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The development of plastic instability in the initial deformation stages of irradiated materials is 
studied. The dependence of the fraction of dislocations which overcome obstacles in the 
dynamic regime (dislocation “ channeling”) on the degree of radiation hardening (irradiation dose) 
and the dislocation velocity is analyzed. It is shown that this effect plays a role in radiation 
embrittlement of reactor materials.

The investigation of radiation hardening and, as a rule, 
the associated embrittlement is one of the most practical is­
sues in reactor materials science. Radiation hardening of ma­
terials appears not only as an increase in the yield stress and 
decrease of the rate of hardening of materials but also in the 
formation of a “ creep tooth” and a creep plateau on the 
strain curves of the Chernov-Liiders type.1,2 According to 
modem ideas, the existence of these effects indicates plastic 
instability in materials, which could be the cause of the sharp 
decrease in the plasticity.

Figure 1 shows typical strain curves for reactor steels at 
test temperatures below 03 T m ( T m —  melting temperature). 
Our analysis3 showed that strain curves of this type (curve 2) 
are observed in many materials even at irradiation doses 
;;s  10 2 10 1 dpa (displacement per atom). The minimum
or the plateau in the curve 2 is due to plastic instability 
effects —  dislocation channeling: destruction of obstacles by 
moving dislocations and localization of glide in given vol­
umes of the material followed by deformation.1 For the sub­
sequent analysis, it is especially important that the material 
leaves the plastic instability regime mainly as a result of the 
development of transverse glide of screw dislocations. At 
higher irradiation doses (5= 1 10 dpa, curve 3) the stage
corresponding to the plateau in curve 2 passes directly into 
the fracture stage of the material.

The modem approach to plastic deformation, as a collec­
tive dislocation process, is to describe the localization and 
self-organization of dislocations based on a study of the evo­
lution of dislocation ensembles in the deformed materials. In 
Refs. 4 - 7  the kinetics of a dislocation ensemble were stud­
ied in detail theoretically in a synergetic approach and mod­
els making it possible to explain not only the evolution of the 
local density of dislocations in unirradiated materials but 
also the formation of defect-free channels and localization of 
deformation in irradiated materials.

There also exist models8 that study the appearance of 
plastic instability and localization of plastic deformation 
based on a description of the behavior of single dislocations. 
Other models (see, for example, Ref. 9 ) proceed from a

dislocation ensemble which is characterized by a dislocation 
distribution function that depends on the radius vector r and 
time t.

However, since the plastic deformation of a material is 
associated with mobile defects, it is natural to assume that 
the dislocation distribution function depends not only on the 
radius vector r and time t but also on the dislocation velocity 
v and its orientation in space. In the present paper we study 
the dislocation distribution functions averaged over orienta­
tions of dislocation lines in space. The dislocations in an 
ensemble themselves can be treated as a collection of seg­
ments of dislocation lines (see Ref. 10 ).

In the present work we investigated the development of 
plastic instability in an irradiated material taking account of 
the dependences of the velocity distribution function of dis­
locations in an ensemble.

1. MODEL

The subject of the description are mobile dislocations 
which interact with fixed obstacles of different nature but are 
not held back (do not “ hang up” ) on them. For example, 
they move in a channeling regime.2 This situation corre­
sponds, for example, to the typical case of the initial stages 
of deformation of an irradiated material when the dislocation 
ensembles formed “ intersect” obstacles, consisting of small 
clusters, loops, and micropores. It is obvious that such a 
situation can occur in the presence of both a wide spectrum 
of dislocation velocities (energies) and different mechanisms 
of interaction of dislocations with obstacles.

Two other important points should be noted concerning: 
a) interdislocation interaction and b) mechanisms by which 
dislocations leave the regime under study.

a) According to Ref. 11 , the contribution of interdislo­
cation interaction must be estimated by comparing it with the 
external applied (and acting on a dislocation) stress / ext. In 
an unirradiated material the interdislocation interaction 
should be taken into account by “ starting from the end of the 
section of strain hardening” where the dislocation density
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FIG. 1. Typical strain curves (cr —  load, s  —  deformation) for reactor 
steels at test temperatures below  0 3 T m ( T m —  m elting temperature). 1 —  
Initial (unirradiated) material, 2 —  material irradiated to “ lo w ”  doses 
(1 0 - 2 — 10 -1  dpa), 3 —  material irradiated to doses above 1 dpa.

p( s )  in the material is large, the distances between disloca- 
tions (r* /> 1 2) are short, and the interdislocation interac­
tion forces are comparable to the external applied stress.

In our case of an irradiated material conditions are real­
ized such that the external stress acting on a dislocation is 
high (practically the maximum possible stress), provided that 
the sharp drop in the rate of strain hardening (Fig. 1) is taken 
into account, while the dislocation density in an ensemble 
(initial stages of the formation of a localized deformation) is 
still not so high that condition / 5 s / ext(l/277-)GZ>2p (e )1/2, 
where /  is the interdislocation interaction force, G is the 
shear modulus, and b is Burgers vector, would be satisfied. 
This allows us to neglect the interdislocation interaction in 
the ensemble for the time being when studying the interac­
tion with fixed obstacles —  radiation defects —  at the initial 
stages of deformation.

b) To describe the interaction of a dislocation ensemble 
with obstacles, we study the most likely case where some 
dislocations will pass through an obstacle without changing 
their direction of motion, while other dislocations will be 
“ scattered,” changing their direction of motion, as can hap­
pen, for example, in the case of screw dislocations. As al­
ready noted above, this corresponds to the case of the defor­
mation of an irradiated material, when the system leaves the 
channeling regime as a result o f the motion of screw dislo­
cations and subsequent development of multiple glide.

To characterize the dislocation structure of a crystal 
quantitatively it is necessary to give the distribution function 
n ( r , \ , t )  of the dislocations over their coordinates r and ve­
locities v and time t so that

P total 2  dCln(r, \ , t ) (1)

is the total density of all dislocations with arbitrary orienta­
tions and moving with velocity v, and dCl is an element of 
solid angle in coordinate space.

In the case that the dislocations interact with certain 
fixed obstacles, we shall investigate the development of plas­
tic deformation on the basis of a general kinetic equation for 
n ( r. \ , i ) of the following form:

dn
~dt

dn
dr

dn
d \ (2)

where a is the acceleration of a dislocation under an external 
load F; ( I I t ) is an operator corresponding to the reciprocal 
of the relaxation time, which we assume to be determined by 
the expression

1 |v | " /  1 ,
-  « =  —  —  | d£ly, n { r , \ ' , t ) - n { r , \ , t ) \ .  (2a)

Here dCly, is an element of solid angle in velocity space. The 
proposed structure of the operator (2a) of the reciprocal re­
laxation time signifies that the frequency of collisions with 
obstacles for a dislocation moving with velocity v equals 
|v |m/A (we assume below that m <  — 1), where A  is a con­
stant which takes account of the presence of stops of differ­
ent nature and the concentration (we note that, evidently, 
depending on the parameter m,  the dimension o f . I in differ­
ent cases will be different). The expression (2a) presupposes, 
by analogy with classical mechanics, that a dislocation, 
treated as a quasiparticle, is scattered elastically in the poten­
tial field of an obstacle |r| k ( k > 0). It is known that in this 
case the effective differential cross section for elastic scatter­
ing (and therefore the collision frequency also) is propor­
tional to |v |m with m = —Mk  (see Ref. 12 ). On the other 
hand, it is also know that moving dislocations can interact 
with obstacles according to the law ~  1/r, where r is the 
distance from an obstacle to the dislocation axis,13 as hap­
pens, for example, for an edge dislocation in the case of a 
Cottrell impurity atmosphere.14 In this case, m 4 <  — 1. 
In what follows we shall develop this model for the general 
case m <  — 1.

We note that the spatiotemporal distribution function 
f ( r , t )  o f dislocations can be expressed in terms of n ( r. v. t ) 
by means of the formula

The condition of balance for / ( r. t ) follows from the 
kinetic equation (2). In the present model (no interactions 
between dislocations) it has the form

dt
divj =  0,

1
where j=  -— J (/v v n (r ,v ,0 .4 77

We shall study the spatially uniform case 

dn(r,V,t)
dr

= 0 . (3)

The latter relation means that A = n l - n 2< a d  (d  —  average 
distance between stops, a  —  coefficient of order 1 with di­
mension of length), i.e. the distribution function of a dislo­
cation ensemble remains practically unchanged over a dis­
tance of the order of the distance between stops. Then the 
kinetic equation (2) will have the form



Kamyshanchenko et al.

dn(y, t)  dn(y, t)  I î \
— T*— + a — j— = ~ h ( v ’0-dt dy \ T j

To Eq. (4) we add the initial condition

«(v,0;vo) =  <S(v-v0),

(4)

(5)

signifying that at time /= 0  the dislocation velocity is close 
to v0 .

We now introduce the parameter p * ( y 0,t;m)  
=  Pact/Ptotai > where pact is the density of dislocations which 
have passed “through” an obstacle. The parameter 
p * ( y 0,t;m)  denotes the relative fraction of dislocations in an 
ensemble which have passed “ through” an obstacle. From 
the physical meaning of the distribution function i i ( \ . i : \ lt) 
as the probability density of dislocations moving with veloc­
ity v0 , we can establish the integral equation

n (v , t  — t ’',v0) = p * ( v 0,t ' ,m)8(at + v 0 — v)

t d 1
d t ' — p * ( y 0, t ' ;m)  —  

o dt'  47r

X J  dClwn ( y , t - t ’;w\at’ + v0|), (6)

where w is a unit vector ( | w| =  1) in an arbitrary direction. In 
Eq. (6) the first term is the fraction of dislocations which 
have passed through an obstacle and acquired in time t a 
velocity a; I v„. The second term takes account of the frac­
tion of dislocations whose velocity changed direction as a 
result of the first collisions with obstacles and acquired an 
arbitrary direction w. Obviously, these directions are 
knocked out of the probability density n(y , t ; y0), as is indi­
cated by the minus sign in front of the second term.

2. DISLOCATION GLIDE

Substituting the integral equation (6) into the kinetic 
equation (2), we obtain an equation for p*

d laZ+Vol”
— p * ( \ 0, t ;m)+  —  p * ( y 0,t;m) = 0. (7)

The function p* must satisfy the relations

0 ^ p * ( y 0, t ; m ) ^ l ,  p * ( y 0;m) = 1.

We shall assume that the direction of the initial velocity 
v0 is the same as the vector of the applied load <x. The 
solution of Eq. (7) has the form

' |vor  + 1- ( | a k + |v o | ) m + 1
expp * (y 0,t;m)~- (8)

2 | a |  A(m + 1 )

with m #  — 1. For m <  1 the asymptotic representation of
the solution (8) is expressed by the formula

k r +1
q =  lim p * (y 0, t ;m+  l )  =  exp

t—>a> 2\^A\m + l| (9)

This is the fraction of dislocations which have the initial 
velocity and pass through an obstacle. As v„|— 0 this frac­
tion becomes infinitesimal. As |v0|^ ° °  (or as |a| increases)

tz

1,

FIG. 2. Fraction o f  dislocations overcom ing obstacles in the dynamic re­
gim e versus the initial dislocation velocity. q x , q2, q 3 , and q 4 correspond 
to  the follow ing values o f  the density o f  obstacles: p l =  10- 4 %, p 2

tion.

this fraction tends to 1, i.e., as their velocity (energy) in­
creases, dislocations start to “ slip past” obstacles without 
stopping.

The dependence of the fraction of dislocations which 
overcome an obstacle in the dynamic regime on the disloca­
tion velocity is illustrated qualitatively in Fig. 2.

For this, for example, we set m = — 3/2, which corre­
sponds to a dislocation-obstacle interaction la w  r s3. In
order for a dislocation to acquire acceleration a | a |. accord­
ing to Newton’s second law a = F / m *, a force /•’> /• ’„ // (per 
unit length of the dislocation) must be applied, where F 0 is 
the maximum dislocation restraining force developed by one 
defect and I is the distance between defects,15 m*  
= ( d h 2/À7T)\n(R/rt]) is a known expression16 for the effective 
mass per unit length of a dislocation, d  is the mass density of 
the metal, b is the magnitude of Burgers vector. Setting 
/ «, 13 and v„| us.  where «, is the number of defects per 
unit volume (specifically, irradiation produced defects) and u 
is the velocity of sound, we transform Eq. (9) to a form 
convenient for plotting

q = exp(— HQ),

Q = 2 A \ m + l \ ( F 04 ir n l,3) / (d b 2ln(R/r0))

X u \m + \\p m s \m + i\̂

where p  is the defect density and n is the density of atoms of 
the main material. To obtain a clear picture, we choose the 
following values of the parameters: ^ 0 = 1.6X 10~4 dynes, 
u =  3.3X 104 cm/s, < i=8g/cm 3, ln(R/r0) =  8,« =  8 
X 1022 cn T 3, b = 3 X  10~8 cm, and 4̂ =  10 16 s5/2-cn T 3/2. 
For these values the function q(s)  has the form shown in 
Fig. 2. The quantity 5 is plotted along the abscissa. Accord­
ing to our data and the data of other authors,17 a relative 
increase in the yield stress o f a material by a factor of 4 -2 0  
is observed in most model and reactor materials even at 
doses 10 2 10 1 dpa. Moreover, one can see that under
otherwise equal conditions, the fraction of dislocations in 
irradiated materials which have overcome obstacles in the 
dynamic regime now becomes substantial (according to Ref. 
8 , the criterion of the dynamic or “pseudorelativistic” re­
gime is that dislocations reach velocities —0.1 of the veloc­
ity of the sound).
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Figure 2 also shows that the dynamic (pseudorelativistic) 
deformation regime is reached in irradiated materials at 
lower dislocation velocities.

As investigations by Popov showed,8 for dislocation 
densities = 1010 cm~2 pseudorelativistic effects must be 
taken into account to describe the evolution of dislocation 
structures, i.e., the dislocation velocities can approach the 
sound velocity (5=0.1»), In the case of, for example, irradi­
ated nickel and vessel steel, such a dislocation density cor­
responds to stresses 100 MPa, and hence such effects can 
appear even at the initial stages of deformation, which cor­
respond to the Chemov-Luders strain interval. As numerous 
experiments have shown, high dislocation densities are ob­
served in deformation channels formed in irradiated materi­
als even near the yield stress. This results in the appearance 
of the Chemov-Luders plastic instability.1,2

The model presented in this work, in our opinion, may 
be directly related to, for example, the problem of the brittle­
ness of irradiated materials in reactor vessels. The latest 
investigations18 show that deformation and fracture pro­
cesses in vessel steels are accompanied by dynamic disloca­
tion channeling and “ destruction” by dislocations of very 
small defects in the form of micropores, loops, and precipi­
tates in vessel steels. Localized-deformation channels, en­
countering interfaces, could be responsible for the sharp 
stress concentration, proportional to the total dislocation 
“ charge,” and give rise to microcracks.

In summary, in the model presented above, the develop­
ment of plastic instability in an irradiated deformable mate­
rial was studied taking account of the velocity dependence of 
the distribution function of dislocations in an ensemble. It 
was shown that a sharp increase in the fraction of disloca­
tions which overcome obstacles in the dynamic regime can 
be observed in these materials. As the degree of hardening 
(concentration of defects arising under irradiation) increases, 
this effect can be reached at lower deformation velocities.

I. M. N eklyudov and N. V. Kamyshanchenko, in Structure  o f  an d  R a d ia ­
tion  D am age  in  C onstruction  M ater ia ls  [in Russian], Metallurgiya, M os­
cow  (1996), p. 168.

2 A. V. V olobuev, L. S. Ozhigov, and A. A. Parkhomenko, Vop. Atom. 
Nauki i Tekhniki. Fizika Radiatsionnykh Povrezhdenii i Radiatsionnoe 
M aterialovedenie 1(64), 3 (1996).

3I. M. N eklyudov, L. S. O zhigov, A. A. Parkhomenko, and V. D. Zabo­
lotnyi, in P roceed ings o f  the 2n d  Scientific  C onference on P h ys ica l P h e ­
nom ena  in  Solids  [in Russian], Khar’kov University, Khar’kov (1995), p. 
132.

4G. A. M alygin, Fiz. Tverd. Tela (Leningrad) 33 , 1069 (1991) [Sov. Phys. 
Solid State 33 , 606 (1991)].

5G. A. M alygin, Fiz. Tverd. Tela (Leningrad) 33 , 1855 (1991) [Sov. Phys. 
Solid State 33 , 1042 (1991)].

6G. A. M alygin, Fiz. Tverd. Tela (Leningrad) 34 , 3605 (1992) [Sov. Phys. 
Solid State 34 , 1931 (1992)].

7G. A. M alygin, Fiz. Tverd. Tela (St. Petersburg) 37, 3 (1995) [Phys. Solid  
State 37, 1 (1995)].

SL. E. Popov, L. Ya. Pudan, S. N. Kolupaeva, V. S. Kobytev, and V. A. 
Starenchenko, M a them atica l M o d e lin g  o f  P lastic  D eform a tion  [in Rus­
sian], Tom sk U niversity Press, Tom sk (1990), 184 pp.

9Sh. Kh. Khannakov, Fiz. Met. M etalloved. 78, 31 (1994).
10G. A. M alygin, Fiz. Tverd. Tela (St. Petersburg) 38, 2418 (1996) [Phys.

Solid State 38 , 1329 (1996)]. 
n V. V. Rybin, L a rg e  P la stic  D eform a tions an d  F ra c tu re  o f  M e ta ls  [in 

Russian], Metallurgiya, M oscow  (1986), 268 pp.
12L. D. Landau and E. M. Lifshitz, M echan ics  [Pergamon Press, N. Y.;

Nauka, M oscow , 1965, 204 pp.],
13R. L. Fleischer, Acta Metall. 10, 835 (1962); J. Appl. Phys. 33, 3504  

(1962).
14 V. I. Vladimirov, P hysica l N a ture  o f  F rac ture  o f  M e ta ls  [in Russian], 

Metallurgiya, M oscow , 1984.
15 O. A. Troitskii and V. G. Shteinberg, R ad ia tion  P hysics  o f  the S treng th  o f  

M eta llic  C rysta ls  [in Russian], Atomizdat, M oscow  (1969), 79 pp.
16 J. Hirth and J. Lothe, Theory o f  D isloca tions  [Krieger, 1992, reprint o f  

1982 edition, Atomizdat, M oscow , 1972, 599 pp.],
17V. F. Zelenskii, I. M. Neklyudov, L. S. O zhigov, E. A. Reznichenko, 

V. V. Rozhkov, and T. P. Chem yaeva, C erta in  P rob lem s o f  the P hysics o f  
R a d ia tion  D am age  in  M a ter ia ls  [in Russian], N aukova Dumka, Kiev  
(1979), 330 pp.

18M. Große, J. Böhmert, and H. W. Viehrig, J. Nucl. Mater. 211, 177 
(1994).

Translated by M. E. A lferieff


