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Some problems of the theory of moving water along a slope
by

A. M. TroriMov and V. M. MoskovkiIN, Kazan



Zusammenfassung. Indiesem Aufsatz wird die Definition eines stabilen Gleichgewichtsprofils
unter dem EinfluB der Hangspiilung untersucht sowie die Struktur eines mathematischen
Modells, das die Rolle der den Hang bedeckenden Materialkorngréfien mit beriicksichtigt.

Summary. This paper deals with the problem of a stable equilibrium profile that is being
subjected to the action of sheet wash. In addition, it considers the structure of a mathematical
model for debris on a slope.

Résumé. Cette étude traite le probléme d’un profil en équilibre stable qui est soumis a I’action du
ruissellement en nappe. En plus, il étudie la structure d’un modele mathématique 4 propos du
débris sur un versant.

First we examine the problem of defining the stable equilibrium profile of a slope
subjected to sheet flood erosion.

The analogous problem for the equilibrium form of a sea shore was solved
by S. S. GrRiGoRrYAN (1965). We may consider a slope to be made of similar frag-
ments in a composition and dimension of loose material.

The equation for thin film water movement in general coordinates is

2
@) | 4 %:gsina—%,

where the coordinate S is parallel to the slope surface.

The velocity 17 is taken as the average over the flow depth (hydrological set
of a problem). /4 is the average depth of water flow.

We take the coefficient for the force of flow friction as (GRiGORYAN 1965):

@) __AG
K= otay

where A is the exposed atea of the particle major axis Md; taking part in the
formation of a flow friction force, and C is the drag coefficient.
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Taking into account that the particle protrudes less than completely from among
its neighbours, we write the expression for A4

1
o) A = " (Md) (Md,) &; for some &< 1

whete Md, is the median value for the small axis of a fragment. The equilibrium
particle equation on a slope has the form

4 C1% — mgfcos a ++ mgsin a = 0

whete f is the tangent of the angle of friction.

Combined with equation (1) it defines the stable equilibrium profile of the slope.
In equation (4)

5

) C = ;—QAC,,

6
© S (M) (Mdy) (or—0),

and g, g, are respectively the density of loose matetial and water.
From (4) we obtain:

0

. m
7% = vg(fcos a — sin a), where 7= =,
¢

Writing equation (1) in the form:
8 a2
® L‘{%=ngina—27]<l/2;

and putting (7) into (8) we obtain equation (9) after integration:

) . cos a + fsin a do — 2K
f o = T.S' where tan gy = f

fcos a — (% + 1) sin a

Assuming that at

lim sin a = sin a o

v S >
§ >0 dj—)o lim cos ¢ = cos a ©
S > o0

From (7) and (8) we obtain:

(10)  tanaoo = _J
L
1K+

Substituting (10), the integral (9) may be we written as:
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a
(11) sin a cos ay cos a + sin gy sin a Jo —
sin a, cos a sin a,, — COS a,, sifa

B

S

2K
5

Making some changes in the exptession within the integral using known tri-
gonometrical formulas, we write:

cos (a—ag) = €os [(a—a,) + (a5—0)] = cos (a—ay,) cOs (a —ag) —
— sin (4—a,) sin (a—ay),

giving the final solution of the equation after integration:

(12) si_na_"" { cos (ag—ag) In [Mjm)‘"] — (a—aq,) sin (a %) } = 2K -5

sin a, sin (e—a,) )

The expression (12) will define the stable equilibrium profile of slope sub-
jected to the action of sheet flood erosion. It follows from (10) that tan a, > tan ax,
and that this profile is concave. .

For structuring more complex theories of water flow along the slope in equa-
tion (1), » may be considered as changing along the slope. Then it is necessary to
use the storage equation. o

Taking onto the account the differences of grain size along the slope we may
conclude that K = K(S). In the storage equation water infiltration may be taken
into account which is related to the differences in debris grain size through the
equation:

(13) d(‘?) — )

where J(S) represents the rate of water infiltration.
Setting sin a as 2 known function of §

(14) sin a = @(S)

Then the equation system defining 7”7 and 4 will be the general nonstationary
equations:

as oV
ot
242D _ sy

Together with equation (1) for water film movement it is possible to find out the
equation for fragments movement along the slope under the action of watet, i.e.
to structure the mathematical model of fragment drag along the slope. The equa-
tion of motion for one fragment we can write as (SCHEIDEGGER 1964):

1 .
(16) :16—7zd36 - Vs —‘%V-s- =Cy 781 A2o(V—T/5)* + 5 nd3(8—p)g * sin a —

ov K(S)V?
+ Vo5 = 8i() _—(—b)—

— é— ad3(6—o)g cos a - f.
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A. E. SCHEIDEGGER considered only the first part of this equation. Here  and ¢
are respectively the fragment and water density; 4 is the diameter of fragment;
Ca is the hydraulic drag coefficient. The equations (1) and (16) form the complete
system for definition of 1 for the velocity of fragment and water (1) movement

1
{17 V%:gsina—§V2

av’ 31 ey 4
Vs i =Cap ey (V—veyr+ (11— g)g sina — g(1 — 3 )f cos a.
Subtracting the second equation from the first one of (17) we obtain:
18 1 d(V—T%)? K 31 e .
(18) E% Z—ZVZ—CaQ Z%(V——V,)z—{-—ggsnla—{—
+g(1 — %)fcos a.

Assuming the slope profile as sin a = ¢(5) and solving the first equation of the
system (17) one gets 17 as the function S. Transforming the variable in (18) to

19 =Vt =y

we get a general differential equation for obtaining y and consequently 17,
1 4 3

(20) 5.@2_6"’9% ¥+ M)

where M(S) is known as function S.

Thus we have the solution of the problem of obtaining the debris velocity,
in a surface water flow over the given slope.
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