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Abstract—Assuming that the f luid viscosity is an exponential-power function of temperature, a
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INTRODUCTION
The stationary system of equations of a viscous nonisothermal incompressible f luid consists of the

Navier–Stokes equations, the continuity equation, and the heat transfer equation, which are mathemati-
cal representations of the momentum, mass, and energy conservation laws. This system of equations is of
major importance in f luid dynamics and is used to mathematically simulate and study numerous natural
phenomena and engineering applications, for example, sedimentation. Particles in coarse dispersions
deposit in the field of gravity. Colloidal particles and macromolecules can deposit in a centrifugal force
field (centrifugation). Sedimentation is used industrially in mineral processing, various chemical and pet-
rochemical technologies, water purification, etc. Sedimentation in centrifuges and ultracentrifuges and
also in a gravitational field underlies sedimentation analysis.

A major difficulty of this system is that the Navier–Stokes equations are nonlinear. In view of this fac-
tor, approximate methods that simplify the system of equations to a certain extent and adjust it to partic-
ular types of physical problems have been developed in f luid dynamics. There is a broad class of hydrody-
namic f lows in which the nonlinear term in the Navier–Stokes equations can be neglected. In the scien-
tific literature, such equations are called the Navier–Stokes equations linearized with respect to velocity
(or velocity-linearized). Examples are the viscous incompressible steady f low between two planes (Cou-
ette f low), the plane and cylindrical Poiseuille f lows, the motion of a viscous f luid between two rotating
cylinders, etc. This subject is of current interest. For example, the influence exerted by the mass f lux sur-
face density and thermophoresis on the f low over a heated permeable vertical plate was studied in [1, 2].
The effect of thermophoresis on single-stranded DNA moved along a microscopic temperature gradient
was considered in [3]. The influence exerted by thermophoresis and variable viscosity on MHD mixed
convective heat and mass transfer of a viscous incompressible electrically conducting f luid passing
through a porous wedge in the presence of a chemical reaction was analyzed in [4].

In studying the stationary system of equations of a viscous nonisothermal incompressible f luid, the
term “relative temperature drop” is used. By the relative temperature drop, we mean the ratio of the dif-
ference between the mean surface temperature  of the particle and the temperature  away from it
to . A relative temperature drop is said to be small if  and large otherwise. For small
temperature drops, the f luid viscosity can be treated as a constant and the f luid is called isothermal. In this
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SOLUTION OF A BOUNDARY VALUE PROBLEM 1133
case, the velocity-linearized system of equations of a viscous isothermal f luid is simplified considerably.
More specifically, it is divided into two independent systems, namely, the velocity-linearized Navier–
Stokes equations and heat transfer equations, which are coupled by boundary conditions. These systems
of equations have been extensively studied. For example, the Navier–Stokes equations linearized with
respect to velocity were investigated in [5–13].

If the temperature drop is large, then the f luid transport coefficients have to be treated as functions of
temperature. This complicates the search for solutions of such a system of equations, and the viscous
medium in this case is called nonisothermal. In this paper, a solution of the Navier–Stokes equations lin-
earized with respect to velocity is constructed assuming that the dynamic viscosity of the f luid is an expo-
nential-power function of temperature. Since out of all f luid transport coefficients (viscosity, thermal
conductivity, diffusivity) only viscosity depends on temperature, the resulting solution is not only of prac-
tical interest, but also of theoretical importance, providing a mathematical apparatus for studying the full
Navier–Stokes equations. Moreover, the method developed for solving the velocity-linearized Navier–
Stokes equations in the case of a particular physical problem can be used to address a broader class of phys-
ical problems, for example, in the case of forces that are not gravitational, but rather electromagnetic,
thermophoretic, or of another nature.

Out of all f luid transport parameters, the viscosity coefficient has the strongest dependence on tem-
perature (see [14, 15]). It was shown in [14, 15] that the f luid viscosity decays exponentially with increasing
temperature. An analysis of the semiempirical formulas and experimental data presented in [14–16] has
shown the temperature dependence of the viscosity in a wide range of temperatures can best be fitted with
any prescribed accuracy by the formula

(1)

where , , and  are a given finite set of constants its own for each particular f luid. Here and
below, the indices  and  refer to the viscous f luid and the heated particle, respectively, the index 
denotes the free-stream fluid parameters, and the index  stands for physical quantities at the mean sur-
face temperature.

For example, for water, at temperatures ranging from  to , we have , ,
, ,  (at ), etc., with a relative error of at most .

Therefore, for water within a relative error of at most 2.5%, which is frequently sufficient for applications,
we can retain only two first terms in formula (1); moreover,  and . Numerical com-
putations have shown that a similar situation occurs for other Newtonian fluids, such as glycerol, castor
oil, and isopropyl alcohol. Thus, for most f luids, numerical computations based on formula (1) can be
restricted to the case  and the other coefficients , , can be assumed to vanish.

The studies performed in [17–19] showed that, under physically admissible simplifications, assuming
that the solutions (components of the mass velocity) have a certain form and the f luid viscosity is a certain
function of temperature, the boundary value problem for the velocity-linearized Navier–Stokes equations
can be reduced to a boundary value problem for a fourth-order homogeneous ordinary differential equa-
tion with an isolated singular point. The solution of the latter problem is sought with the help of general-
ized power series.

1. FORMULATION OF THE PROBLEM: BASIC EQUATIONS
AND BOUNDARY CONDITIONS

Consider the classical problem of the axisymmetric f low of a viscous incompressible nonisothermal
fluid with a free-stream velocity  ( ) over a heated spherical solid particle of radius  with heat
sources of density  distributed nonuniformly inside the particle. The heated surface of the particle has a
large effect on the thermophysical characteristics of the ambient f luid and, hence, on the velocity and
pressure fields near the particle and, eventually, on the sedimentation velocity. As was noted in the Intro-
duction, out of all f luid transport parameters, the viscosity has the strongest dependence on temperature.
Accordingly, when solving the stationary system of equations for a nonisothermal viscous f luid, we use
formula (1). The other parameters of the f luid motion are assumed to be constants.

The f low is described in a spherical coordinate system comoving with the center of mass of the particle.
In this paper, we obtain an axisymmetric solution of the boundary value problem for the stationary veloc-
ity-linearized system of equations describing the vector mass velocity field  = ,
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the pressure , and the temperature  (see Eqs. (2), (3) below) in the exterior domain  =
, where  is the interior spherical domain centered at the origin, and also the temperature field

inside the particle, ,  (see Eq. (4)):

(2)

(3)

(4)

where  is the thermal conductivity of the particle.
System (2)–(4) is solved in the spherical coordinate system  with boundary conditions

(5)

(6)

(7)

(8)

which represent the no-slip condition on the particle surface  for the normal  and tangent
 components of  (see (5)), the equality of the temperatures and the continuity of the radial heat

fluxes (see (6)), and standard conditions (see [20]) away from the particle, as  (see (7)) and inside
the particle, as  (see (8)).

The boundary conditions (7) for the mass velocity components away from the particle imply that a
solution for , , and  can be sought in the form of expansions in terms of Legendre
polynomials  and Gegenbauer polynomials , .

Finally, the force acting on the particle is found by integrating the stress tensor over the particle surface
(see [21]):

(9)

It was shown in [20] that, since the Legendre and Gegenbauer polynomials are orthogonal, the indi-
cated force is determined only by the first terms of these expansions. Accordingly, we assume that

(10)

where  and  are the functions of radial coordinate to be determined.

2. SOLUTION OF THE HEAT TRANSFER EQUATIONS AND THE VELOCITY-LINEARIZED 
NAVIER–STOKES EQUATION

In spherical coordinates, the system of equations of a viscous incompressible nonisothermal f luid
describing the velocity and pressure distributions outside the particle has the following form [21]:
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and the heat equations describing the temperature distributions outside  =  and inside
the particle  =  become

(14)

(15)

where , , , and  are the stress tensor components in the spherical coordinate system, which
are given by the relations [21]

Let us find the temperature fields outside and inside the particle. Following [20], Eqs. (14) and (15)
are solved by the method of separation of variables. The boundary conditions (5) show that the velocity
field is coupled to the temperature field only via the temperature dependence of the viscosity (see for-
mulas (1), (11), (12)). Since the thermal conductivity of the particle is much greater than that of the f luid
( ), which takes place for most actual f luids, the angular dependence of the viscosity in the parti-
cle–fluid system can be neglected (weak angular asymmetry of the temperature distribution is assumed)
and we can assume that  ≈ . Thus, we search for -independent solutions for  =

,  = . The functions  are found using the equation

with the following boundary condition away from the particle as :

(16)

where  is a constant determined by the boundary conditions on the particle surface.
The temperature field inside the particle is described by the equation

(17)

To find this field, the right-hand side of Eq. (17) is decomposed in a series in terms of the Legendre
polynomials . As a result, we have

where
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Substituting this expression into (17) yields an inhomogeneous ordinary differential equation for deter-
mining :

(18)

Its solution satisfying the condition that the temperature field is finite as  has the form

(19)

where

Under the above assumption, the temperature field inside the particle is expressed as

(20)

here, we used the equality

The constants B and  are determined by the boundary conditions on the particle surface and have
the form

where  is the thermal conductivity of the f luid,  is a dimensionless parameter characterizing
the heating of the particle surface, ,  is the mean surface temperature of the particle deter-
mined by the relation

(21)

here, the integral is taken over the entire volume of the particle.
It follows from formula (21) that the heat source density  has a large effect on the mean surface tem-

perature of the particle.
In view of formula (16), expression (1) becomes

(22)

The relation between  and  is determined by the continuity equation (13). Using representa-
tions (10) yields

(23)

A differential equation for  is derived as follows. Equation (11) is differentiated with respect to 
and (12), with respect to ; the results are subtracted from each other; and expressions (22) and (23) are
taken into account. As a result, on the interval , we obtain the fourth-order homogeneous differ-
ential equation
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where , , , , the coefficients  vanish for  and 
(the number  is determined by (1)), and, for ,

From boundary conditions (5)–(8), we need to remove four boundary conditions on  and .
The remaining conditions take the form

(25)

Note also that a solution of Eq. (24) is the function

(26)
For Eq. (24),  = 0 is a regular singular point; therefore, its solution is sought in the form of a gener-

alized power series
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(28)

(29)

(30)

Substituting (27)–(30) into (24) yields the following governing equation for :
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(33)

(34)

Substituting (32)–(34) into (24) and applying the method of undetermined coefficients, we derive
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for ,

(35)

for ,

(36)

No recurrence formula for the coefficients  is presented, since function (34) does not satisfy bound-
ary condition (25) as .

Note that the constants , , and  can be chosen to be arbitrary. However, in the limiting case
of small temperature drops ( ), the desired solution for  has to pass into the Stokes solution for
the f low past a fixed sphere [20]. Therefore, , , and .

To show that the series determining  in formulas (32) and (33) converge uniformly for

, we establish an asymptotic estimate for the coefficients  and .

Note that the coefficient  is always less than unity ( ), since  cannot exceed the
boiling point of the corresponding f luid, while  is the f luid temperature under normal conditions.
For example, for water,  = 353°K (80°C),  = 273°K (0°C), and .

As , the leading term  in the asymptotic expansion of  is given by
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By induction, we prove the estimate
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which implies the uniform convergence of the series in (32) for .
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uniformly for . The uniform convergence of the series in (33) for  is established in a sim-
ilar manner.
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Since the solutions  are linearly independent, the constants  and  are uniquely deter-
mined by boundary conditions (25) as . We have

(40)

Therefore,

(41)

As a result, we have proved the following theorem.
Theorem. The function , where ,  are given by (32) and (33) and

the coefficients  are given by (41), is a unique solution of Eq. (24) satisfying boundary conditions (25).
Since  has been determined, using the relation between  and  and applying formulas (23)

and (10), we derive the following expressions for the mass velocity components and pressure:

(42)

(43)

(44)

Thus, the resulting expressions (42)–(44) for the mass velocity components and pressure are of general
character, since they involve the integration constants  determined by the boundary conditions on
the particle surface. As a result, the above-developed method for solving the Navier–Stokes equations can
be extended to a wide variety of applications (thermophoresis, photophoresis, diffusionphoresis, the
motion of particles in a gravitational field, the motion of particles in different-temperature channels, etc.),
where the force acting on spherical particles and the velocity of their ordered motion have to be estimated
taking into account the temperature dependence of the f luid viscosity.

CONCLUSIONS
The boundary value problem for the velocity-linearized Navier–Stokes equation in spherical coordi-

nates was solved assuming that the viscosity is an exponential-power function of temperature (see for-
mula (1)). The uniqueness of the solution was proved, and expressions for the components of the mass
velocity  and the pressure  were found. The results can be used to describe the sedimentation of par-
ticles in different-temperature channels, to develop methods for fine liquid purification, etc.

As an application of the above-developed theory, we consider the sedimentation of a nonuniformly
heated spherical solid particle in a nonisothermal viscous f luid. As was noted in the Introduction, sedi-
mentation is widely used in industry, agriculture, and medicine. The sedimentation velocity is a major
characteristic of this process. It can be determined as follows. Let us introduce a coordinate system
comoving with the center of mass of the particle. Then the problem is reduced to the classical one of the
axisymmetric f low of a viscous incompressible nonisothermal f luid with velocity   over a
heated spherical solid particle with heat sources of intensity  distributed nonuniformly inside it. In such
a coordinate system, the free-stream velocity of the f luid is opposite in sign to the sedimentation velocity,
i.e.,  = .

The heated surface of the particle has a large effect on the thermophysical characteristics of the ambi-
ent f luid and, hence, on the velocity and pressure fields near the particle and, eventually, on the sedimen-
tation velocity. Out of all f luid transport parameters, the viscosity has the strongest dependence on tem-
perature. Accordingly, when solving the system of f luid dynamics equations, we use formula (1).

The force acting on the particle is found by integrating the stress tensor over the particle surface (see
formula (9)). Substituting expressions (42)–(44) for the mass velocity components and pressure into (9)
and integrating the result, we obtain
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Fig. 1. Plot of  as a function of the particle’s mean surface temperature .
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μG ST
which, in view of (41), yields

(45)

The particle settling under gravity (due to sedimentation) in the viscous f luid eventually moves with a
constant velocity, at which the gravity is balance by the hydrodynamic forces. With allowance for buoy-
ancy, the force of gravity acting on the particle is given by

(46)

where  is the acceleration of gravity.

Equating forces (45) and (46) yields a formula for finding the sedimentation velocity:

(47)

where  is the unit vector in the  direction.

It follows from (47) that the heating of the particle surface has a large effect on the sedimentation veloc-
ity. The coefficient  is expressed in terms of the functions  and , which depend on the
exponential-power representation of viscosity (see (1)) and on the particle’s mean surface temperature
(see (21)). To illustrate the dependence of  on , Fig. 1 depicts the function  for large coal
particles of radius  μm moving in water (solid curve). The broken curve corresponds to small rela-
tive temperature drops ( ), but the viscosity is taken at the particle’s mean surface temperature.
A comparison of these curves shows that the relative error grows as the particle’s mean surface tempera-
ture increases. Thus, the dependence of viscosity on temperature has to be taken into account when we
describe the sedimentation of a heated spherical solid particle in a viscous nonisothermal f luid.
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