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ABSTRACT

Two approaches to the simulation of stable and equilibrium longitudinal profiles and slopes are considered.

The first one deals with a solution to the equation of solid matter (sediment) continuity in the equilibrium case and the
second approach deals with the application of variational principles.

The approaches considered and results obtained can be used in hydroengineering construction for designing stable and
equilibrium longitudinal profiles of water streams and slopes.
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In simulating geographical systems it is advisable to explore models which can determine a stable or
equilibrium state for the system. It is also necessary to have some information on the stability of these systems
over time. In this context some methods for the mathematical simulation of stable and equilibrium states of
some widely known natural systems are given; namely for longitudinal river profiles and slope profiles. Two
approaches for simulation can be used successfully, the first solving the continuity equation for sediment in a
stationary case, the second obtained by applying variational principles (calculus of variation).

Using the first approach, the continuity equation should be considered from both geomorphological and
hydraulic points of view. To describe the long term evolution of longitudinal river profiles and slopes the
continuity equation is traditionally written (according to Velikanov, 1958; Culling, 1960; Devdariany, 1967) as
follows:

dz dq dz \"
il i S =k[ == 1
ot + Ox 0. 4 k( 6x> ()
0
If sediment discharge is also proportional to gradient (n = 1) q = —ka—; and equation (1) reduces to a

diffusion equation. In the expression for sediment discharge a different exponent of gradient may be used
within the range 1 < n < 2 (Devdariany, 1967). The coefficient k can be expanded as: k = k, (x)/(Q), where
k, (x) characterizes the change of physical properties of the sediments and the bed along the stream, and f(Q) is
the function of unit water discharge.
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Most hydraulic dependence, as will be shown below, is likely to be reduced to a form suitable for the
integration of equation (1): .
G =4, Q™i"m, q=4,0mim (2

where A,, 45, m;, my, n,, n, = const, @ is total water discharge, i = —dz/dx and G, q are respectively the total
sediment discharge, and the sediment discharge per unit flow width (unit sediment discharge).

To make calculations for stable and equilibrium river bed and slope profiles, one valid procedure is to look
for stationary solutions of equation (1) when 9z/0t = 0. A more general case when 0z/0t = const was
considered in the work of Smith and Bretherton, (1972). It corresponds to the case of an equilibrium river bed
and slope profiles in a region of tectonic movements (with uplift at a constant rate).

In a geomorphological sense the condition dz/dt = 0 (height profile marks do not change in the course of
time) may correspond to two possibilities:

(i) a completely stable slope profile or channel, with sediment transport equal to zero (g = 0), and
(ii) a dynamic equilibrium profile characterized by constant sediment discharge throughout (¢ = const).

The second possibility is mainly observed in river (fluvial) systems. Their most important regularity is
the reduction of sediment transport capacity along a channel (the sediment discharge of the flow being
in a saturated state). This is the dynamic equilibrium profile described by Baulig (1956). While analysing
river beds this profile will be borne in mind. If sediment discharge is written in the general form

T | %
| a=wewnew| -2/ [(1+(£))] ®

where n is the same as in equation (1). For n = 1 the analytical solution is then as follows
z=+C[fdx/(k} (0 *(Q()-CD'*]+C; )

where C,, C, are the constants of integration*.

Thus, to obtain particular forms for the stable equilibrium bed and slope profile the aim is to define the
functions k, (x), f(Q(x)) and the parameter n. The results have been obtained for the simple model, in which,
instead of the unit discharges, the total discharges are being considered. The proof of this procedure is clear
from equation (7)

d — .dz
d_’EI: (ax+Qo)d—;:| =0, z(0)=H, z() =0, (5)

where Q, = 0(0), G(0) = —k, Qo (dz/dx), k, = const.
The solution of equation (5) leads to a stable (equilibrium) concave logarithmic profile for the bed

_ ax+ Qo [
z(x)—Hln(aH_.Q_o )/m(———aH@o). ©)

This concave logarithmic profile coordinates well with the calculated and measured (natural) equilibrium
longitudinal profiles of ravines in loess rocks of Orlov region (USSR) studied by the Soil Erosion and Channel
Processes Problem Laboratory of Moscow University (Zorina, 1979). The results of the measurements of 30
mountain vallies in Japan (Mizutani, 1979) have shown approximately the same dependence (as ix = 4
= const). Experiments in the modelling of rill erosion (Kalman, 1976) have also shown that after 30 minutes of

* The first integral of the equation (1) when dz/dt = 0 is equal to

oz oz \?
k:(x)f(Q(X))—/\/<l+(—) )=c,
ox ox

Raising this term to the power of 2 and defining from it dz/0x and then integrating it by x we get the second integral in the form of
equation (4).
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the experiment the rills were stabilized, with a constant sediment discharge at all cross-sections of the rill -
expressed as:

G =M(Qiy
where M = const; 1 < & < 1.5. This expression coordinates well with the expression for a total sediment
discharge in equation (5).

It should be noted that the equilibrium longitudinal profiles, which according to Kazansky (1975) are well
approximated by a modified Bessel function,* are equally well approximated by the logarithmic function
(equation (6)). The analysis shows that when the coefficient of the water discharge (a) increases, the gradient at
the point x = 0 increases while that at x = [ diminishes towards zero: i.e. the profile becomes more and more
concave. When @, increases (for a = const) the profiles at the points x = 0, tend to the value ( — H/I): i.e. the
profile becomes increasingly rectilinear.

The three works referred to above directly or indirectly confirm the relevance of model (5) in some cases.

Next, the assumption of a linear increase in Q(x) requires discussion. It is well known that total water
discharge is proportional to the watershed area (4):Q = o4, where ¢ is the coefficient of runoff, I is the
rainfall intensity (this expression is formally known as the rational method (K uichling, 1889)) and A, in the case
of an approximately rectangular (watershed) configuration (e.g. a ravine), increases linearly by x. A direct
connection between the length of small channels and their watershed area was obtained whilst analysing
material from the example of the European territory USSR by Nechzihovsky (1971).

Consider now the continuity equation from a hydraulic point of view. In drawing up the sediment balance
for an elementary volume (length Ax and bed width B), the equation after some simplification takes the form:

8G  3(zB)
axt e =0 )

whefe Gis th.e total sediment discharge (m3/s) related to by the expression G = Bg.

Since B varies, equa.tions (1) and (7) can be seen to differ. One additional factor to be considered is that with a
large bed width variation (along the flow length) in equation (1), the cross-flow sediment transportation should
oq, 0q, 0z .

' ' o + 5 + i 0. A prospective
engineering model can be made by the closure of equation (7), using equations of the forms:

be taken into account, using the two-dimensional continuity equation

G=y,(Q v hd) ®)

Q = Bhv = ¢,(x) ®

B = y,(0, d, —0z/0x) (10)
oz+h 8 [0v? 1ov  v?

T =a_x<z) got " Ch ()

d =¢(x) (12)

C =n(x,d, h, —0z/0x) (13)

where Q is in m3/s, and d is the average diameter.

'Theoretical and experimental studies of Grishanin (1977) led to the following function for total sediment
discharge in rivers with a sand bottom

G =k, Qv* (14)

* A modified Bessel’s function of zero-order y = kq(x) is the solution of an ordinary differential equation of the second-order (Bessel’s

. d/ dy
function): ——{x2Z}=0.
: yx dx (x dx) 0
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Calculating a stable bed profile using the formula of Chezy—Manning instead of equation (11)
|
p= th Ji (15)

and solving the set of equations (9), (14) and (15) together we come to the following expression for G:
G = k,N ~6/5,B(§/B)9/5 i3/5
Choosing the function (10) for stable beds proposed by Altunin (1962)

B=4,(0)°%i"%? (16)
we get the expression
G = ksn—G/SAl—“/S (6)7/51'19/25 (17)

and equation (7) for dz/dt = 0 (recalling that i = — 9z/0x) leads to a concave profile (when Q(x) = ax + Q).

Equation (2) brings together all the formulae for sediment discharge having the structure G = DvPh$Q. Thus
the solution for stable calculation is reduced to one of defining Q(x) = ¢, (x), which can be easily done with the
help of reference books on average long-term water discharge.

The suggested approaches can be used while designing equilibrium fluvial system of the ‘river-watershed’ or
‘river-artificial channel (canal)’ type. For instance, in the second case a model based on the continuity equation
for sediment in a stationary case can be used for forecasting the non-reversible deformation of longitudinal
river profiles appearing after canal construction and for corresponding recommendations for river bed
stabilization. Here a question arises as to what should the sediment transport capacity be in a canal in order not
to disturb the maintenance of an equilibrium bed profile. The basis of the problem and the approach to its
solution are as follows. Let there be an equilibrium channel bed profile which is described with help of the
continuity equation in the equilibrium case. Somewhere in the middle part of a river a canal is planned to be
built to transfer some river water flow. Consideration of this canal (with its removal of water and sediment
discharges) as an equilibrium river profile is calculated by balance equation (while solving this problem for
canal cross-section a necessary condition is that profile elevations are maintained constant).

The final step in the solution is to determine (optimization) sediment discharge in the canal. The calculated
equilibrium river bed profiles before and after canal construction should thus be obtained.

The approaches given above allow modelling of equilibrium fluvial systems in areas of tectonic movement.
To deal with this case a set of equations is written describing the equilibrium profile for each river segment. A
necessary condition is again that continuity of elevation is maintained between at tributary junctions.

Let us now discuss the application of variational principles to longitudinal equilibrium river bed and stable
slope profile calculations.

At first the main general statements of calculus of variations should be briefly reviewed. The calculus of
variations (variational principles) is broadly presented in many fields of science and engineering (Courant and
Hilbert, 1953; Gelfand and Fomin, 1963; Becker, 1964). The calculus of variations is basically concerned with

changes in functionals. A functional is a correspondence between a function in some class and the set of real
b

numbers, for example ®(z) = | F(x,z,2)dx,z’ = % For the functional given above the space of admissible

a
functions might be those functions which are continuous and have continuous first derivatives on the interval a
to b. In the calculus of variations a function is stationary when its derivative vanishes. Similar ideas are
applicable to functionals. These ideas leading to the Euler-Lagrange equation

d (0F\ oF
a(&)"a_zﬂ (18)

which represents a necessary condition for ®(z) to be stationary (necessary condition for extremum). The
functions which satisfy equation (18) are called extremals. Whether the extremal makes the functional is not
easily answered definitely. Note, that two boundary conditions need be satisfied for equation (18). Thus we are
led to the problem of an unconventional extremum.
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Variations can be dealt with subject to constraints and these are easily handled using Lagrangian multipliers.
The problem is to make the functional ® stationary subject to the condition that the functional has a prescribed
value P,:

b b
¢=J F(x, z, z')dx;P=J L(x, z, z')dx (19)

To derive the Euler-Lagrange equation for a constrained problem (problem for a conventional extremum)
the Euler—Lagrange equation is derived for the integrand F* = F + AL:

d [ oF oL 0
dx(az’ + laz’) 5 (F+AL)=0 (20)
The solution to equation (20) has two undetermined constants plus the unknown parameter A (Lagrange
multiplier). These are determined by the two boundary conditions and P = P,. Thus, the problem for a
conventional extremum is equivalent to extremization ® + AP functional.

Consider now the application of variational principles to the determination of equilibrium and stable states
for the fluvial and slope systems. Some general ideas were suggested on this problem by Kazansky (1975).
It may be noted that an equilibrium river bed profile should also be in a state of minimum energy dissi-
pation (Velikanov, 1958). Using this technique while analysing longitudinal profiles of rivers in the form of
ij_i dx - min. Langbein and Leopold (1964) arrived at the relationship i ~ (@)~ '. It was arrived at as an
equilibrium solution of the continuity equation dz/dt = 0 for sediment discharge G set by equation (2) with
my, n; =1

Consider the variational principle applied to the design of slopes which are subjected to minimum erosion.
The erosion at every point of a slope is known to be a function of gradient and distance from a divide (alonga
horizon position) (Carson and Kirkby, 1972; Shvebs, 1974)

R=F(—a—z,x> (21)
ox
In this case the erosion from a whole slope (W) will be expressed with the integral (functional) (due to a small

T . oz .
inclination of slopes sin ¢ =~ tangp = — 7% supposed)

x
Oz)=W= J: F( —g—i,x>dx (22)

To extremize the integral (functional) the variation principle can be used. The problem can be solved for a
conventional extremum by equation (20) when the square (material’s volume for a space problem) under a slope
profile is set by a constant value (Nogumanov et al., 1977) and also for an unconventional extremum (by
equation (18)).

Equation (21) will be set in the form (Carson and Kirkby, 1972; Shvebs, 1974) R = ¢x™ (— dy/0x)". Typical
values of parameters m and n lie in the ranges m = (0-4; 0-5), n = (0-5; 2) (Shvebs, 1974). The solution of the
problem for a conventional extremum

i n [
®(z)+AP(2) = J [cx"'( - 6_2) + lz]dx—»extr; P(z) = f zdx = P, = const;

0 0x 0
z(0) = H; z(l) = 0; A — Lagrange multiplier (23)

may be obtained in the form:
z= —f(cn)”‘"'x"'“_"(,lx+C1)”"_‘ax+C2 (24)

where C,, C, are integration constants.



388 A. M. TROFIMOV AND V. M. MOSKOVKIN

Taking the parameter values n = 1/2, n = 2 we obtain a concavo—convex profile from equation (24)

p 3P, —HI
zexu(x)=3—cx”2(1—x)+H(1—\/§>;i=15c<—;,—5,—2—>- (25)

The inflexion is at distance x = (8! — SH)/15. The analysis shows the expression (25) to characterize a minimum

wash:
54

exte = Wanin = §C[2H? 1712 + 31752 3P, + HI)? ] (26)
For instance, when P, = HI/2, W, = (21/32) cH*1~ /2, and for wash along a rectilinear slope profile:
z(x) = H(1 — x/c) (for which the square under a slope profile also equals P, = Hl/2) is equal to
W,o, = 2/3cH?17"/2. Thus, when m = 1/2, n = 2, P, = HI/2 wash along a rectilinear slope profile is nearly
minimum (W, & Wyio)-

The solution of the problem for an unconvectional extremum

i n
®(z) = W=J cx"'(—a—z> dx —extr; 2(0)=H, z(I) =0 27
0 ox
can be obtained in the form
zcxtr(x) = - (Cl/cn)“n-l [XTET+]/( 1 r:ln +1 >] tG 2%)
For instance, with m = 1/2, n = 1/2 (and z(0) = H, z(I) = 0), we obtain a convex profile which causes a
2
maximum erosion: z = H ( - );—2 . The minimum for the set of functions (Figure 1)

()]

is obtained when o — 0, i.e. the concave profile turns into a profile in the form of a plateau leading to a cliff edge.

Thus, for slope profiles subjected to minimum erosion we have an infinite derivative at the point x = 0, which
does not meet the assumption of small angle. Thus, in some cases sin ¢ in formula (21) should be considered
instead of tan =, as in equation (3). In these cases the problem for an unconventional extremum is set in the form

W= ch x"'[ _6_2/\/(1 + (a—z>2>:|ndx—+extr; z0)=H, z(l)=0 (30)
0 Ox 0x

The first integral of Euler-Lagrange equation for this problem was obtained as follows

m dz \"! dz\*i+s
(a1

Only when n =1 an analyﬁcal solution of equation (31) can be obtained which is reduced to integral taking
2(x) = [/ (Gx*™* —1)dx. In other cases the problem is difficult to solve.

0 < <4 ]

Figure 1. Set of parabolas
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Figure 2. Set of exponential functions

Another approach to the problem solution of equation (30) can include the finding of functional extremum W

exp (a(x/l))—expa]

1 —expa
(Figure 2). The last set allows us to take a wider range of profiles. The derivative at the point x = 0, conlt)inuously
varying in the intervals (— H/I,0)and (— oo, — H/I) with a variation of « in the intervals (0, o), ( — o0, 0). In the
former case we have the set of convex curves, and in the latter we have the set of concave curves. Here the
rectilinear profile corresponds to « = 0 (Figure 2), which follows from the Taylor series expansion at small «:
exp(a(x/))~ 1 —a(x/l); expa~ 1 —a.

The problem (30) with this set of curves is reduced to one of minimizing, with respect to x the integral

Loxmyn(x, a)dx

on definite sets of curves. It is then possible to take a set of functions (29) or: z = H [

(A M ey
Haexp(%x)
h -\l
et L e T |

The approaches discussed here and the results obtained can be applied in practice to hydraulic engineering
works and to the design of equilibrium and stable river beds and slope profiles.
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APPENDIX

List of notations
z—height, L, H = z(x = 0)
I-length of slope or river bed, L
x—space coordinate (distance from the divide), L
t—time, T
g —unit water discharge (water discharge per unit flow width), L2 /T
Q—total water discharge, L3/T
g—unit sediment discharge, L2/T
G —total sediment discharge, L3/T
i—gradient
¢ —slope angle
B—-bed width, L
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h—average depth, L
v—mean velocity, L/T
N - Manning resistance coefficient
d —average sediment diameter, L
g — gravitational acceleration, L/T*?
W-erosion (wash) from a whole slope, L3/L = L?
R —erosion at every point of a slope, L
m, n—exponents of R, R = ¢x™i" (n—also exponent of ¢, g ~ i")

A—Lagrange multiplier
c—coefficient in R

C,, C,—integration constants
o —coefficient of runoff
I -rainfall intensity, L/T
A-—watershed area, L?
C - Chezy coefficient, L'/?/T
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