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1. THE CAUCHY PROBLEM WITH A FRACTIONAL HADAMARD DERIVATIVE

Let X be a Banach space, and let B be a linear closed densely defined operator in X with
domain D(B) and with nonempty resolvent set. For 0 < ar < 1, consider the Cauchy type problem

AD?, u(t) = Bu(t), t>1, (1)

tlirg AL u(t) = o, (2)

AL Cu(t) = ﬁ/ <ln§>au(s) %

a

where

is the left Hadamard fractional integral of order 1 — «a, a > 0 (see [1, p. 250; 2, p. 110]),

(a7 d —
ADY u(t) :tEAL; u(t)
is the left Hadamard fractional derivative of order o« € (0,1), I'(-) is the gamma function, and
ug € X.
Examples of solutions of some particular differential equations with Hadamard fractional deriva-
tives can be found in [2, p. 212; 3]. Note also that the results proved below were announced in [4].

Definition 1. A solution of problem (1), (2) is defined as a continuous function u(t), t > 1,
such that A7} “u(t) is a continuously differentiable function for ¢ > 1 and u(t) ranges in D(B) and
satisfies problem (1), (2).

Definition 2. Problem (1), (2) is said to be uniformly well posed if there exist an operator
function AT, (t) (defined on X and commuting with B) and numbers M > 0 and w € R such that,
for any u, € D(B), the function 47T,,(t)u, is the unique solution of this problem and, in addition,

14T, (6| < M(Int)* 1t~ t> 1.



Along with Eq. (1), consider the inhomogeneous equation
AD? u(t) = Bu(t) + h(t), t>1. (3)
The change of the independent variable ¢ and the unknown function u(t) by the formulas
t=e¢e", T>0, u(t) = ule™) = v(r) (4)

reduces problems (1), (2) and (3), (2) to the already studied problems for differential equations

d
— 15 "v(7), where

with Riemann-Liouville fractional derivative D§ v(1) = y
-

T

! )/(T—s)%(s) ds

50 = s
0

is the left Riemann-Liouville fractional integral of order 1 — a. The indicated changes of variables
reduce Eq. (1), the initial condition (2), and Eq. (3) to the relations

Dgv(r) = ( ), T >0, (5)
Tim 1} "0(r) = 0
D (1) = ( )+ h{e), 7> 0. (7)

The solvability of problems (5), (6) and (7), (6) was established in [5]. Therefore, below in
Theorems 1-3, we restate the required results on the solvability of problems (1), (2) and (3), (2)
with Hadamard fractional derivatives.

Next, let L(X) be the space of linear bounded operators in X, and let £, 5(-) be the Mittag-
Leffler function given by the relation

Z’ﬂ

:Zoif(noHrﬁ)y a >0, B> 0.

n—=

Theorem 1. Let B € L(X) and up € X, and let h(t) € C(1,00) be an absolutely integrable
function in a neighborhood of the point t = 1. Then problem (1), (2) is uniformly well posed,

AT, (Wuo = (Int)* B, ((Int)*B)uy,

and the inhomogeneous problem (3), (2) has the unique solution given by the formula

w(t) = (Int)* " Ea o ((In ) Bluo + / <1n é)alEm ((m §>a B) h(s)%.

Throughout the following, we use the nonnegative function

fralt) =t tera (=Tt ),

>0 n

- 2% T(an + @)L — Bn)’

n=

a > max{0; 3}, w2z € C,

where e’;’f;(z) is a Wright type function (see |6, Chap. 1]).

Condition 1. The initial element 1y belongs to D(B), and B is the generator of an exponentially
bounded semigroup T'(t) of the class Cy; moreover, ||T(t)|| < Me*".



Theorem 2. Let Condition 1 be satisfied. Then the homogeneous problem (1), (2) is uniformly
well posed, and in addition,

AT (Buy — / Fr (0 TPy dr, (8)
AT (D)) < M(Int)>~ 1, wy > whe, (9)

Condition 2. One of the following requirements is satisfied: (a) the function h(t) € C(1,00) is
absolutely integrable in a neighborhood of the point ¢ = 1 and ranges in D(B), and the function
Bh(t) € C(1,00) is absolutely integrable in a neighborhood of the point ¢ = 1 as well; (b) the

function A1 “h(t) is continuous for ¢ > 1 and is continuously differentiable for ¢ > 1, and 4 D*h(t)
is absolutely integrable in a neighborhood of the point ¢t = 1.

Theorem 3. Let problem (1), (2) be uniformly well posed, let uqg € D(B), and let Condition 2
be satisfied. Then problem (3), (2) has the unique solution given by the formula

w(t) = AT, (Hyuy + j A, (é) h(s) 2. (10)

2. CAUCHY PROBLEM WITH A REGULARIZED HADAMARD
FRACTIONAL DERIVATIVE

On continuous functions u(t), t > a > 0, that have left Hadamard fractional derivative of order
a € (0,1), we define the regularized Hadamard fractional derivative

92, 0(0) = D2 ) — @) — 0z~ (1) s

and consider the Cauchy problem

207, u(t) = Bu(t) + h(1), t>1, (11)

Definition 3. A solution of problem (11), (12) is a continuous function u(t), ¢ > 1, such that
AT{"u(t) is a continuously differentiable function for ¢ > 1 and u(t) ranges in D(B) and satisfies
problem (11), (12).

Definition 4. The homogeneous problem (11), (12) [h(t) = 0] is said to be uniformly well posed
if there exist an operator function 4S,(t) (defined on X and commuting with B) and numbers
M > 0 and w € R such that the function ASa(t)uo is the unique solution of this problem for each
ug € D(B) and, in addition,

1S, ()| < Mt~,  t>1.

The change of variables (4) reduces problem (11), (12) to the problem

g v(1) = Bu(t) + h(e"), T >0, (13)
v(0) = ug (14)

with the Caputo fractional derivative 05, v(7) = D§, (v(1) —v(0)).
The homogeneous [h(t) = 0] problem (13), (14) was studied in [7, Chap. 2]. Let g, ,(t) =
t~ep " *(—71t~); by taking into account Theorem 3.1 in [7], we obtain the following assertion.
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Theorem 4. Let Condition 1 be satisfied. Then the homogeneous problem (11), (12) is uni-
formly well posed, and in addition,

AS, (tug — / Gr (N ) T(7 Y0 dr, (15)
0
148, (t)|| < Mt w > w/e. (16)

Corollary. Let problem (1), (2) be uniformly well posed, and let Int = s. Then the solution of
problem (1), (2) and the solution of the homogeneous problem (11), (12) are related by the formula

A4S, (exp s)ug = Ié;f;ATa(exp $)uo.

This assertion is a straightforward consequence of formula 1.2.12 in [6].

Condition 3. One of the following requirements is satisfied: (a) the function h(t) € C[1, o)
ranges in D(B), and Bh(t) € C[1, 00); (b) the function h(t) is continuously differentiable for ¢ > 1.

Theorem 5. Let ug € D(B), let problem (1), (2) be uniformly well posed, and let Condition 3
be satisfied. Then problem (11), (12) has the unique solution given by the formula

ds

u(t) = A8, (Huo + j A, (2) O (17)

Proof. Let us show that if Condition 3 is satisfied, then the function

w(t) — /tATa (é) h(s)%

satisfies the zero initial condition (12). By taking into account inequality (9) and the continuity of
the function h(t), we estimate the norm of the function w(t) for t € [1,1+ ] and § > 0 as follows:

t t
Moten
H /ATQ <3> n(s) & < Mot /(lnt — e tde = M gy e,
S S (87
1 1

Consequently, the function w(t) satisfies the zero initial condition (12).

The relation 497, w(t) = D¢, w(t) holds for the function w(t), which is zero for ¢ = 1; therefore,
by Theorem 3, the first term on the right-hand side in (17) satisfies the homogeneous equation (11)
and condition (12), and by Theorem 4, the second one satisfies Eq. (11) and the zero initial
condition (12). In addition, Condition 3 provides the desired smoothness of the solution. The proof
of the theorem is complete.

In the case in which B is a bounded operator, the assertions of Theorems 4 and 5 acquire the
following form (cf. formula (4.1.66) in [2]).

Theorem 6. Let B € L(X) and uy € X, and let the function h(t) belong to C[1,00). Then the
homogeneous problem (11), (12) is uniformly well posed,

A4S, uo = Ea1((Int)* B)uo, (18)
and the inhomogeneous problem (11), (12) has the unique solution given by the formula

w(t) = By (nt)” BYug + / <1n 3>Q1Em ((m 3>a B) his) . (19)
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3. INVERSE PROBLEM

Consider the problem of finding a function u(¢) that belongs to D(B) for t € (1, ] and an element
p € X from the conditions

4D u(t) = Bu(t) + (Int)*'p, (20)
lim AL u(t) = uo, (21)
hm AIHU( ) = Uy, (22)

where k > 0 and 417 u(t) is the left Hadamard fractional integral of order 3 > 0. (Note that 417,
is the identity operator for 3 = 0.) The interval ¢t € (1,¢] is chosen so as to have more concise
formulas.

Definition 5. A solution of problem (20)—(22) is a pair (u(t),p), where u(t) € D(B), t € (1,¢],
is a continuous function such that 47{*u(t) is continuously differentiable for ¢ € (1,€], p € X, and
u(t) and p satisfy relations (20)-(22).

Problem (20)—(22) is called the inverse problem, as opposed to the direct Cauchy type prob-
lem (20), (21) with known element p € X, and can be treated as problem of reconstructing the
nonstationary term (In¢)*~!p in Eq. (20) from the additional boundary condition (22).

A survey of publications on inverse problems for equations of integer order can be found in [§],
while the inverse problem (20)—(22) has not been considered earlier.

Theorem 7. Let B € L(X) and up,u; € X. Problem (20)—(22) has a unique solution if and

only if the condition
By iroars(2) 70, z €0(B), (23)
holds on the spectrum o(B) of the bounded operator B.

Proof. By Theorem 1, problem (20)—(22) can be reduced to the problem of finding a function
u(t) and an element p € X such that

w(t) = (n6)* By o (I 1) Bluo + / <ln é)alEm ((1115)&3) (In S)Hp%. (24)

From relation (24) and the boundary condition (22), for the unknown element p, we obtain the

equation
A \* d
I Afﬂ/l— B ((nl) B)ns)1pZ
i, (n2) e (8 ) o
1
=y — lim A ((Int)* LB, o((Int)*B)ug). (25)

By taking into account the semigroup property of the fractional integration operation, we obtain

t a—1 [e%
t t ds
1‘A1ﬂ/1— E,,({In=] B)(Ins)f1p=
1

Bip

k+ﬂ 1 jota—1 d
I<:+6 ; T Thata
0
T(KYE, toars(B)p. 26
;F]aJrkJraJrﬂ) (k) ,k++ﬂ( ) (26)



Likewise, we have lim, ,. 417, ((Int)* ' B, o((Int)*B)ug) = Eo oy 5(B)uo.
Then Eq. (25) admits the operator representation

Gop = qo, (27)

where
1

Gop = Ea,k+a+ﬂ(B)py Go = m(%

— Basp(BYuo). (28)

Problem (20)-(22) with bounded operator B is uniquely solvable if and only if Eq. (27) is
solvable, i.e., if the spectrum o(Gy) of the operator GGq does not contain the point A = 0. By virtue
of (28), the operator (G is an analytic function of the operator B. By the spectral mapping theorem
for bounded operators, we have

0(Go) = 0(Eo ktot5(B)) = Eokrors(o(B)).

Consequently, A = 0 is not a point of spectrum of the operator G, only if the function £, j.q:5(2)
is nonzero on the spectrum of B. The proof of the theorem is complete.

It follows from Theorem 7 that the position of zeros of the function E, ;. ,.5(%) specifies the
unique solvability of problem (20)—-(22) with a bounded operator B. As was mentioned in [9], for
a first-order equation with an unbounded operator B, a condition of the form (23) is not sufficient
for unique solvability, although the arrangement of zeros is still important. Therefore, we present
some results in [11] on their arrangement. It was proved in Theorem 1 in [11] that, for a € (0, 1),
k+a+ 3 >0, and an appropriate numbering, all zeros p,,, n € Z\{0}, of the function E, ;. +5(2)
with sufficiently large absolute values are simple, and the asymptotics

pte =2mni+ (k+3—1) <1n27r|n| +%lsgnn> +1In i a

Tﬁ) + 0(1), n — oo, (29)

holds as n — £oo.

Let us prove a necessary condition for the uniqueness of the solution of the inverse problem
(20)—(22) with an unbounded operator B.

Theorem 8. Let B be a linear closed operator in X, and let the inverse problem (20)—(22) have
a solution (u(t),p). For that solution be unique, it is necessary that no zero p,, of the entire function
E, iio+p(2) be an eigenvalue of the operator B.

Proof. Suppose that some zero p, in a countable set of zeros of the function £, .+ 5(2) is an
eigenvalue of the operator B with an eigenvector h,, # 0. Consider the function w(t) = ¥(t)h, and
take a function (t) such that the function w(t) satisfies Eq. (20) for p = h,, and the zero initial
condition (21).

One can readily see that the function 1(t) can be found from the problem

DY () = pap(t) + (Int)* " im ATY(E) = 0. (30)

1

By Theorem 1, problem (30) has a unique solution, which can be represented in the form

o0~ [ (2 B (i (1)) e 2

Since i, is a zero of the function K, j..+5(2), we have, by analogy with (26),

lim A 17, 4p(t) = L(k) lim A 17 (I ) B o (0 (1010)%)) = (k) Ea a5 (1) = 0.

t—e



The function w(t) = ¥(t)h, satisfies Eq. (20) for p = h,, and the zero conditions (21) and (22),
which contradicts the assumption of the solution uniqueness, since the pair (u(t) +w(t),p+ h,) is
a solution of problem (20)—(22) as well. The proof of the theorem is complete.

Next, let us prove the unique solvability of problem (20)—(22) with an unbounded operator
B satisfying Condition 1. Following the proof of Theorem 7, with regard of (10), we reduce
problem (20)—(22) to the operator equation

Gp =g, (31)
Gp = lim ANPAT(p, G X — X, (32)

where AT, (t) is given by formula (8) and

0 (o~ I (T, Ow). g€ D(B). ()

Therefore, the unique solvability of problem (20)—(22) can be reduced to the problem on the
existence of the inverse operator defined on some subset of the Banach space X for the bounded
operator G given by relation (32). To clarify the latter, we represent the operator GG on the narrower
set D(B) dense in X in a more convenient form with the use of the resolvent R(z) = (21 — B) ™!

Theorem 9. Let Condilion 1 be satisfied. Then the representation

o+ioco
1
Gp = o Eo krats(2)R(2)pdz, g > W, (34)

holds for each p € D(B).

Proof. First, suppose that p belongs to D(B?); then p = R*(A)ps, po € X, where A € o(B),
o(B) is the resolvent set of the operator B, and Re A > ¢ > w. By using the representation of the
semigroup 7T'(t) via the resolvent of the generator, from (32), we obtain

y ket f—1
1 ds
G lim In - / L o(Ins)T(T)pdr
p (kf /6) t~>51 < > f p
t o+ioco
1 £\ s 1
71 In — - . 1 zT 2 dz. 35
A (1n?) So/f,(HS)dTm [ erramomas @

By using the Hilbert identity for the expression R(z)R*(\) in relation (35), we obtain

R(z) — R(\) R(z) R(N) R*(\)
R(z)R*(\) = R(\) = _ _
@) F N A—z W A=—2)2 (A=2)? AX—z
RI(\
and since, by the Jordan lemma, the integrals of functions of the form eXIz()\Zi)Z)S(j)poy j=1,2,
over the line Re z = ¢ are zero, we have
1 Int otico ( )R( )
71 1 k+ﬂ 1 / Ta _ / wd .
Gp = RCEY) lim (Int — ds | fro(s)dr = =2 z
0 T—i00



By expressing f, ,(s) by the formula f, ,(t) =t e} g( 7t~*) and by using the formula for the

Riemann-Liouville fractional integration of a Wright type function (see [6, formula (1.2.12)]),

7
1 L » B B
NCENG) /(n—@)’“*ﬂ o tern(=To ) do = 1 e (=),
0
we obtain
i L e RE2)
_ | Lkts L exp(27) Li(z)po
Gp/e1CY (— T)drzm 02 dz
0 T—i00
1 U+iooR d o1+
“ - [
1 U+iOOR( ) d o1 +100 £fk7ﬂ ¢ 1 o4ioo R( )
% )Po 02 e Z)Po
f— - = 0 - E
(2mi)? / h— 2)? / gy K 2ri ) et p(2) 7 s 2
o+ioco
1 R()(AN—2)] + (2] — B))(AMl — B)p
~2mi Eo ktats(?) O dz
1 U+iooE ( )
(a7 (a7 Z
=5 | TS RGIM - Bpdz, p e D(BY); (36)

here we have assumed that Re{™ > Rez and used the relation [6, formula (1.1.12)]

o+ioco
L) = 5 / £ exp(€ —7%) de
and the formula [1, formula (1.93)]
o1 +ioco
1 £k Bt
o / P d§ = Eokra+5(2).

If we set p; = (M — B)p, then p; € D(B), p = R(\)py, and relation (36) acquires the form

o+ioco

b Eokto+5(2)
GRNp: = 5 —,  BlEpdz,  pie D(B). (37)

T—100

The left- and right-hand sides of relation (37) are bounded operators, which coincide on D(B).
Since D(B) is dense in X, it follows that relation (37) holds for all p; € X. But then p = R(\)p; €
D(B), and the representation

04100 a+ioco

Gp— Bairors(z) R(2) (A = 2)I + (zI — B))pdz = = B prasp(2)R(2)pdz
27 A—2 27

T—100 T—100

is true for such p. The proof of the theorem is complete.



Now let us proceed to the proof of sufficient conditions for the unique solvability of problem
(20)—(22). As follows from Theorem 8, one should require that no zero p,, of the function £, s+ 5(2)
is an eigenvalue of the operator B. Moreover, to prove the solvability, we require that all zeros
belong to the resolvent set g(B). By taking into account their asymptotics (29), we note that if
k+ 3 > 1, then the condition is imposed only on finitely many zeros u,, n = 1,2,...,n9, with
Re p!/® < o, since the remaining values necessarily belong to o(B). If k + 3 < 1, then there are
countably many zeros with Re i}/ < ¢.

Theorem 10. Suppose that the operator B satisfies Condition 1, k+ 5 > 1, ¢ > w, and
ug,uy € D(B?). If every zero p,, n = 1,2,...,ng, of the function E, y\o5(2) wzth Reul/“ <0
belongs to o(B), then problem (20)—(22) has a unique solution.

Proof. The existence of a unique solution of problem (20)—(22) [or the operator equation (31)]
can be reduced to the existence of the inverse of the bounded operator G given by relation (32)
[or (34)]. For ug,u; € D(B?), it follows from the invariance of D(B) with respect to T, (t) that the
right-hand side ¢ of Eq. (31) belongs to D(B?). Let us show that the operator G has an inverse
Gl D(B?) — X.

Since each zero p/® of the function F, 4. .. 3(2%) with Repl/® < o belongs to o(B), we find
that o(B) contains it together with some disk neighborhood €2,,. Let I" be a contour on the complex
plane consisting of the line Rez = ¢ > w and the boundaries -y, of the disk neighborhoods €2,; i.e.,
I'={Rez =0} Up. 1/, -

We take A € o(B), Re A > ¢ > w, and consider the bounded operator

dz

T: F— E. 38
27T7//Ea k+o¢+ﬂ Z )\) 3’ - ( )

Note that the integral occurring in (38) is absolutely convergent by virtue of the choice of the
contour I', the Hille-Yosida inequality

[R"(2)[| < M/(Rez—w)",  mneN,

and the asymptotic behavior of the Mittag-Leffler function for 0 < o < 2 and |z| — oo (see [10,
p. 134]),

1 " ij 1
Eo (o) — S0me gty S .
wul(2) az exp(z /%) ; T —aj) + —|z|n+1 , (39)
largz| <vm, v e (a/2,min{l,a}),
_ZF(M—aj)zj +O<|Z|n+1>y vr < |argz| < . (40)

=1

Let ¢ € D(B) and o < 0; < Re A. Then, by substituting the representation (34) into (38) and
by using the Hilbert identity, we obtain the relation

o1 +ico
1
27Tl / I, k+o¢+ﬂ )\) 2 i 4 Ea,k+a+ﬂ(£)R(£)qd£
o1+1i00
Eo k+a+ﬂ(£) R(2)q — R(§)q
(27i)? / / Eoriors(2)(z — N3 £z d§ dz. (41)

I' o1—400



The integral in (41) is absolutely convergent. By changing the integration order, we obtain

o ( " Ea k+oz+ﬂ d£
T6a= (2mi)? /Ea gtats(2) (2 — A /
o1+i00
1 dz
| Eav'fw@R@qdi/ R e Vil (R M

The inner integral in the second term in (42) is zero by virtue of the choice of the contour I' and
the Jordan lemma, and to compute the integrals in the second term, we use the Cauchy integral
formula. Therefore, the relation

1 R(z2)q 3
TGqum, (_)\)de()\)
T
holds for ¢ € D(B).
The commuting operators T, ¢, and R(\) are bounded, and the domain D(B) is dense in X;
therefore, the relation TGq = R3*(\)q holds for ¢ € X as well, YG' : X — D(B®). Hence it follows
that the operator G~'q = (A — B)*Yq is the inverse of G for ¢ € D(B?). Indeed,

GG g =G\ — B)*Tq = GY (M — B)*q¢ = R*(\)(M — B)*q = q, q € D(B?),
G 'Gq = (M — B)*YGq = q, qe X.

In the solution of problem (20)-(22), the element p belonging to X has the form p = (A —B)*Yq,
where ¢ € D(B?) is the element given by (33), the operator T is given by relation (38), A € o(B),
Re A > ¢ > w, and the function u(t) admits the representation

u(t) = *T,()uo + /(ln s)FtAT, (é) » ds

S

with the operator AT, (t) given by formula (8). The proof of the theorem is complete.
As was mentioned above, if k4 3 < 1, then the function E, 4., 5(%) has countably many zeros
tn, with Re ul/* < o; therefore, we require the following condition to be satisfied.

Condition 4. Each zero p,, n € Z\{0}, of the function Ea hiarp(2) with Reul/* < o belongs
to o(B), and there exist ¢ € [0,1) and d > 0 such that supy_ 1/e_ ||R(k)/ 05l < d.

Theorem 11. Let Conditions 1 and 4 be satisfied, and let k+ 3 < 1 and uo,u; € D(B?®). Then
problem (20)—(22) has a unique solution.

Proof. Just as in Theorem 10, we introduce the operator T given by relation (38). In this case,
the contour I' contains countably many circles -,, and to prove the absolute convergence of the
integral occurring in (38), we consider an integral over the circles -, where n is a sufficiently large
number (|n| > ng). Then, by the residue theorem, we have

q dZ R(Mn)
; (43)
/ L, k+a+ﬂ n;w E, k+a+ﬂ(ﬂn)()\ U )
\n\>N0 In|>No

in addition, by using the relation (see [10, formula (1.5), p. 118])

1
U fby,

E;z k+a+ﬂ(.un) — (Eoz,k+oz+ﬂfl(,un) - (k +a+ ﬁ - 1)Eoz,k+oz+ﬂ(lun))



and the asymptotics (39) and (29), we obtain

By L (e ) explitmpy
antatpibn) = D(k+3—1) Lk + 08— 1),
(ko B D )} exp(iTm /)
U(k+ B)
ktat+pB—1 ( 1 )

P o —

Uk + 3)pn ||

L1 [explilmpl) <2w|n|>1” ‘o (71 ) (44)

o e L'k +5) T | ) )

By virtue of relation (44), Condition 4, and the asymptotics (29) of zeros, the series (43) and
hence the integral over U, are absolutely convergent. But the convergence of the integral over the
line Rez = o in relation (38) follows from the Hille-Yosida inequality and the asymptotics (40).

The subsequent proof is similar to that of Theorem 10, and we omit it. The proof of Theorem 11
is complete.

Remark. It follows from formulas (10) and (17) that, in the inverse problem for an equation
with a regularized Hadamard fractional derivative, the influence of the inhomogeneity on the form
of the solution of the Cauchy problem in the case of the regularized Hadamard fractional derivative
is determined by the same expression as in the case of the nonregularized Hadamard fractional
derivative. Therefore, the solvability condition for the inverse problem for an equation with the
regularized Hadamard fractional derivative for k > 1 is the same as in Theorems 10 and 11.
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