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ABSTRACT. This paper considers the Schwarz problem that consists in finding a J-analytic function
by its real part on the boundary. The Fredholm solvability of this problem is proved. The integral
representation of J-analytic functions by Cauchy-type integrals with real density is obtained.

The classical Schwarz problem [1] consists in finding an analytic function by its real part given on
the boundary of the domain considered. In this work, we consider an analogous problem for Douglis

analytic functions. The latter are solutions ¢ = (¢1, ..., ¢;) of the first-order elliptic system
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where the eigenvalues v of the matrix J lie in the upper half-plane Imry > 0. This system was
considered in [2] in detail, and its solutions are briefly called the J-analytic functions or the Douglis
analytic functions.

Let a domain D be bounded by a smooth contour I' composed of connected components I'y, ..., I'y,.
The domain D can be finite, as well as infinite; we distinguish these cases by using the characteristic
»p that assumes the values 1 and 0. For »p = 1, we agree to assume that contour I',, contains all
other components I';. As was mentioned above, the Schwarz problem (Problem S in short) is defined
by the boundary condition

Regt = f
and is considered in the Hélder classes C#(D), 0 < u < 1, and Hardy classes HP(D), 1 < p < oo, which
are introduced in [3]. For sp = 0, the definition of these classes includes the condition ¢(co) = 0.

Let the contour I" be positively oriented with respect to D (i.e., the domain remains to the left with
respect to this orientation), and let e(t) = e1(t) = iea(t) be the unit tangent vector to the contour at
the point t directed according to this orientation. By definition, I' € CV#10 if e € CHTE(T) with a
certain £ > 0. To Problem S, we put in correspondence the adjoint Problem S, which is considered
in the corresponding adjoint classes C#(D) ,H?(D), 1/q = 1 — 1/p, for J T-analytic functions and is
defined by the boundary condition

Re e (Z;Jr - f7
where e ;1 = ey -1+ eyJ . By using the bilinear form

(f.9) = / F(g(ld],
T

where |dt| is the arc length element, the connection between these problems is the identity

(¢+7 6JT(Z~5+) =0.
Problem S is a particular case of the Riemann—Hilbert problem considered in [4], and the results

corresponding to it can be formulated as follows.

Theorem 1. Under the condition T' € CV#10 Problem S is Fredholm in each of the classes CH*(D)
and HP(D), and its index is Ind S = {(25cp — m). The inhomogeneous Problem S is solvable iff the
orthogonality conditions (f,Ime r¢T) = 0 to all solutions ¢ of the homogeneous adjoint problem hold.



Moreover, any solution ¢ € HP of Problem S with right-hand side f € CH(I") belongs to the class
CH(D). Analogously, f € CHH(T) implies ¢ € CYH(D). In particular, solutions of the homogeneous
Problem S belong to the class CY#+t0(D). Analogous assertions also hold for Problem S with the only
difference being that their indices are opposite.

According to this theorem, the finite-dimensional kernel of the Schwarz problem is contained in the
class CH#TO(D). This kernel contains functions whose real parts are identically equal to zero. The
following lemma shows that the functions of such a type are polynomials.

Lemma 1. If the real part of a J-analylic funclion ¢ is identically equal to zero in a neighborhood of
a certain point zo, then ¢ is a polynomial.

Proof. Let the above neighborhood be a disk Dy. In C!, let us consider the sequence of subspaces
Xo 2 X; D -+, which is inductively defined by the conditions X = C! and X}, = {n € Xy_1, ReJn =
0}. Let n € X, and u(z) = Re(z — 20)yn. Then
oFu
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so that the function u(x,y) is a polynomial of degree k. Since this function has a zero of order k at

the point zg, it follows that u = 0. Therefore, Re(z — z)sn = 0 for n € X.
Now let us write the Taylor series expansion of the function ¢:

=ReJn=0, 0<s<k,

0
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By assumption,
Re Z(z — ZO)Jnk] =0
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in the disk Dy. Sequentially differentiating this relation and passing to the limit as z — 2, we conclude
that np € Xy for all k. The converse is also true: if series (2) uniformly converges in the disk D and
the coefficients n, € Xy for all k, then Re ¢ = 0. Therefore, it remains to verify that starting from a
certain number, all X = 0.

Assume the contrary, so that all X contain a certain subspace X. Then the class of functions (2)
with coefficients nr € X is infinite-dimensional, which contradicts the fact that the whole kernel of
Problem S in the disk Dy is finite-dimensional. O

The proof of Theorem 1 is based on the reduction of the problem to an equivalent system of singular
integral equations on the boundary I' by using the representation of the function ¢ by the Cauchy-type
integrals

(L)) = 5 (=2t 2D,
r

with real density ¢ = (¢1,...,¢1). More precisely, the following theorem, which was proved in [5],

holds.

Theorem 2. Let the domain D be bounded by the contour I' € CYH10 and let the matriz J be
triangular. Then any function ¢ € HP(D), 1 < p < oo, is uniquely represented in the form

(]5:Ig0+’t£7 £€%DRZ7
where the real l-vector-valued function @ € LP(I") satisfies the conditions

el =0, 15 <m— s
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If ¢ € CH(D) in this representation, then ¢ € CH(I'). Analogously, ¢ € CV*(D) implies ¢ €
CLH(T).

In a number of cases, it is desirable to have an analogous result not imposing the additional tri-
angular condition on the matrix J. The general situation of such a type is considered in [4] for the
Cauchy-type integrals with density of the form Gy, where the vector-valued function ¢ is real and
the matrix function G' € C*t°(I') is invertible. Modifying the proof of the corresponding result of [4]
on the representation of J-analytic functions by integrals of this type applied to the case G = 1, we
obtain the following result.

Consider an open set D' = C\ D consisting of domains D;, 1 <7 < m. Let us agree to choose the
enumeration of these components in such a way that (’9D§ = I';. If the domain D is finite, then by the
above convention, the contour I'y, contains I'j, j < m, and is the boundary of the infinite domain D).
If the domain D is infinite, then all components D; are of equal rights. Let RY(I") denote the class
of real-valued [-vector-valued functions that are constant on I'. The notation C'(D’) has the same
meaning for complex [-vector-valued functions that are constant in domains D}.

In the open set D', let us consider the Schwarz problem S’ defined by the boundary condition
Rey~ = f. Here, we take into account that the contour I' is negatively oriented with respect to D',
and in accordance with this, the boundary value of the function ¢ defined in I)' is denoted by ¢~. By
Theorem 1, any solution of this problem with right-hand side f € RY(T") belongs to the class C'l#10
(more precisely, to the class C’l’f“ro(ﬁ;)) in each connected component 1)}, 1 < j < m, of the open
set I’. Obviously, any function ¢ € C/(D’) such that it vanishes in the domain D!, for »p = 1 is a
solution of this problem. Therefore, the space

Y = {Im+~, Reyy~™ € RYI)}

contains the subspace
R(I) = {g € R'(T), spg(T'm) = 0}

of dimension I(m — »p).
Theorem 3. Let the domain D be bounded by the contour I' € CLH0 " and let the finite-dimensional
space Y consist of functions Imy~, where ¢y € CH(D') and Rey™ € RYT). Then there exists a
finite-dimensional space X C CY#10(D) of dimension

dim X =dimY — I(m — sp) (3)
such that any function ¢ € HP(D), 1 < p < o0, is uniquely represented in the form

(]5:Ig0+(]50+7/£, (bOGXy £€%DRZ7

where the real-valued l-vector-valued function ¢ € LP(I") satisfies the conditions

(p,9) =0, geY. (4)

If ¢ € CH(D) in this representation, then ¢ € CH(I'). Analogously, ¢ € CY*(D) implies ¢ €
cH(I).

Let us show that Theorem 2 is a particular case of Theorem 3. As was noted above, Y D R! (),
and, therefore, ¥ can be decomposed into the direct sum Yy @ RY(I"). Then, in accordance with (3),
the dimensions of the spaces X and Yj coincide, and the orthogonality conditions (4) can be rewritten
in the form

[ewgwlat 0. gevii  [ewli =0, 1<5<m—sm.

r r;
It remains to verify that in the case where the matrix J is triangular, the subspace Yy = 0. This fact
follows from the following lemma.



Lemma 2. Let the domain D (finite or infinite) be bounded by a simple Lyapunov contour I, and
let the matriz J be triangular. Let a J-analytic function ¢ € CH(D) be such that Re¢t is constant
on I'. Then ¢ is constant in the domain D, and, in particular, it is equal Lo O in the case where the
domain D is infinite.

We first perform the proof in the scalar case [ = 1, when J = v € C and ¢ is a solution of the

equation
o 09
oy (’9:10
Under the affine transformation z = x + iy — = + vy, this equation passes to the Cauchy—Riemann
equation, which defines analytic functions, so that the assertion of the lemma is obvious in this case.
Let us turn to the general case [ > 1. For definiteness, let the matrix J be upper-triangular, i.e.,
its entries J; = 0 for ¢ > k. Then, in the coordinate writing, system (1) takes the form

!
8(;5] Z k]a(bk— 0 1<k<l

= 0. (5)

In particular, the latter equation contains only the function ¢; and coincides with (5) for v = Jy.
Note that the spectrum o(J) of the triangular matrix J consists of its diagonal entries. By what was
already proved, the latter equation of this system implies that the function ¢; is constant. Hence the
(I—1)th equation of this system passes to (5) with respect to ¢_1, and v = JI — 1,1 — 1. Therefore, for
the same reasons, the function ¢;_; is constant. Repeating these arguments, as a result, we conclude
that all functions ¢y are constant.
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