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Abstract. This study reports the structure and mechanical properties of new refractory 

Ti37.5Nb12.5Hf25Al25, Ti40Nb30Hf15Al15, and Ti40Nb20Ta10Hf15Al15 (at.%) high entropy alloys. 

After annealing at 1200 °C for 24 h, the program alloys had a single-phase B2 structure. Further 

annealing at 600 °C for 24 h resulted in the formation of Widmanstatten orthorhombic particles 

(O-phase) in the bcc matrix. The Ti40Nb30Hf15Al15 and Ti40Nb20Ta10Hf15Al15 alloys annealed at 

T = 1200 °C showed moderate strength and good ductility (>50%) at 22 and 600 °C; while the 

Ti37.5Nb12.5Hf25Al25 alloy was stronger, but less ductile at both temperatures. Subsequent 

annealing at T = 600 °C significantly increased the strength of the Ti40Nb30Hf15Al15 alloy at 22 

and 600 °C, maintaining compressive sufficient ductility at room-temperature .  

 

1.  Introduction 

Recently introduced refractory high entropy alloys (RHEAs), which demonstrated an outstanding 

capability to maintain high strength at temperatures up to T = 1600 °C [1], seem promising candidates 

for next-generation turbines. Despite the attractive high-temperature strength, one of the major 

drawbacks of most RHEAs is the modest mechanical performance at ambient temperatures.  

It is believed that balanced properties can be obtained by developing precipitation-strengthened 

RHEAs. One of the promising examples of such RHEAs are alloys with the bcc/B2 structure [2, 3]. The 

superalloy-like microstructure with a bcc solid solution, strengthened by coherent cuboidal B2 

nanoparticles, provides a good combination of strength and ductility at temperatures T≤600 °C. 

However, the development of bcc/B2 RHEAs is a non-trivial task due to weakly established 

composition-structure relationships and poor fidelity of thermodynamic modeling in the case of the B2 

phase [4, 5]. 

In this work, we presented a series of RHEAs strengthened by nanosized Widmanstatten 

orthorhombic (O-phase) particles. The O-phase precipitation was found to be an attractive option to 

achieve a notable strength enhancement both at room and elevated temperatures with only a slight loss 

in ductility. 
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2.  Materials and methods 

Ingots of the Ti37.5Nb12.5Hf25Al25, Ti40Nb30Hf15Al15, Ti40Nb20Ta10Hf15Al15 alloys were produced by 

vacuum arc melting of pure (≥ 99.9 wt%) elements. The alloys were annealed in quartz tubes at 1200 

°C for 24 h. Some samples were further annealed at 600 °C for 24 h. The phase composition and 

microstructure of the alloys were studied using transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). The densities of the Ti37.5Nb12.5Hf25Al25, Ti40Nb30Hf15Al15, 

Ti40Nb20Ta10Hf15Al15 alloys, determined by the hydrostatic weighing method, were 7.23± 0.03, 7.07 ± 

0.03, 7.87± 0.03 g/cm3, respectively. Isothermal compression was carried out in air at 22 °C or 600 °C 

using an Instron 300LX test machine.  

3.  Results 

3.1.  Microstructure  

After annealing at 1200 °C, the Ti37.5Nb12.5Hf25Al25,Ti40Nb30Hf15Al15, and Ti40Nb20Ta10Hf15Al15 alloys 

had a coarse-grained single-phase microstructure with the average grain size ~300 μm, (Figure 1a-c); 

no secondary phases were observed. 

After further annealing at 600 °C, precipitation of profuse Widmanstatten second phase particles was 

revealed. The particles located adjust to grain boundaries were coarser than the particleswithin the grain 

interior. The volume fraction of the second phase was nearly equal in all program alloys and estimated 

to be ~ 35%. 

 

   

   
Figure 1. SEM images of the Ti37.5Nb12.5Hf25Al25 (a, d), Ti40Nb30Hf15Al15(b, e), 

Ti40Nb20Ta10Hf15Al15 (c, f) alloys after annealing at 1200°C, 24 h (a, b, c) and further annealing at 

600°C, 24h (d, e, f). 

 

After annealing at 1200 °C, all the program alloys had a single-phase B2 structure as revealed by the 

selected area electron diffraction (SAED) patterns. TEM analysis revealed numerous anti-phase 

boundaries in the matrix grains (denoted in figure 2a-c as APBs); no secondary phases were found in all 

alloys. 
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The phases found after further annealing at 600 °C, were identified using TEM analysis: the matrix 

had the B2 (Ti37,5Nb12,5Hf25Al25) or bcc (Ti40Nb30Hf15Al15 and Ti40Nb20Ta10Hf15Al15) structure, whilst 

the particles were defined as the O-phase. 

 

 

  

   

Figure 2. TEM bright-field images of the Ti37.5Nb12.5Hf25Al25 (a, d), Ti40Nb30Hf15Al15(b, e), 

Ti40Nb20Ta10Hf15Al15 (c, f) alloys after annealing at 1200 °C, 24 h (a, b, c) and further annealing at 

600 °C, 24h (d, e, f). Selected area electron diffraction patterns used for phase identification are 

shown in the inserts. 

3.2.  Mechanical properties 

Stress-strain curves of the program alloys annealed at 1200 °C, i.e. with the single B2 phase structure, 

are presented in figures 3a, b. At 22 °C, the Ti40Nb30Hf15Al15 and Ti40Nb20Ta10Hf15Al15 alloys 

demonstrated moderate strength (830 and 1075 MPa, respectively), high strain hardening capacity and 

compressive ductility. Meanwhile, the Ti37.5Nb12.5Hf25Al25 alloy was the strongest (1645 MPa), albeit 

fractured after 1% of plastic deformation. At 600 °C, the strength of the Ti40Nb30Hf15Al15 and 

Ti40Nb20Ta10Hf15Al15 alloys reduced to 635 and 700 MPa, respectively. The Ti37.5Nb12.5Hf25Al25 alloy 

exhibited a notable decrease in yield strength to 810 MPa with a simultaneous increase in compressive 

ductility to 12%.  

Subsequent annealing at 600 °C (which caused precipitation of the O-phase particles in the bcc/B2 

matrix) changed the mechanical properties of the program alloys markedly (Figures 3c, d). The 

Ti40Nb30Hf15Al15 alloy demonstrated a ~50% strength increment both at 22 and 600 °C while 

maintaining reasonable compressive ductility at 22 °C. A similar annealing effect on room-temperature 

mechanical properties was also found for the Ti40Nb20Ta10Hf15Al15 alloy; however, at 600 °C, the alloy 

performance degraded inevitably; i.e. both strength and ductility became worse in comparison with 

annealing at 1200 °C. In the case of the Ti37.5Nb12.5Hf25Al25 alloy, annealing at 600 °C increased its high-

temperature strength, but drastically diminished compressive ductility. The obtained findings suggest 

complex relationships between the chemical composition, structure, and mechanical properties of the 

O-phase strengthened RHEAs since similar microstructural changes (precipitation of the O-phase 

particles) had a drastically different effect on the mechanical performance of the program alloys. Further 
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studies are required to reliably establish the relationship between the composition and the structural 

properties of these alloys. 

  
 

 

Figure 3. Engineering stress-strain curves of the program alloys after annealing 1200 °C (a, b) and further 

annealing at 600 °C (c, d) obtained during compression at 22 (a,c) and 600 °C (b,d). 

4.  Conclusions 

Microstructure and mechanical properties of the refractory Ti37.5Nb12.5Hf25Al25, Ti40Nb30Hf15Al15, and 

Ti40Nb20Ta10Hf15Al15 high entropy alloys were studied. The following conclusions were drawn:  

 

• After annealing at 1200 °C, all the program alloys have a single-phase B2 structure. Further 

annealing at 600 °C led to the formation of a mixture of the B2 (Ti37,5Nb12,5Hf25Al25) or bcc 

(Ti40Nb30Hf15Al15, Ti40Nb20Ta10Hf15Al15) matrix and nanosized Widmanstatten O-phase 

particles. 

• In the single-phase state, the Ti40Nb30Hf15Al15 and Ti40Nb20Ta10Hf15Al15 alloys demonstrated 

moderate strength and high compressive ductility at 22 and 600 °C. The Ti37.5Nb12.5Hf25Al25 

alloy showed the highest strength, but very limited ductility. The precipitation of the O-phase 

enhanced the strength of the Ti40Nb30Hf15Al15 alloy at 22 and 600 °C without notable sacrificing 

in compressive ductility at 22 °C. However, the mechanical properties of the Ti37.5Nb12.5Hf25Al25 

and Ti40Nb20Ta10Hf15Al15 alloys deteriorated after annealing at 600 °C. 
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