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Abstract

The paper considers the method for determination of an input signals class of the continuous-time
linear control system. The class of input signals of a continuous-time linear control system is
specified by a heterogeneous differential equation. An estimate is obtained for the steady-state
error of control. An example of solving a problem is provided.
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AHHoOTaumnsa

B cTaTbe paccmMaTpvBaeTCs METOZ OnpefeneHns Knacca BXOAHbIX CUFHANOB NMHENHOW CUCTEMbI
ynpaBfieHUsi C HenpepbiBHbIM BpeMeHeM. Knacc BXOAHbIX CWUTHANOB /MHENRHOW CUCTEMBbI
yrpaBfieHUst C HenpepbiBHbIM BPEMEHEM OMUCHIBAETCS O06bIKHOBEHHBIM AW((epPeHLMaIbHbIM
ypaBHeHVeM. [MoflyyeHa OLeHKa YCTaHOBMBLLEWCA OWMGKM ynpaBneHus. MpuBOAWUTCS npumep

peLLeHmns 3adaqn.

KntoueBble CM0Ba: CUCTEMbI YNPaBNeHNs; BXOAHbIE CUTHaNbI, ANd(epeHLMaibHOe YpaBHEHNE;

YCTaHOBUBLUAACS OLIMOKa.

Introduction

The quality of the synthesized control system
depends on utilization of information about input
signals. Therefore, the so-called absorption principle
[7] in the automatic control theory is widespread. The
absorption principle is built on class description of
the input signals by homogeneous differential or
difference equations with arbitrary initial conditions
[1, 3-5, 8-11]. In this paper, the larger class of input
signals of a continuous-time linear control system is
specified by the stationary heterogeneous differential
equation with arbitrary initial conditions and a
restricted right member [2, 6]. This approach can be
easily extended to discrete systems.

1. Statement ofthe problem
Let

w,.(s)=R4 4 ,w,(s)=R (s) 1)
2d() s Q)
be transfer functions corresponding to a desirable
control system and a synthesized control system,
where D(s) =Qd(s)Q, (,) is a stable polynomial.
In this paper, we shall determine the signals
class V =Vs[t0, +ro) such that

VS>0 VfeVs 3t*>t0 Vi>t* (le(t) <S). (2
here

NH®OPMALWOHHbBIE TEXHONOI NI
INFORMATION TECHNOLOGIES


mailto:nefta@yandex.com
mailto:nefta@yandex.com

HAYYHpBI
PH3YNbI'TT

s(t) * E(s) =(Wd(s) -Ws(s))F(s), F(s)*f (). (3)
2. Main results
Consider the error E(s) determined by (3).
Using (1), we get

E(s) = Rd(s)Qs(s) - Rs(s)Qd(s) F (s) @)

() D(s) )
or
E(s) = D(s) F(s), ©)
where degD =n, degL =m ,and
L(s) = Rd(s)Qs(s) - Rs(s)Qd (s). (6)
We show that the input signals class is

defined by the set of solutions of the linear
differential equation

L(p)f®=p(®). p=d . )

with arbitrary initial conditions and a piecewise
continuous restricted right member, i.e.,

\p(H) <M (5) V't > t0, M (5) >0. ®)

Here f eCmit0,+ro) and f [ is piecewise
continuous. Next we define M =M (5). The
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application of the Laplace transformation to equation
(7) yields

L(s)F(s) =0(s) +L,(s), ©)
where LO is a polynomial of degree m - 1. Note that
the Laplace transformation of the functions f (1) (t0),
i=1,...,m and @ is existed. Combining (5) and
(9), we obtain

L Es} P(c
E(s) = LO(s)* m(1 (10)

D(s) Df(s
Since D(s) is the Hurwitz polynomial, it follows that
lims~t)=0. (1)

Here

* 12
1((§ D(s) (2

is a transient components of the error e(t). We can
therefore write

Vy>0 3t*>t0 Vt >t  (|s(t)]| <y). (13)
Let us consider now a steady-state components
®(s)
A(t)* 14
(0* ©) (14)

— ofthe error s(t) . Let

D(s)—f\(s+4)\ XK-n 4 eC, Re4 >0. (15)
Then
v ci
= "N (s), 16
E2(s) = sz(S+4) (s) (16)
where
1o dil (s+4)k 1d
--------- | ] 17
U= G G Dis) (- Ddsfl er% (s+4) 7
By the convolution theorem, we have
2t) = (- KV 4> (r)ydr. (18)
A=k - ]
Taking into account (8), we get
v ki |c
S2()|<m (S )A —- —j(t NkjRee-vi-r)dr . (19)
j 1(klr
It can easily be checked that
. . S k - )
t- r)K-jReed-r) dr <jrki-jReedrdr m L 20
j(t-r)kj ) j rki (Rea) Kl (20)
Finally, we obviously obtain the estimate
v ki o |c L
)| <M (S)EX h k41 =M (S)A Vit >0, 21
SOI<M(SIEX o it =M (S) (20)

where c.. is given by (17) and
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Combining (21) and (13), we get the following
proposition:
Vr>0 3t->t0 3t >t (\s(t)\<r +M (8)1). (23)
Let r =8/2 and
M(@8)=— . 24
(8) 20 (24)
Thus proposition (2) is executed for the input signals
satisfying conditions (7), (8), and (24).
Notice that relationships (17) and (22) indicate
the practical methods for the decrease of the steasy-
state error. If <(f) =0, then the steady-state error is

equal to 0.

3. Example
Let us consider

Wd(s) =s, Ws(s) =

r=const>0. (25)
rs +1

Therefore,
L(s) =s§, D(s) =s+ ! (26)

From (22), we obtain 4 =r . Thus the signals class
B[O, + ga) is defined by the following conditions:

f(t) =p(V), (27)

Ip(t)!< M (8) Vit >0, |v|(8):28r (28)
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This implies that
t

f (t)=CO+Ck+j(t- r)p(r)dr, v CO0CleR . (29)
0

Clearly, algebraic polynomials of degree 1,
trigonometric polynomials, decreasing exponents,
and logarithmic functions belong to the selected class

V8 . Note also that the class V8 are not exhausted

the listed functions.
Let us consider now

Ws(s) = ——S——J—r——(—— ,a =const>0. (30)

Hence,
L(s)=s(s+a)2+2a3=(s+2a)(s2+a?2),
D(s) =(s+a)2. (31)
Using (22), we get [ =1/a. Consequently the
signals class V8|0, + ga) is determined by the

equation

(p +2a)(p2+a2)f () =p(t), p=%t, (32)

where
a8
Ip(t)!<M (8) Vt=>0, M(8) = ) (33)
If pt)=0, then the element with transfer function

(30) realizes the asymptotically fine noise-proof
differentiating of amplitude modulated signals

f (t) =C¥ 2 +C2sinat + C3cosat VCj, C2,C3e R . (34)
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