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Abstract—A family of singular differential equations with variable coefficients and parameter k ∈ R
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1. INTRODUCTION

In this paper we study a family of singular differential equations with variable coefficients, parameter
k ∈ R and operator coefficient A. This family contains equations, each of which was studied earlier by
different authors independently of other equations of the considered family. Appropriate references to
these equations will be given in the course of the presentation (see Theorem 1 below). In Lemmas 1–6
we establish a number of properties related to the change of the parameter k and simultaneously inherent
in all equations of the introduced family. These properties will be further applied in Theorems 2–4 to
establish the solvability of a number of initial problems for this family. The equations will be considered
in the Banach space E, although the established results can be extended to wider sets.

2. OPERATORS OF MOTION BY PARAMETER k ∈ R

We will begin the study of equations by studying the properties of various differential expressions,
which will be also called as differential operators.

For t > 0, we introduce the differential operator

Lg,ku(t) = u′′(t) + kg′′(t)
du(t)

dg(t)
+

k2g(3)(t)

4g′(t)
u(t), (1)

where the parameter k ∈ R, g(t), t ≥ 0, is a monotone thrice continuously differentiable function and we
use a convenient notation for the following

du(t)

dg(t)
=

1

g′(t)

du(t)

dt
.

We will also assume that g′(0) = 0, i.e., the differential operator Lg,ku(t) has a singular feature in the
coefficients. Note that the operator Lg,k includes only derivatives of the function g(t), but in the future
the function itself will be used.
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Lemma 1. Let the functions u(t) and g(t) be three and four times continuously differentiable,
respectively. Then the equality

Lg,k+2
du(t)

dg(t)
=

d

dg(t)
Lg,ku(t)−

k2
(
g′(t)g(4)(t)− g′′(t)g(3)(t)

)

4(g′(t))3
u(t), t > 0 (2)

is true.
Proof. Direct computations lead to the equations

Lg,k+2
du(t)

dg(t)
=

1

g′(t)
u(3)(t) +

kg′′(t)

(g′(t))2
u′′(t) +

(
(k2 + 4k)g(3)(t)

4(g′(t))2
− k(g′′(t))2

(g′(t))3

)

u′(t),

d

dg(t)
Lg,ku(t) =

1

g′(t)
u(3)(t) +

kg′′(t)

(g′(t))2
u′′(t) +

(
(k2 + 4k)g(3)(t)

4(g′(t))2
− k(g′′(t))2

(g′(t))3

)

u′(t)

+
k2

(
g′(t)g(4)(t)− g′′(t)g(3)(t)

)

4(g′(t))3
u(t),

from which the required statement follows. The lemma is proved.
Let us introduce the operators

Φg,ku(t) = (g′(t))k−1u(t), Ψg,ku(t) = g′(t)u′(t) + (k − 1)g′′(t)u(t),

which also as in Lemma 1 will allow to change the second index of the operator Lg,k after their
application.

The following four statements are also established by a direct verification.
Lemma 2. Let the functions u(t) and g(t) be twice and thrice continuously differentiable,

respectively. Then the equality

Lg,2−kΦg,ku(t) = Φg,kLg,ku(t), t > 0 (3)

is true.
Lemma 3. Let the functions u(t) and g(t) be three and four times continuously differentiable,

respectively. Then the equality

Lg,−kΦg,k+1u(t) = Φg,k+1Lg,ku(t)−
k2

4
(g′(t))k−2

(
g′(t)g(4)(t)− g′′(t)g(3)(t)

)
u(t), t > 0 (4)

is true.
Lemma 4. Let the functions u(t) and g(t) be three and four times continuously differentiable,

respectively. Then the equality

Lg,k−2Ψg,ku(t) = Ψg,kLg,ku(t)−
(k − 2)2

(
g′(t)g(4)(t)− g′′(t)g(3)(t)

)

4g′(t)
u(t), t > 0 (5)

is true.
Lemma 5. Let the functions u(t) and g(t) be one and twice continuously differentiable,

respectively. Then the equality

Ψg,ku(t) = Φg,4−k
d

dg(t)
Φg,ku(t), t > 0

is true.

Thus, by applying the operator
d

dg(t)
the second index of operator Lg,k can be increased by two and

therefore
d

dg(t)
is the lift operator by parameter. The operator Ψg,k reduces the second index by two,

so Ψg,k is the parameter descent operator. The operator Ψg,k is the reflection operator by parameter, it
reflects relative to the value k = 1, and the operator Ψg,k+1 reflects relative to the value k = 0. In this
case, in the equations (4) and (5) there are additional terms containing the functions u(t), g(t).
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In the future, we will need the concept of a fractional integral of a functionu(t) with respect to function
g(t)

Iαg u(t) ≡
(

d

dg(t)

)−α

u(t) =
1

Γ(α)

t∫

0

(g(t)− g(s))α−1 g′(s)u(s) ds, α > 0,

as well as the definition of the fractional derivative of the function g(t) (see Chapter 4, Sec. 18 [1]).

Also, the direct test establishes an analogue of Lemma 1 for the fractional integral
(

d

dg(t)

)−1

, which

is the operator of the “lifting” by the parameter by the number −2, i.e., the operator of the descent.
Lemma 6. Let the functions u(t) and g(t) be twice and thrice continuously differentiable,

respectively. Then the equality

Lg,k

(
d

dg(t)

)−1

u(t) =

(
d

dg(t)

)−1

Lg,k+2u(t) + g′′(0)u(0)

+
k2g(3)(t)

4g′(t)

t∫

0

g′(s)u(s) ds− k2

4

t∫

0

g(3)(s)u(s) ds, t > 0 (6)

is true.
In the equality (2), (4)–(6) there are terms containing the function g(t), which do not allow us to

state that the transformation operators are found, weaving the operators considered in them (differential
expressions) and which will make it difficult to find the solution of the corresponding equation in the
future. For more information about conversion operators, see, for example, [2] and Chapter 2 in [3]. We
therefore impose a simplifying condition on the function g(t), and accordingly the class of equations in
question.

Condition 1. At t ≥ 0, the function g(t) is monotonic and four times continuously differentiable. We
will also assume that g′(0) = 0 and

g′(t)g(4)(t)− g′′(t)g(3)(t) = 0. (7)

The set of functions g(t) satisfying condition 1 can be explicitly specified. Indeed, equation (7) by
replacing g′(t) = h(t) reduces to the differential equation h(t)h(3)(t)− h′(t)h′′(t) = 0, whence

(
h′′(t)

h(t)

)′
= 0 ⇔ h′′(t)− c0h(t) = 0, c0 ∈ R.

Accounting the condition g′(0) = 0, for the function g(t) we obtain the following representations.
If c0 = 0, then g(t) = c1t

2 + c2, c1, c2 ∈ R.
If c0 = μ2, μ �= 0, then g(t) = c1 coshμt+ c2, c1, c2 ∈ R.
If c0 = −μ2, μ �= 0, then g(t) = c1 cosμt+ c2, c1, c2 ∈ R.
Let the function g(t) satisfy Condition 1, then the set of operators Lg,k by their properties, naturally,

be combined into one family. The constants μ, c1, c2 ∈ R for the solution of the equation considered
in the following do not have a fundamental value, and since the differential operator Lg,k includes only
derivatives of the function g(t), then instead of Condition 1 we assume the following condition to be
fulfilled.

Condition 2. The function g(t) has one of the types: either (a) g(t) = t2/2, or (b) g(t) = cosh t, or
(c) g(t) = cos t.

We also note that the operator Lch t,k by replacing t = −iτ reduces to the operator Lcos τ,k with the
differentiation operation by τ , and the operator Lt2/2,k is limiting to Lch t,k, since

lim
μ→0

coshμt− 1

μ2
=

t2

2
.
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If Condition 2 is satisfied and in Lemma 6 the function u(t) additionally satisfies condition u(0) = 0,
then the equalities (2), (4)–(6) accordingly have the form

Lg,k+2
du(t)

dg(t)
=

dLg,ku(t)

dg(t)
, (8)

Lg,−kΦg,k+1u(t) = Φg,k+1Lg,ku(t),

Lg,k−2Ψg,ku(t) = Ψg,kLg,ku(t),

Lg,k

(
d

dg(t)

)−1

u(t) =

(
d

dg(t)

)−1

Lg,k+2u(t). (9)

Theorem 1. Let the function u(t) be twice continuously differentiable and the function g(t)
satisfy Condition 2. Then at t > 0 the equality

Lg,kΦg,2−k

(
d

dg(t)

)−k/2 u(t)

g′(t)
= Φg,2−k

(
d

dg(t)

)−k/2 u′′(t)

g′(t)
+

Φg,2−k (g(t) − g(0))k/2−1

Γ(k/2)
u′(0) (10)

is true.
Proof. If g(t) = t2/2, then the operator Lg,k defined by equality (1) has the form

Lg,ku(t) = u′′(t) +
k

t
u′(t)

and is the Bessel operator, and the validity of equality (10) is established earlier in [4], see also Chapter 1
in [5, 6–11].

If g(t) = cosh t, then the operator Lg,k has the form

Lg,ku(t) = u′′(t) + k coth t u′(t) + (k/2)2 u(t),

is the Jacobi equality and the equity equality (10) is established previously in [12], see [13–15].
If g(t) = cos t, then the operator Lg,k has the form

Lg,ku(t) = u′′(t) + k cot t u′(t)− (k/2)2 u(t),

and the equity equality (10) is established previously in [16]. The statement formulated in Theorem 1 is
proved using the equalities (3), (8), (9). Really,

Lg,kΦg,2−k

(
d

dg(t)

)−k/2 u(t)

g′(t)
= Φg,2−kLg,2−k

(
d

dg(t)

)−k/2 u(t)

g′(t)

= Φg,2−kLg,2−k

(
d

dg(t)

)1−k/2
t∫

0

u(τ) dτ = Φg,2−k

(
d

dg(t)

)1−k/2 d2

dt2

t∫

0

u(τ) dτ

= Φg,2−k

(
d

dg(t)

)1−k/2
⎛

⎝
t∫

0

u′′(τ) dτ + u′(0)

⎞

⎠

= Φg,2−k

(
d

dg(t)

)−k/2 u′′(t)

g′(t)
+ Φg,2−k

(
d

dg(t)

)1−k/2

u′(0). (11)

Let us calculate further the expression included in (11)
(

d

dg(t)

)1−k/2

u′(0). If 0 < k < 2, then, given

the definition of the fractional derivative with respect to function g(t), we obtain
(

d

dg(t)

)1−k/2

u′(0) =
d

dg(t)

(
d

dg(t)

)−k/2

u′(0)
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=
d

dg(t)

⎛

⎝ 1

Γ(k/2)

t∫

0

(g(t) − g(s))k/2−1g′(s) u′(0) ds

⎞

⎠

=
1

Γ(k/2 + 1)

d

dg(t)

(
(g(t)− g(0))k/2

)
u′(0) =

1

Γ(k/2)
(g(t) − g(0))k/2−1u′(0).

If k = 2 then
(

d

dg(t)

)1−k/2

u′(0) = u′(0). And finally, if k > 2, then

(
d

dg(t)

)1−k/2

u′(0) =
1

Γ(k/2 − 1)

t∫

0

(g(t)− g(s))k/2−2g′(s) u′(0) ds

=
1

Γ(k/2)
(g(t) − g(0))k/2−1u′(0).

Thus, the equality (11) can be rewritten as

Lg,kΦg,2−k

(
d

dg(t)

)−k/2 u(t)

g′(t)
= Φg,2−k

(
d

dg(t)

)−k/2 u′′(t)

g′(t)
+

Φg,2−k (g(t)− g(0))k/2−1

Γ(k/2)
u′(0),

thus the equality (10), and the theorem, are proved.
In the next section, Theorem 1 will be used to investigate the solvability of initial problems for the

family of abstract singular equations under consideration.

3. SOLVABILITY OF INITIAL VALUE PROBLEMS

Let A be a linear closed operator in a Banach space E with the domain of definition D(A) dense in E.
For k > 0, we will consider the equation

Lg,ku(t) ≡ u′′(t) + kg′′(t)
du(t)

dg(t)
+

k2g(3)(t)

4g′(t)
u(t) = Au(t), t > 0. (12)

As it will be indicated later, the correct statement of the initial conditions for equation (12) consists
in setting the initial conditions at the point t = 0

u(0) = u0, u′(0) = 0. (13)

The problem (12), (13) at k = 0 is uniformly correct only when the operator A is the generator of
cosine-operator-function C(t). See Chapter 2.8 [17] and [18] for correctness of statements, terminology,
and examples of generators. In this paper we will keep this assumption for k > 0, although, as we know
from [8, 15], the uniform correctness of the problem (12), (13) can be established for a wider class of
operators A.

Theorem 2. Let k > 0, u0 ∈ D(A), Condition 2 is satisfied and operator A is a generator of
cosine-operator-function C(t). Then the problem (12), (13) is uniformly correct and its solution
is represented as

u(t) = Pg,kC(t)u0 ≡
2k/2 Γ(k/2 + 1/2)√

π
(g′(t))1−k

(
d

dg(t)

)−k/2 (C(t)

g′(t)

)
u0

=
2k/2 Γ(k/2 + 1/2)√

π Γ(k/2)
(g′(t))1−k

t∫

0

(g(t)− g(s))k/2−1C(s)u0 ds. (14)

Proof. Since C ′(0) = 0, the representation (14) for the solution of the problem (12), (13) follows
from theorem 1, and the validity of the initial condition (13) and the uniqueness of the solution for each
of the three possible values of the function g(t) are set respectively in [4, 8, 16]. The theorem is proved.
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Consequence 1. For k > 0 on the set of doubly differentiable functions satisfying the condition
u′(0) = 0, the Poisson operator Pg,k is a transformation operator weaving the operators Lg,k and Lg,0,
i.e.,

Lg,kPg,ku(t) = Pg,ku
′′(t).

Consequence 2. Let m > k > 0 and the conditions of Theorem 2 are satisfied. Then the parameter
shift formula is valid

Pg,mC(t)u0 =
2(m−k)/2 Γ(m/2 + 1/2)(g′(t))1−m

Γ(k/2 + 1/2)Γ(m/2 − k/2)

t∫

0

(g(t) − g(s))(m−k)/2−1 (g′(s)
)k

Pg,kC(s)u0 ds.

Proof. Really,

2(m−k)/2 Γ(m/2 + 1/2)

Γ(k/2 + 1/2)Γ(m/2 − k/2)
(g′(t))1−m

t∫

0

(g(t)− g(s))(m−k)/2−1 (g′(s)
)k

Pg,kC(s)u0 ds

=
2m/2 Γ(m/2 + 1/2)√
π Γ(k/2)Γ(m/2 − k/2)

(g′(t))1−m

t∫

0

(g(t)− g(s))(m−k)/2−1 g′(s)

×
s∫

0

(g(s)− g(τ))k/2−1C(τ)u0 dτds =
2m/2 Γ(m/2 + 1/2)√
π Γ(k/2)Γ(m/2 − k/2)

(g′(t))1−m

×
t∫

0

C(τ)u0

t∫

τ

g′(s) (g(t)− g(s))(m−k)/2−1 (g(s)− g(τ))k/2−1 dsdτ

=
2m/2 Γ(m/2 + 1/2)(g′(t))1−m

√
π Γ(k/2)Γ(m/2 − k/2)

t∫

0

C(τ)u0

g(t)∫

g(τ)

(g(t)− ξ)(m−k)/2−1 (ξ − g(τ))k/2−1 dξdτ

=
2m/2 Γ(m/2 + 1/2)√

π Γ(m/2)
(g′(t))1−m

t∫

0

(g(t)− g(τ))m/2−1 C(τ)u0 dτ = Pg,mC(t)u0,

and the consequence is proved.
As in the paper [19], for the Poisson operator Pg,k, the inverse operator (the Sonin operator)

P−1
g,ku(t) =

√
π

2k/2 Γ(k/2 + 1/2)
g′(t)

(
d

dg(t)

)k/2

(g′(t))k−1u(t),

can be entered which has the following property on smooth functions

P−1
g,kLg,ku(t) =

d2

dt2
P−1
g,ku(t).

Let us note one more possibility of solutions construction of differential equations. If in determining
the solution by formula (14) instead of cosine-operator-function C(t) use sine-operator-function

S(t) =

t∫

0

C(τ) dτ, S′(0) = I,

then, accounting the equality (10), we obtain the solution of the loaded equation

Mg,kv(t) ≡ v′′(t) +
kg′′(t)

g′(t)

(

v′(t)− 2k/2−1 (g(t) − g(0))k/2−1

(g′(t))k−2g′′(t)
v′(0)

)
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+
k2g(3)(t)

4g′(t)
v(t) = Av(t), t > 0 (15)

satisfying the condition

v(0) = 0, v′(0) = v1. (16)

Similarly to Theorem 2, the following statement is established.

Theorem 3. Let k > 0, v1 ∈ D(A), Condition 2 is satisfied and operator A is the generator of
cosine-operator-function C(t). Then the problem (15), (16) is uniformly correct and its solution
is represented as

v(t) = Qg,kS(t)v1 ≡ k 2k/2−1 Γ(k/2) (g′(t))1−k

(
d

dg(t)

)−k/2 (S(t)

g′(t)

)
v1

= k 2k/2−1(g′(t))1−k

t∫

0

(g(t)− g(s))k/2−1 S(s)v1 ds.

The operator Qg,k differs from the Poisson operator Pg,k only by a numerical multiplier. We will also
note that if g(t) = t2/2, then the operator Mg,k defined by the equality (15) has the form

Mg,kv(t) = v′′(t) +
k

t

(
v′(t)− v′(0)

)

and is the Bessel–Struve operator, and the solvability of the problem (15), (16) is set in [20].

If g(t) = ch t, then the operator Mg,k has the form

Mg,kv(t) = v′′(t) + k coth t

(

v′(t)− ch2−k(t/2)

ch t
v′(0)

)

+
k2

4
v(t),

and the solvability of the problem (15), (16) is established in [21].

Consequence 3. Let m > k > 0 and the conditions of Theorem 3 are satisfied. Then the parameter
shift formula is valid

Qg,mS(t)v1 =
2(m−k)/2 Γ(m/2 + 1/2)(g′(t))1−m

Γ(k/2 + 1/2)Γ(m/2 − k/2)

t∫

0

(g(t) − g(ξ))(m−k)/2−1 (g′(ξ)
)k

Qg,kS(ξ)v1 dξ.

The proof is analogous to the proof of Consequence 2.

A theorem on the solvability of the Cauchy problem with two nonzero conditions follows from
Theorems 2 and 3.

Theorem 4. Let k > 0, v0, v1 ∈ D(A), condition 2 is satisfied and operator A is the generator
of cosine-operator-function C(t). Then the function

v(t) = Pg,kC(t)v0 +Qg,kS(t)v1

is the unique solution of the equation (15) satisfying the conditions

v(0) = v0, v′(0) = v1.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 5 2020



770 GLUSHAK

4. CONCLUSION

The operators Φg,k and
d

dg(t)
were used in [4] and [15] to construct a solution of the problem (12),

(13) at k < 0 and smooth initial conditions, respectively in the cases g(t) = t2/2 and g(t) = ch t. Note
that at k < 0 there is a loss of uniqueness of this problem solution.

In this case, another transformation operator is used to construct the solution of the problem (12),
(13) for k = −2n+ 1, n ∈ N

P̃g,1u(t) =

t∫

0

(g(t)− g(s))−1/2 ln
2 (g(t) − g(s))

g′(t)
u(s) ds,

which on the functions satisfying the condition u′(0) = 0 has the property

Lg,1P̃g,1u(t) = P̃g,1u
′′(t).

We specify that the form of the operator P̃g,1 is found by calculating the limit

lim
k→1

Pg,ku(t)− t1−kPg,2−ku(t)

1− k
.

In order to find a unique solution of equation (12) at k < 0, one should, as in [22], set the Cauchy
weight problem

u(0) = 0, lim
t→0+

(g′(t))ku′(t) = u1, (17)

herewith the only solution of the problem (12), (17) has the form

u(t) =
21−k/2 Γ(3/2 − k/2)

(1− k)
√
π

Φg,2−kPg,2−kC(t)u1 =
21−k/2 Γ(3/2 − k/2)

(1− k)
√
π

(
d

dg(t)

)k/2−1(C(t)

g′(t)

)
u1

=
21−k/2 Γ(3/2 − k/2)

(1− k)
√
π Γ(1− k/2)

t∫

0

(g(t) − g(s))−k/2C(s)u1 ds.
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