	6,1607	1,013	17,272
22	91,017	73,899	-17,1184	8,1179	1,163	14,717
24	93,051	75,049	-18,0020	7,9224	1,149	15,666

Результаты, полученные в ходе эксперимента с семенами лука и перца, представлены в таблице 18.

Таблица 18 Средние значения набухаемости семян лука и перца

Время,	Набухание семян, %								
Ч	л	ук	перец						
	контроль	опыт	контроль	опыт					
2	33,354±0,857	23,543±0,857	101,231±3,041	126,810±3,041					
4	46,431±1,841	34,304±1,841	126,000±5,372	143,268±5,372					
6	55,528±2,498	45,124±2,498	133,128±5,086	166,555±5,086					
8	59,602±0,777	49,019±0,777	138,974±4,158	169,152±4,158					
10	65,666±0,236	52,914±0,236	141,590±4,589	171,749±4,589					
12	70,720±1,084	53,924±1,084	143,538±4,262	176,100±4,262					
14	76,784±1,165	56,867±1,165	144,179±3,451	181,245±3,451					
16	78,775±0,942	58,800±0,942	145,487±3,110	182,038±3,110					
18	79,817±0,982	70,571±0,982	146,795±3,461	184,635±3,461					
20	81,839±0,991	75,505±0,991	147,436±1,780	186,223±1,780					
22	82,849±0,598	77,437±0,598	149,385±1,917	188,819±1,917					
24	86,861±1,486	80,380±1,486	149,385±1,917	188,819±1,917					

^{*} все значения достоверны на уровне вероятности 0,98.

Настой сельдерея пахучего оказывает угнетающее действие и на набухание семян лука (рис. 14). С луком, как и с тыквой в течение суток наблюдалась сложная зависимость. Через первые два часа значение набухаемости в контроле составило 24%, а в опыте — 33%, то есть разница 9%. В последующие 4-10 часов разность по набухаемости колебалась от 11% до 13%. Затем на 12-16 часы эксперимента разница в набухаемости семян лука в воде и в настое сельдерея имела максимальное значение, и составила 17-20%. В последние 20-24 часа аллелопатическое влияние значительно снизилось и разница между опытом и контролем снизилась до 5-7%.

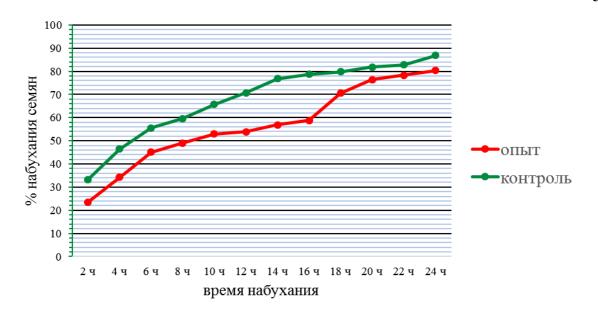


Рис. 14. Аллелопатическое влияние сельдерея на набухаемость семян лука

Статистическая обработка разностным методом (табл. 19) показывает, что полученные при расчетах значения t-критерия Стъюдента (t_d) между контролем и опытом больше стандартных значений критерия Стъюдента $t_{0.98}$ =3,14. Следовательно, все значения достоверны на уровне вероятности 0,98.

Таблица 19 Статистическая обработка набухания семян лука в настое сельдерея

Время,	Набухание семян, %		$ar{d}$	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт		$\sum_{i}^{(\alpha-\alpha)}$		
2	33,354	23,543	-9,8108	4,4045	0,857	11,451
4	46,431	34,304	-12,1268	20,3260	1,841	6,589
6	55,528	45,124	-10,4042	37,4332	2,498	4,165
8	59,602	49,019	-10,5828	3,6262	0,777	13,613
10	65,666	52,914	-12,7518	0,3348	0,236	53,982
12	70,720	53,924	-16,7960	7,0551	1,084	15,489
14	76,784	56,867	-19,9174	8,1494	1,165	17,090
16	78,775	58,800	-19,9751	5,3262	0,942	21,201
18	79,817	70,571	-9,2453	5,7838	0,982	9,417
20	81,839	75,505	-6,3340	5,8901	0,991	6,393
22	82,849	77,437	-5,4113	2,1444	0,598	9,052
24	86,861	80,380	-6,4810	13,2441	1,486	4,362

Несмотря на угнетающее действие настоя сельдерея пахучего на предыдущие аллелопатические тестеры, на набухание семян перца (рис. 15) он оказывает стимулирующее действие. Уже через два часа сельдерей повысил набухаемость семян перца с 101% до 127%. Это активирование потребления воды семенами перца стабильно продолжалось в течение суток. Разница между опытом и контролем составила 30-40%.

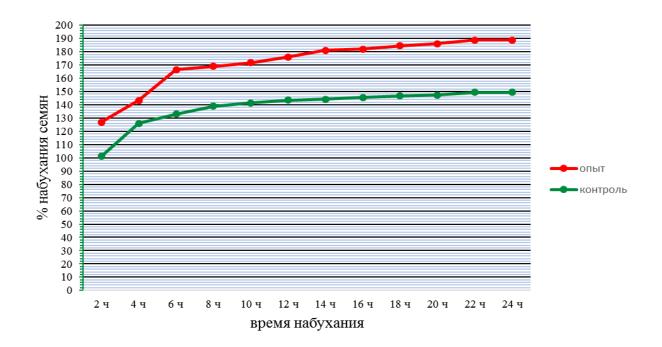


Рис. 15. Аллелопатическое влияние сельдерея на набухаемость семян перца

Статистическая обработка разностным методом (табл. 20) показывает, что полученные при расчетах значения t-критерия Стьюдента (t_d) между контролем и опытом больше стандартных значений критерия Стьюдента $t_{0.98}$ =3,14. Следовательно, все значения достоверны на уровне вероятности 0,98.

В итоге, сельдерей также как и ранее рассмотренные аллелопатические агенты неоднозначно воздействует на аллелопатические тестеры. По рассмотренным культурам можно говорить о достоверном угнетающем действии настоя сельдерея пахучего на семена дыни, тыквы и лука, и стимулировании начальных ростовых процессов семян перца.

39 Таблица 20 Статистическая обработка набухания семян перца в настое сельдерея

Время,	Набухани	е семян, %	$ar{d}$	$\sum (d-\bar{d})^2$	m_d	t_d
Ч	контроль	опыт		$\sum_{i} (a - a)^{i}$		
2	101,231	126,810	25,5793	55,5020	3,041	8,410
4	126,000	143,268	17,2679	173,1421	5,372	3,215
6	133,128	166,555	33,4271	155,1946	5,086	6,573
8	138,974	169,152	30,1777	103,7294	4,158	7,258
10	141,590	171,749	30,1591	126,3484	4,589	6,572
12	143,538	176,100	32,5615	109,0093	4,262	7,639
14	144,179	181,245	37,0653	71,4416	3,451	10,742
16	145,487	182,038	36,5512	58,0448	3,110	11,752
18	146,795	184,635	37,8403	71,8762	3,461	10,933
20	147,436	186,223	38,7866	19,0108	1,780	21,790
22	149,385	188,819	39,4347	22,0458	1,917	20,573
24	149,385	188,819	39,4347	22,0458	1,917	20,573

Заключение

В ВКР изучена суточная динамика набухания семян в условиях аллелопатического влияния других растений. В результате выявлены следующие закономерности:

- 1. Суточная динамика набухаемости семян дыни, тыквы, лука и перца под влиянием укропа пахучего неоднозначна. По рассмотренным культурам можно говорить о достоверном стимулирующем действии настоя укропа пахучего на семена тыквы, отсутствии влияния на семена дыни и лука и торможении набухаемости семян перца в первые часы.
- 2. По результатам эксперимента также можно говорить о достоверном угнетающем действии настоя петрушки кудрявой на семена тыквы и лука, отсутствии существенного влияния на семена дыни и стимулировании начальных ростовых процессов семян перца.
- 3. По рассмотренным культурам также можно говорить о достоверном угнетающем действии настоя сельдерея пахучего на семена дыни, тыквы и лука, и стимулировании начальных ростовых процессов семян перца.

Таким образом, как видно из исследования, растительный опад растений из семейства Сельдерейных может оказывать влияние на набухаемость семян овощных культур.

Список использованных источников

- 1. Андреев Н. Г., Андреев Л. Н. Основы агрономии и ботаники. М.: Колос. 2004. 487 с.
- 2. Аскоченская Н. А. Состояние воды в семенах: Автореф. дис. ... канд. биол. наук. М., 1971. 168 с.
- 3. Байджанов Т. Р. Биохимические изменения в семенах при сушке и хранении // Сельское хозяйство Туркменистана. 1995. № 1. С. 61–70.
- 4. Балеев Д. Н., Бухаров А. Ф. Сравнение аллелопатической активности экстрактов из различных органов петрушки корневой // Вестник Алтайского государственного аграрного университета. 2011. № 5 (79). С. 54–56.
- 5. Белова Т. А., Шалиманова А. Е. О возможности усиления процессов фитоэкстракции в условиях влияния регуляторов роста // Электронный научный журнал Курского государственного университета. 2016. № 2 (10). 4 с.
- 6. Белюченко И. С. Экологические основы симбиогенного развития растений в сложных травостоях // Научный журнал КубГАУ. 2015. №107 (03). 23 с.
- 7. Биологическая активность гуминового комплекса различного происхождения и его влияние на рост и развитие растений / Борисенко В. В., Хусид С. Б., Лысенко Ю. А. Фолиянц Б. В. // Научный журнал КубГАУ. 2015. №110(06). 11 с.
- 8. Блукет Н. А., Емцев В. Т. Ботаника с основами физиологии растений и микробиологии. М.: Колос. 2004. 560 с.
- 9. Бухаров А. Ф., Балеев Д. Н. Аллелопатическая активность у семян овощных сельдерейных культур // Сельскохозяйственная биология. 2014. №1. С. 86–90.
- 10. Бухаров А. Ф., Балеев Д. Н. Возникновение индуцированного покоя у семян овощных зонтичных культур под действием аллелопатически активных веществ // Сельскохозяйственная биология. 2016. Т. 51, № 5. С. 714—

- 11. Бухаров А. Ф., Балеев Д. Н. Имитация покоя семян горчицы (*Brassica juncea*) с помощью аллелопатического фактора и влияние температуры на выход из этого состояния // Вестник Алтайского государственного аграрного университета. 2011. № 2 (88). С. 35–37.
- 12. Буянкин В. И., Резанова Г. И. Химическая борьба с природой: что лучше? За или против? // Научно-агрономический журнал. 2014. Т. 1, № 2–1. С. 43–45.
- 13. Быков Б. А. Экологический словарь. Алма-Ата: Наука. 1983. 216 с.
- 14. Власенко Н. Г.Основные методологические принципы формирования современных систем защиты растений // Достижения науки и техники АПК. 2016. Т. 30, № 4. С. 25–29.
- 15. Глубшева Т. Н. Влияние настоя из амброзии полыннолистной на важнейшие сельскохозяйственные культуры // Научные ведомости БелГУ. Серия Естественные науки. 2010. № 9 (80). Выпуск 11. С. 55–58.
- 16. Глубшева Т. Н., Ткаченко И. К. Аллелопатическое влияние настоя бархатцев на набухание семян горчицы // Научные ведомости БелГУ. Серия Естественные науки. 2011. №3(98). Выпуск 14/1. С.352–354.
- 17. Гродзинский А. М. Экспериментальная аллелопатия. Киев: Наукова думка. 1987. 236 с.
- 18. Грушвицкий, И. В. Роль недоразвития зародыша в эволюции цветковых растений. Л.: Из-во АН СССР. 1961. 166 с.
- 19. Дыкман Л. А., Щеголев С. Ю. Взаимодействие растений с наночастицами благородных металлов // Сельскохозяйственная биология. 2017. № 1 (52). С. 13–24.
- 20. Еленевский А. Г., Соловьева М. П., Тихомиров В. Н. Ботаника, систематика высших, или наземных, растений. М.: Академия. 2004. 432 с.
 - 21. Жуковский П. М. Ботаника. М.: Колос. 2002. 623 с.
 - 22. Иванова М. И., Кашлева А. И., Разин А. Ф. Проростки функци-

ональная органическая продукция (обзор) // Вестник Марийского государственного университета. Серия «Сельскохозяйственные науки. Экономические науки». 2016. № 3 (7). С. 19–29.

- 23. Кефеле В. И. Рост растений. М.: Колос. 1973. 120 с.
- 24. Коровкин О. А. Ботаника. М.: КНОРУС, 2016. 434с.
- 25. Коротченко И. С., Кириенко Н. Н. Оценка фитотоксичности чернозема выщелоченного, загрязненного медью // Вестник КрасГАУ. 2014. № 4. С. 149–154.
 - 26. Культиасов И. М. Экология растений. М.: МГУ. 2007. 380 с.
 - 27. Лобко В. Д. Ваши «Зеленые ежики». Минск: Полымя. 1984. 128 с.
- 28. Лотова Л. И. Морфология и анатомия высших растений. М.: Ко-мКнига. 2007. 510 с.
- 29. Лукашевич Н. П. Основы ботаники, агрономии и кормопроизводства. Практикум. Минск: ИВЦ Минфина. 2010. 432с.
 - 30. Лэм Э. Растения / под ред. Б. Лэм, Э. Лэм. М.: Мир. 1984. 184 с.
- 31. Матишов Г. Г., Есипенко Л. П., Ильина Л. П., Агасьева И. С. Биологические способы борьбы с амброзией в антропогенных фитоценозах юга России. Ростов н/д: Изд-во ЮНЦ РАН. 2011. 144 с.
- 32. Метрик А. А. Стандартизация продукции агропромышленного комплекса // Сборник научных трудов Ставропольского научно-исследовательского института животноводства и кормопроизводства. 2014. Т. 2. Вып. 7. С. 596–599.
- 33. Николаева М. Г. Покой семян // Физиология семян. М.: Наука. 1982. С. 125–183.
- 34. Николаева М. Г. Справочник по проращиванию покоящихся семян / под ред. М. Г. Николаевой, М. В. Разумовой, В. Н. Гладковой. Л.: Наука. 1985. 348 с.
- 35. Николаева М. Г. Физиология и биохимия покоя и прорастания семян. М.: Колос.1982. 495 с.
 - 36. Овчаров К.Е. Физиология формирования и прорастания семян.

- М.: Колос. 1976. 256 с.
- 37. Раис Э. Природные средства защиты растений от вредителей. // Перевод с английского Е.Е. Верещагиной. Под редакцией акад. АН УССР А. М. Гродзинского. М.: «МИР». 1986.
- 38. Свиркова С. В., Балаганский П. В. Влияние техногенных растворов на рост и развитие растений // Вестник Кемеровского государственного университета. 2015. № 1 (61). Т. 4. С. 32–37.
- 39. Серовайский В. М. Растения, цветы, семена. М.: МГООП. 1987. 26 с.
- 40. Смуров С. И., Агафонов Г. С., Гапиенко О. В. Продуктивность зернового севооборота в зависимости от степени его химизации // Достижения науки и техники АПК. 2008. № 9. С. 11–14.
- 41. Снегин Э. А. Практикум по биометрии. Белгород: ИД «Белгород» НИУ «БелГУ». 2016. 56 с.
- 42. Тимирязев К. А. Земледелие и физиология растений. Избранные сочинения. Т. 2. М.: Сельхозиздат. 2006. 423 с.
- 43. Тимонин А. К. Ботаника: в 4 т. Т. 3. Высшие растения. М.: Академия. 2007. 352с.
- 44. Тимонин А. К., Соколов Д. Д., Шипунов А. Б. Ботаника: в 4 т. Систематика высших растений. Т. 4. Кн. 2 / под ред. А. К. Тимонина. М.: Академия. 2009. 352с.
- 45. Тутаюк В. Х. Анатомия и морфология растений. М.: Высш. шк. 2006. 317 с.
- 46. Удалова Р. А. В мире растений / под ред. Р. А. Удаловой, Н. Г. Вьюгиной. Л.: Наука. 1977. 136 с.
 - 47. Урбан А. Зеленое чудо. Братислава: Веда. 1981. 332 с.
- 48. Хохлов А. С., Овчинников Ю. А. Химические регуляторы биологических процессов. М.: Знание. 1969. 141 с.
- 49. Цицин Н. В Фитогармоны регуляторы роста растений. М.: Наука. 1975. 95 с.

- 50. Черников В. А., Алексахин Р. М., Голубев А. В. Агроэкология. М.: Колос. 2000. 536 с.
- 51. Шакирова Ф. К., Удалов В. А., Грядов С. И. Организация сельскохозяйственного производства. М.: Колос. 2000. 512 с.
- 52. Шкрабак В. С., Луковников А. В., Тургиев А. К. Безопасность жизнедеятельности в сельском хозяйстве. М.: Колос. 2002. 512 с.
 - 53. Шубик Р. Растения. Прага: Артия. 1969. 252 с.