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Abstract—The interaction of particles with planar defects in semiconductor crystal was studied on the basis of
a model of the band energy-spectrum structure. Generalized localized states are shown to exist in the vicinity
of defects. It is also shown that nonquadratic dispersion law gives rise to quasi-localized states. Particle scatter-
ing by the semiconductor boundary was analyzed. The condition for the total reflection from the interface is
formulated as follows: the incident-particle energy should be equal to the energy of a quasi-localized state. It
was found that a weak dissipation of particle energy in the crystal causes instability of the resonance condition

for the total reflection.

1. Recently, considerable attention has been focused
on scattering of waves by planar and point defects in
crystals. Elastic scattering of waves by a thin passive
(devoid of internal degrees of freedom) layer in an iso-
tropic medium was investigated elsewhere [1, 2]. It was
demonstrated that, if the phase velocity of an incident
wave falls within the range between longitudinal and
transverse velocities of sound (¢, < ¢ < ¢;), the total
transmission and the total reflection are both possible.
A similar problem was studied previously [3] by the
methods of the crystal-lattice dynamics on the basis of
asimple model of planar defect in fcc crystal and in [4],
where the effect of interaction between atoms (not nec-
essary neighboring) in a linear chain was investigated.
A theory providing explanation of the related reso-
nance effects and, specifically, unexpected total reflec-
tion was proposed in [5].

The above-mentioned studies dealt with elastic-dis-
placement vector fields containing two partial terms. If
the phase velocity of a wave falls within the range ¢, <
¢ <¢,, one of the partial terms accounts for a longitudi-
nal wave localized in the vicinity of a defect and the
other, for a bulk transverse wave. This type of oscilla-
tions is referred to as quasi-localized [6, 7]. Resonance
scattering is possible because of the interaction
between transverse and longitudinal modes at a defect.
These waves do not interact and propagate indepen-
dently in the bulk of an ideal crystal. The resonance
occurs provided the phase velocity (or frequency) of
incident wave coincides with the phase velocity (or fre-
quency) of quasi-localized oscillation.

Ambiguous frequency spectrum may arise for a
field describing the electron and hole motion in special
semiconductor crystals with band energy-spectrum
structure. For example, the generalized model of

energy spectrum was used [8] to explain a variety of
CdSb and ZnSb properties. The key point of this model
is the presence of two energy valleys near the Brillouin
zone edge in the valence band and two valleys in the
conduction band. Detailed study [9, 10] indicates that
the dependence of energy € on either electron or hole
quasi-momentum k in nondegenerate bands of In,Se;
crystal can be described by the dispersion law

S(k) = EO - chszc - Ocykal - Oczkj + Bxki + Bykj/ + sz(jl)

in the vicinity of a band gap, which has multiple valleys
and is non-parabolic with negative curvature at the min-
imal wave vectors; as k increases, the parabolicity is
restored. Such an atypical dispersion law (1) obtained
regardless of spin—orbit interaction is valid in the vicin-
ity of the Brillouin zone center in In,Se; and results
from the interaction of close subbands in the valence
and conduction bands.

In this paper, we analyze stationary eigenstates and
scattering of quasiparticles by a planar defect; the par-
ticles are described by two-partial scalar field in semi-
conductor with the band spectrum structure. The
assumptions that follow and concem the parameters of
the dispersion law (1) actually allow us to treat the
problem as one-dimensional, which makes it possible
to obtain analytical results easily and reveal some spe-
cial features of the two-partial field dynamics. In semi-
conductor crystal with band energy-spectrum structure,
dispersion law is not quadratic but biquadratic, like (1).
The wave function of such a state will consist of partial
components. This may result in a total reflection from
the planar interface between the media under the fol-
lowing nontrivial conditions: the parameter of defect



(interface) is nonzero, and the incident particle energy
does not coincide with the edge of the bulk state contin-
uum.

In the studied system, both localized and quasi-
localized states can exist. Spatial dispersion in the
medium where the wave propagates leads to a nonqua-
dratic dependence of energy on quasi-momentum.
Consideration of the spatial dispersion will obviously
lead to a change in the system properties. Specifically,
the localized states will become extended [11, 12],
which means that the amplitudes of their wave func-
tions decrease with distance in oscillating manner (sim-
ilar to the generalized Rayleigh waves). The localized
states appearing in the vicinity of defects are also thor-
oughly studied for models implying biquadratic disper-
sion law [13]. However, no consideration has been
given to quasi-localized states characterized by a scalar
field, especially for nonsymmetrical stationary eigen-
states with energy belonging to a defect-free medium
continuum; therefore, these states are currently of inter-
est in theory and applications.

It was recently shown [14] that, in a more realistic
model, the anomalous total reflection from a passive
defect is absent when dissipation in crystal is taken into
account. It is of interest to ascertain the conditions
under which the anomalous total reflection from inter-
face in crystals is possible. In this paper, we analyze the
effect of scattering-particle energy dissipation on the
condition for the reflection resonance.

2. Let us consider a planar defect, for example, an
interface between two similar semiconductor crystals
with dispersion law given by (1), where o, > 0 and
B,>0 (7 =x, y, z). We assume that the crystal “exhibits a
strong spatlal dispersion only in one direction, to be
precise, in the direction perpendicular to the plane of
the defect (this assumption can be validated by choos-
ing an appropriate anisotropy type). Let us choose the
coordinates in such a way that yOz plane coincides with
the plane of defect and let us align the Ox axis with nor-
mal to this plane. Then, denoting o = o, f =,, o, =
0% o, and assuming that B.> B, and B, > B., we

tain the dispersion law as

e(k) = E,— ok’ — o k5 + Bk*, )

where k =k, and k; = k; + k.. The dispersion law (2)
corresponds to a time-independent Schrédinger equa-
tion:
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where the interface between crystal half-spaces is sim-
ulated by the potential U(x) = Uyd(x). Assuming that
crystal is uniform over the interface, let us seek a solu-

tion of (3) in the form W(x, y, z) = W(x)exp(ik,y + ik z).
With this assumption, Eq. (3) is reduced to one-dimen-
sional equation for y function:

4
By = Egy+ ocg Yop vy, @
where we introduced £ = ¢ + ¢, Lki. As follows from

(4), the stationary homogeneous states wy(x) =
Yyexp(ikx) are characterized by the dispersion law

E(k) = E,— ok’ + Bk*. (3)

Integrating (2) in the vicinity of interface x = 0
yields the boundary condition
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For 3 =0, condition (6) coincides with the well-known
boundary condition for the Schrédinger equation with
a quadratic dispersion law. We will concentrate on the
case 3 # 0. The system of boundary conditions should
also include the requirement of continuity of the wave
function y(x) and its second derivative at x = 0, which
implies the continuity of its first derivative as well.
Then, we obtain the following system of boundary con-
ditions:

w(+0) = y(-0), DO _ WD)
Py(+0) _ w(0) y(+0) Py(-0) _ n\v(O() )
ox’ ox’ T ox ox’

where n =-U,/B.

Depending on energy F, the solutions to Eq. (4) cor-
respond to homogeneous, localized, or quasi-localized
states.

As follows from the dispersion law (5), each partic-
ular state is defined by two different quasi-momenta.
Within the continuum range £, < £ < E,, where E,, =
E,— 0?/4B, there are two pairs of real quasi-momenta:

[E-E
z, 8
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Obviously, wave function of the homogeneous wave
with quasi-momenta (8) comprises two terms with dif-
ferent amplitudes and oscillation frequencies:
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The more interesting point, in the context of con-
densed-state physics, is the origin of localized states in
the vicinity of a defect. Let us consider the case of £ < E,,
in more detail. In this spectral range, each state is



defined by two complex quasi-momenta: ¥, =7 — iq and
K, =Y +ig, where
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and k, = 0/2f. With the boundary conditions (7), a
solution to Eq. (4) can be written as

(10)

y(x) = Asin(gla] + 0)e ™, (11)
where phase is given by sin20 = J(E,, - E)/(E,- E),
and A is an arbitrary constant. Wave function (11)
describes the so-called generalized localized state
[11, 12], which decays in oscillatory manner with
increasing distance from defect. The boundary condi-
tions (4) provide a dispersion relationship for localized
energy levels

(Y’ +q°) =, (12)

which exist only if the defect parameter satisfies the
condition U, <0.

The prerequisites for the formation of a localized
state similar to (11) in the vicinity of planar defect were
studied elsewhere [13] for domain wall in ferromag-
netic superconductor. In uniform magnetic field, at suf-
ficiently low temperature, an inhomogeneous super-
conducting state is possible. The wave function of this
state has the meaning of the order parameter and obeys
the linearized Ginzburg—Landau equation for the fourth
space derivative, since the effective exchange field in
the vicinity of domain wall is considerably decreased.
Solution similar to (11) in the vicinity of point defect
was obtained in [13] for three-dimensional spherically
symmetric case of dependence of energy on wave vec-
tor.

3. Now we discuss the case of £ > E,, when one of
the quasi-momenta is real k£, = £ and the other is pure
imaginary k, = ix:

E-E

p
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The dependences E(k) = E, — ok? + Bk* and E(x) = E, +

o + Bt show (Fig. 1) that each energy value has two
corresponding quasi-momenta (13).

In the case under study, quasi-localized state [6, 7]
1s formed within the continuum; its wave function con-
sists of two partial components, one of which governs
a standing wave along the entire Ox axis and the other

2 0, .4 2
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Fig. 1. Quasiparticle energy versus quasi-momentum
(1) real and (2) imaginary components.

corresponds to an oscillation localized in the vicinity of
defect:

Asin(kx - @) +Me ™, x<0,

V() = { | (14)
Bsin{(kx—@,)+Me ™, x>0.
Solution (14) incorporates five parameters: the ampli-
tudes 4, B, and M and phases ¢; and @,. Substituting
(14) into the boundary conditions (7), we obtain a set of
algebraic homogencous equations for quasi-localized

state amplitudes 4, B, and M:
Asing, - Bsing, = 0,

Akcos@, — Bkcosp, +2xM = 0, (15)

AMmsing, + &’ cos ;) — Bk’ cos ¢, — M(n +2x°) = 0.

Equating the determinant of system (15) to zero, we
obtain a relationship between ¢, and ¢,, where one of
the phases may be considered as a free parameter:

{n+2x(k*+ ) Yksin(, - 9,)

(16)
= 2Knsin @, sin@,.

The following special feature of quasi-localized
states is worth noting. It turns out that there exists a sta-
tionary eigenstate Yy = g + \;, such that standing
wave exists only in one of half-spaces

x<0

Asinkx, ,
(17)

Yis(x) { 0. x>0,
whereas a localized state may exist on either side of the
defect y; (x) =Mexp(—x|x|). Actually, if B=01in (15), it
follows from (16) that ¢; = 0 and the localized-state
amplitude is uniquely defined as M = —(k/2x)A. The
energy of these quasi-localized states is determined
from the relationship

n=-2x(k* + ). (13)
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Fig. 2. Typical behavior of reflection coefficient » = lR|2

(solid lines) and transmission coefficient ¢ = ILT |2 (dashed
lines) for (a) nonresonance case, Uy < 0, for defect parame-

ter Uy = Uj (G=1,2,3, 4, curves -4, respectively), where
[U7] < |U,| < |Us| < |Uy], and (b) resonance case, Uy > 0,
where e, = Ep/E| is given by (18).

Quasi-localized state i exists only if U, > 0. In the
next section we will show that the existence condition
for nonsymmetrical (B = 0) quasi-localized state coin-
cides with the condition for total resonance reflection
from the defect.

We note that the quasi-localized state accounting for
the single standing wave along the entire Ox axis (4 = B)
with non-zero local amplitude M is possible only for
Kk = 0, which corresponds to the edge of energy spec-
trum £ = E,.

4. Let us now consider scattering of a quasiparticle
by crystal interface. We assume that the incident-parti-
cle energy falls within the range where quasi-localized
states exist £ > L. Then, we seek solution to Eq. (4) in
the form

e+ Re™ M, x<0

_ ’ (19)
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x>0
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where R, 7, M, N stand for the amplitudes of the
reflected, transmitted, and localized on either side of
defect waves, and & and « are defined by (13). Substi-
tuting (19) into the boundary conditions (7), we readily
obtain the corresponding amplitudes. The reflection
and transmission coefficients are of our prime interest:

Rp - Sl 0)
|ARE) + AT ()]
T - 5B @1
AR+ |ANE)
where
AR(E)|” = 4n’, (22)
AYE) = 4k {m + 2k (> + KD} (23)

Clearly, the quantum-mechanics conservation law
REE) +|T(E)* = 1 (24)

holds in the medium, if the wave-energy absorption in
the crystal volume is disregarded.

The reflection coefficient is proportional to the
defect intensity |R|? ~ Up, which leads to |[R[ = 0 and
|T|* =1 for Uy — 0; i.c., quasiparticle is insensitive to
the interface and may pass freely from one half-space
into another. For nonzero defect parameter U, total
transmission may occur if the incident particle has the
energy of the spectrum edge £ = E,. For high-energy
quasiparticles, the interface is almost transparent
(Fig. 2a). However, the discussed conditions are trivial,
and they also hold in the case of quadratic dispersion
law.

The fascinating fact is that, under nontrivial condi-
tions, the total reflection of quasiparticle from interface
is possible, i.c., |[R|* =1 and |T]> = 0 (Fig. 2b). Analysis
of expressions (20) and (21) shows that the total reflec-
tion occurs if the incident quasiparticle energy FEr(n)
satisfies the condition 2k(k* + k%) = -1, which coin-
cides with (18).

It is well known that the density of states exhibits
sharp peaks for energies giving rise to singularities of
the reflection or transmission coefficients. Because of
this, the energy levels where the total reflection or
transmission occurs are referred to as resonance levels.

In the system under study, a resonance (total reflec-
tion, to be precise) arises when the incident quasiparti-
cle energy coincides with the energy level of a quasi-
localized nonsymmetrical eigenstate. Resonance is
conditioned by interaction at the interface of the media
of wave-function partial components, one accounting
for spatially localized state and the other, for traveling
wave. These conclusions are in agreement with the
results reported in publications [2—5], though they were



concerned with resonance effects in quite different
physical fields (the acoustic Rayleigh waves).

5. In order to find out if the anomalous reflection
from the passive defect analyzed in the previous section
is observable in experiment, we should account for dis-
sipation in crystal. Following [14], we will show that
the condition for total reflection may be unstable in
relation to small perturbations. Energy absorption in
medium can be treated as such a perturbation. To
account for dissipation in crystal volume, we should
add a term in the form /vy to Eq. (4). Then, the equa-
tion for scalar field in the studied model becomes

2 4
Ey = Egy+ OLZ;—\l; + [35;_": —ivy+ U(x)y.  (25)
X

X

Solution to the scattering problem based on Eq. (25)
can be written in the form

4+ Re +Me
Te'™ + Ne ™™
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where the quasi-momenta p and A are complex quanti-
ties. Assuming that dissipation of quasiparticle energy
1s rather weak, we obtain

v
2kQ
where Q(E) = 2, /B(E-E,), and k£ and x are still

defined by (13). Then, the reflection and transmission
coefhicients take the following forms:
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and the determinants |Ay(E)| = |Az(E, v = 0) and

|A2 (£)| = |Ar(E, v = 0)| are defined by (22) and (23).
The consideration of dissipation in crystal naturally
breaks the conservation law (24).

Let us consider the case when the incident-wave fre-
quency is close to the resonance frequency I given by
(18). In that event, |A2 (£R)| = 0, as was pointed above.

The reflection and transmission (28), (29) coefficients
can be written as

d2
REH? = —4 33
IR(ER) &+ +2vd 33)
2
T(E)? = — X 34
[T (E &+ +2vd G4

where the following dimensionless quantities were

introduced: Y= v/Q K5 < 1is effective length of quasi-

particle energy absorption, d = UO/BkR(kf? +3 K; ) is an
effective defect thickness, and x; = x(ER) and &z =
k(ER).

If the effective defect thickness considerably
exceeds the effective absorption length, d > v, which is
the case of a strong interaction between quasiparticle
and interface, one can see from (33) and (34) that the
total-reflection resonance is almost not disturbed.

In the case of a weak interaction between quasipar-
ticle and interface, i.e., when d < y <€ 1, expressions
(33) and (34) yield |7]* =1 and |R|* = 0, which indicates
that the total transmission of wave through a defect is
possible. If the energy of incident quasiparticle is close
to the resonance energy of reflection in crystal without
dissipation, then consideration of weak energy absorp-
tion leads to a reversed situation of resonance total
transmission under the condition of weak interaction
between quasiparticle and defect. Therefore, singulari-
ties in the reflection and transmission coefficients |R|*=1
and |7|*>= 0 prove to be unstable in relation to small per-
turbations, which can lead to |7]*= 1 and |R|* = 0 if qua-
siparticle interaction with defect is much weaker than
the energy absorption in the crystal. These are the con-
clusions made in [ 14], where dissipation effect on ¢las-
tic wave scattering in crystals was analyzed.

6. We considered the model of a semiconductor
crystal with the band structure of quasiparticle spec-
trum when the dependence of energy on quasi-momen-
tum is ambiguous. The main point of the model is con-
sideration of spatial derivatives of the order higher than
second in Schrédinger equation, i.¢., inclusion of spa-
tial dispersion. As a result, we managed to get insight



into several fundamentally new effects conditioned by
the fact that quasiparticles follow nonquadratic disper-
sion law, even in the simplest one-dimensional case. In
conclusion, we would like to point out the role of spa-
tial dispersion in studying the resonance wave scatter-
ing by crystal defects.

Consideration of spatial dispersion via nonquadratic
dependence of energy on quasi-momentum enables,
with nontrivial initial parameters, the total reflection of
the wave Wy(x) ~ exp(ikx) (quasiparticle) from disper-
sive media interface. In the case of quadratic dispersion
law E(k) = E, + ok?, the reflection and transmission
coefficients have the forms

Jp—
Ul+4o(E—-E,)
0 ( 0) (35)
7 = 4a(E - Ey)

Ui+ do(E-E,)

The total reflection is evidently possible only if £ = E|,.
Therefore, as the analysis of the reflection (20) and
transmission (21) coefficients indicates, resonance
properties of interface in dispersive and dispersion-free
media differ considerably.

Quasi-localized states also exhibit new features in
dispersive medium. Specifically, spatial decay of the
wave function of localized states is oscillatory. In con-
trast, for the quadratic dispersion law, at £ <k, the
wave function of a localized state decreases steadily
Wy(x) = W(0)exp(—kfx|), where 1* = (£, — E)/o. > 0. The
energy of this localized state is defined by explicit for-

mula £, = E, - (Us /40).

We note that quasi-localized states governed by sca-
lar field do not arise in media with quadratic dispersion
law.

In media with spatial dispersion of the opposite sign
(B < 0), the described above scattering features and
quasi-localized states do not change. Substituting
B =—|B| in all the expressions above, one can see that
the states interchange their energy-dependent types.
Now, quasi-localized states exist for £ </, and local-
ized, for E > E,. Moreover, for E, < E < E, + (02/4B),
localized states are conventional (their amplitudes
decrease exponentially with distance from defect) and,
for E > E, + (0%/4p), localized states are gencralized.
Therefore, for B < 0, a change in the defect parameter
may lead to a conversion of conventional localized

states to generalized states. The effect is similar to that
described in [11, 12].

It may be shown that the results obtained in
Sections 1 and 2 depend only slightly on particular
boundary conditions and equation of motion that cause
nonquadratic dispersion of quasiparticles in many-val-
ley (two-valley, in our case) semiconductor. Conse-
quently, the main results are applicable not only to sys-
tems with uniformly distributed field, but to discrete
models as well.
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