On Dirichlet-Type Problems for the Lavrent'ev-Bitsadze Equation

A. P. Soldatov^a

Abstract—The existence and uniqueness issues are discussed for several boundary value problems with Dirichlet data for the Lavrent'ev—Bitsadze equation in a mixed domain. A general mixed problem (according to Bitsadze's terminology) is considered in which the Dirichlet data are relaxed on a hyperbolic region of the boundary inside a characteristic sector with vertex on the type-change interval. In particular, conditions are pointed out under which the problem is uniquely solvable for any choice of this vertex.

Let D be a domain of the complex z-plane, z=x+iy, that is bounded for y>0 and y<0 by Lyapunov arcs σ and γ with endpoints z=0 and z=1. Suppose that at their endpoints these arcs do not form cusps with the segment J=[0,1] of the real axis. In this domain we consider the Lavrent'ev-Bitsadze equation

$$(\operatorname{sgn} y)u_{xx} + u_{yy} = 0. (1)$$

It is assumed that the angles θ_k^{\pm} , k=0,1, of the domains $D^{\pm}=D\cap\{\pm y>0\}$ at the points z=k are positive and that the arc γ is not tangent to the characteristics $x\pm y=$ const of equation (1). In particular, $0<\theta_k^{\pm}\leq\pi$, $0<\theta_k^{-}<\pi/4$, and the domain D^{-} lies inside the characteristic triangle with base J.

By a solution to equation (1) in the domain D we mean a function u that is harmonic in D^+ , admits, together with its harmonic conjugate v, the limits

$$u^{+}(x) = u(x, +0), v^{+}(x) = v(x, +0) \in C(0, 1),$$
 (2)

and can be represented in the domain D^- by the d'Alembert formula

$$2u(x,y) = (v+u)^{+}(x+y) - (v-u)^{+}(x-y).$$
(3)

Under the assumption that $u^+, v^+ \in C^2(0,1)$, the function u belongs to $C^1(D^-)$ and is a classical solution to the string equation in the domain D^- . Note that if the function u^+ is locally Hölder continuous on the interval (0,1), then it follows from the Privalov theorem [1] that the harmonic conjugate function v has boundary values (2) with the same property. Therefore, the condition on v in the above definition of a solution to equation (1) can be omitted.

Below, we consider solutions u to equation (1) in the class of functions that are locally Hölder continuous in $\overline{D} \setminus \{0,1\}$ and exhibit the power behavior

$$u(z) = O(1)|z|^{\lambda_0}|1-z|^{\lambda_1}, \qquad \lambda_k > -\delta_k.$$
 (4)

Here $\delta = \delta_k$ is the first positive root of the equation $A(\delta\theta_k^+) + \delta A(\theta_k^-) = 0$, where $A(x) = \operatorname{arcoth}(\tan x)$. The function A(x) is defined and π -periodic on the intervals $|x - \pi k| < \pi/4$, on each of which this function increases from $-\infty$ to $+\infty$. In particular, $3\pi/4 < \theta_k^+ \delta_k < \pi$.

^a Belgorod State University, ul. Pobedy 85, Belgorod, 308015 Russia.

In what follows, by O(1) in (4) we will mean the class $H = H(\overline{D})$ of Hölder continuous functions. It is also convenient to use the class $\mathring{H} = \mathring{H}(\overline{D}; \tau_1, \dots, \tau_n)$ of functions $u \in H$ that vanish at the points τ_j . We also introduce a subspace $\mathring{H}^{(1)} \subseteq \mathring{H}$ distinguished by the conditions $\rho u_x, \rho u_y \in \mathring{H}$, where $\rho(z) = |z - \tau_1| \dots |z - \tau_n|$. Below, the role of τ_j is mainly played by the points z = 0, z = 1, and $z = \tau, 0 < \tau < 1$.

For example, using this notation, we can express condition (4) for the function u by the formula $u(z) = u_0(z)|z|^{-\delta_0}|1-z|^{-\delta_1}$, $u_0 \in H(\overline{D};0,1)$. We also use similar classes for functions defined on curves.

We will say that a domain on the plane is *convex with respect to a family of curves* if each curve of this family intersects the domain along a connected set (which may be empty).

Theorem 1 (Soldatov [2–4]). Suppose that the domain D^- is convex with respect to the pencil of straight lines passing through the point z = 0, $0 < \lambda_k < \delta_k$ are fixed for k = 0, 1, and a function f is defined such that

$$f(t) = f_0(t)|t|^{\lambda_0}|1-t|^{-\lambda_1}, \qquad f_0 \in \mathring{H}(\sigma \cup \gamma; 0, 1).$$

Then the Dirichlet problem

$$u|_{\sigma \vdash \Sigma} = f$$
 (5)

for equation (1) is uniquely solvable in the class of functions

$$u(z) = u_0(z)|z|^{\lambda_0}|1-z|^{-\lambda_1}, \qquad u_0 \in \mathring{H}(\overline{D}; 0, 1).$$

If, in addition, $f_0 \in \mathring{H}^{(1)}(\sigma \cup \gamma; 0, 1)$, then the function u_0 also belongs to $\mathring{H}^{(1)}(\overline{D}; 0, 1)$.

A similar assertion holds for the point z = 1 (in this case the signs of the exponents λ_0 and $-\lambda_1$ should be interchanged).

Note that the second assertion of the theorem turns into the first one under the change of variables x' = 1 - x, y' = y, which preserves equation (1).

We can reformulate problem (1), (5) in terms of the harmonic function u in D^+ by "carrying over" the boundary condition from γ to J=[0,1]. To this end, we express the curve γ in the characteristic coordinates by the equation $x+y=\alpha(x-y)$. According to the assumptions made about γ , the function α is defined and continuously differentiable on the interval J; moreover, $0 < t < \alpha(t) < 1$ for 0 < t < 1, $\alpha(0) = 0$, $\alpha(1) = 1$, and the derivative $\alpha'(t)$ is positive for $0 \le t \le 1$. The values $\alpha'(0) < 1$ and $\alpha'(1) > 1$ are related to the angles θ_0^- and θ_1^- of the domain D^- . Denote the inverse transformation α^{-1} by β .

Using the notation adopted and taking into account (2), we can rewrite the boundary condition (5) as

$$u|_{\sigma} = f,$$
 (6)

$$(v+u)^+ \circ \alpha - (v-u)^+ = f_0,$$
 (7₀)

where $f_0(x-y) = 2f(x+iy)$, $x+iy \in \gamma$. The latter boundary condition can also be written in the equivalent form

$$(v+u)^{+} - (v-u)^{+} \circ \beta = f_{1}, \tag{7}_{1}$$

where $f_1(x+y) = 2f(x+iy), x+iy \in \gamma$.

It is easy to see that the domain D^- is convex with respect to the pencil of straight lines passing through the point z=0 if and only if the following inequality holds:

$$\alpha'(t) \ge \frac{\alpha(t)}{t}, \qquad 0 \le t \le 1.$$
 (8₀)

Indeed, in the characteristic variables s = x + y and t = x - y, the domain D^- turns into $G = \{(s,t) \mid 0 < s < \alpha(t), 0 < t < 1\}$. Inequality (8_0) is equivalent to the fact that the function $\ln[\alpha(t)/t]$, as well as $\alpha(t)/t$, monotonically increases. In particular,

$$\frac{\alpha(t)}{t} \le \frac{\alpha(t_0)}{t_0}, \qquad t < t_0.$$

Geometrically, this fact means that the graph of the function $\alpha(t)$, $0 \le t \le t_0$, lies above the secant line passing through the points (0,0) and $(t_0,\alpha(t_0))$. Therefore, the intersection of this line with G is connected.

A similar property of convexity with respect to the point z=1 is expressed by the inequality

$$\alpha'(t) \le \frac{1 - \alpha(t)}{1 - t}, \qquad 0 \le t \le 1. \tag{8}_1$$

The convexity of the domain D^- in the conventional sense is equivalent to the fact that the function α' monotonically increases. In this case, both conditions (8) are satisfied automatically.

If $f \in H(\sigma \cup \gamma)$, then, according to Theorem 1, there exists a unique solution $u \in C(\overline{D} \setminus \{1\})$ to problem (1), (5) that has a logarithmic singularity at the point z = 1, as well as a unique solution with a similar property with respect to the point z = 0. However, as was first shown by Bitsadze [5], this problem is strongly overdetermined in the class $C(\overline{D})$, and the Dirichlet data should be relaxed on a certain part of the arc γ .

Let us fix a point $0 < \tau < 1$ and emit two characteristics $x \pm y = \tau$ from it into the domain D^- . These characteristics partition D^- into subdomains D_0^- , D_1^- , and D_τ^- . Similarly γ is partitioned into arcs γ_0^- , γ_1^- , and γ_τ^- . The domains D_0^- and D_1^- are based on the segments $J_0 = [0, \tau]$ and $J_1 = [\tau, 1]$ of the real axis, respectively, and the boundary of the domain D_τ^- is composed of the arc γ_τ and the segments $l_k \subseteq \partial D_k^-$, k = 0, 1, of the characteristics. If we again emit the characteristics from the endpoints of these segments lying on γ and continue this process, then we obtain a polygonal chain $L \subseteq \overline{D^-}$ with an infinite number of segments that converge to the points z = 0 and z = 1. Let $n = (n_1, n_2)$ be the unit outward normal to the boundary of the domain D. By a conormal we mean a vector ν with components $\nu_1 = \operatorname{sgn} n_1$ and $\nu_2 = n_2$. Since the curve γ has no characteristic directions, the conormal is not tangent to γ .

Let us introduce a mixed domain $D(\tau)$ such that $D^+(\tau) = D^+$ and $D^-(\tau) = D_0^- \cup D_1^-$ and consider the following two Dirichlet problems for equation (1) in this domain:

$$u\big|_{\sigma \cup \gamma_0 \cup \gamma_1} = f,\tag{5^+}$$

$$u\big|_{\sigma \cup \gamma_0 \cup \gamma_1} = f, \qquad u\big|_{l_0 \cup l_1} = 0.$$
 (5⁻)

Of course, within the same class of functions problem (5^-) is overdetermined compared to (4), and the latter is overdetermined compared to (5^+) . We seek a solution to problem (5^+) in the class H and a solution to problem (5^-) in the class of functions (4). In the case of the first problem, we can assume without loss of generality that the right-hand side $f \in H$ vanishes at the points z = 0 and z = 1; i.e., it belongs to $\mathring{H}(\overline{D}; 0, 1)$. As for the second problem, according to (5^-) , the function f should vanish at the common endpoints z_k of the arcs γ_k and l_k .

Note that problems (5^{\pm}) can also be considered in the entire mixed domain D, because the function u can always be extended from $D(\tau)$ to D as a solution to the Goursat problem in the domain D_{τ}^{-} . In the case of the lower sign, this function is naturally extended by zero.

Theorem 2 (Soldatov [2–4]). Suppose that the domain D^- is convex with respect to the pencils of straight lines passing through the points z=0 and z=1. Then problem (5^-) is always solvable in the class (4), and the homogeneous problem has exactly one linearly independent solution $u_- \in C^1(\overline{D} \setminus L)$. Moreover, the product of the conormal derivative $\partial u_-/\partial \nu$ on $\sigma \cup \gamma_0 \cup \gamma_1$ and any function in the class $\mathring{H}(\sigma \cup \gamma; 0, 1)$ is integrable.

Now we turn to problem (5^+) and consider it first in the codimension 1 subspace $\mathring{H}(\overline{D};0,1)$ distinguished by the condition

$$v(0) = v(1) = 0 (9)$$

imposed on the harmonic conjugate v of the function u in the domain D^+ (obviously, v is Hölder continuous in $\overline{D^+}$).

Theorem 3 (Soldatov [2–4]). Suppose that the domain D^- is convex with respect to the pencil of straight lines passing through the points z=0 and z=1. Then the homogeneous problem (5^+) has only the zero solution in the class of functions $u \in \mathring{H}(\overline{D}; 0, 1)$ satisfying condition (9), while the inhomogeneous problem is solvable in this class if and only if

$$\int_{\sigma \cup \gamma_0 \cup \gamma_1} f \frac{\partial u_\tau}{\partial \nu} |dt| = 0.$$
 (10)

In particular, there are only two possibilities for this problem in the entire class $\mathring{H}(\overline{D};0,1)$:

- (i) problem (5⁺) is uniquely solvable;
- (ii) the homogeneous problem has one linearly independent solution u_+ , and condition (10) is necessary and sufficient for the solvability of the inhomogeneous problem.

This theorem is, in a sense, of conditional nature, and the question of which of these two alternatives holds requires an additional analysis. Note also that one can apply Theorem 1 in order to describe the behavior of the solution u to problem (5^+) and its derivative in the neighborhood of the points z = 0 and z = 1.

The question of whether problem (5) is well posed in the class H was intensively discussed (especially among mechanicians) in the mid-1950s. As pointed out above, this question was solved by Bitsadze [5]. In that paper, Bitsadze established that under certain conditions of geometrical character imposed on the domain $D(\tau)$ and on the choice of the point τ , the Dirichlet problem (5) is overdetermined in the class H and problem (5⁺) is uniquely solvable in this class. These conditions are as follows: the inequality

$$\operatorname{Im}[z(1-z)(\tau-z)\overline{z'(s)}] \ge 0 \tag{11}$$

should hold on the arc σ , where $z=z(s),\ 0 \leq s \leq l$, is the natural parametric equation of this arc $(z(0)=1,\ z(l)=0)$, and there should exist a unique point $x_0+iy_0 \in \gamma$ with the minimum ordinate such that, except for this point, the horizontal straight lines are not tangent to γ . In this case, one chooses the point τ inside the interval (x_0+y_0,x_0-y_0) , which guarantees the convexity of the domains D_0^- and D_1^- with respect to the horizontal lines.

Note that in terms of the translations α and $\beta = \alpha^{-1}$ appearing in (7), the convexity of the domains D_k^- , k = 0, 1, is equivalent to the inequalities

$$\alpha'(t) \le 1, \quad 0 \le t \le \tau, \qquad \beta'(t) \le 1, \quad \tau \le t \le 1.$$
 (12)

Later, the Bitsadze requirements were slightly relaxed [6].

Theorem 4. Suppose that the curve σ is such that

$$0 \le \arg z'(s) \le 2\pi,\tag{13}$$

where a continuous branch of the argument is fixed by the condition $\arg z'(0) = \pi - \theta_1^+$ and the notation (11) is used. Suppose also that the domains D_0^- and D_1^- are convex with respect to the horizontal lines. Then problem (5⁺) is uniquely solvable in the class H.

ON DIRICHLET-TYPE PROBLEMS FOR THE LAVRENT'EV-BITSADZE EQUATION

Proof. Since this result has not been published, we give its complete proof. By Theorem 3, it suffices to establish the uniqueness of a solution to the problem in question. Suppose that the homogeneous problem has a nonzero solution $u + iv \in H$, which belongs to the class $\mathring{H}^{(1)}(\overline{D^+}; 0, 1)$ according to Theorem 3. The homogeneous boundary conditions (5^+) on γ_0 can be rewritten in the form (7_0) on the interval $J_0 = [0, \tau]$, and those on γ_1 can be rewritten in the form (7_1) on the interval $J_1 = [\tau, 1]$. Thus,

$$u|_{\sigma} = 0, \tag{14}$$

$$[(v+u)^{+} \circ \alpha - (v-u)^{+}]\big|_{J_{0}} = 0, \qquad [(v+u)^{+} - (v-u)^{+} \circ \beta]\big|_{J_{1}} = 0.$$
 (15)

As already mentioned, the behavior of the derivative of the analytic function $\phi = u + iv$ near the points z = 0 and z = 1 can be described by Theorem 1. In our case, for any $\varepsilon > 0$ we have

$$\phi'(z) = O(1)|z - k|^{\delta_k - \varepsilon - 1}$$
 as $z \to k$.

To describe similar behavior of ϕ' in the neighborhood of the point $z = \tau$, we make use of the boundary condition (15). It shows that for a sufficiently small c > 0

$$(v-u)^+(t) = g_0(t), \quad \tau - c \le t \le \tau, \qquad (v+u)^+(t) = g_1(t), \quad \tau \le t \le \tau + c,$$

with some functions g_k whose derivatives are H-continuous. As is well known [7], this implies

$$\phi'(z) = O(1)|z - \tau|^{-\varepsilon - \frac{1}{2}}$$
 as $z \to \tau$.

Recall that $\theta_k^+ \delta_k > 3\pi/2$ and, in particular, $2\delta_k - 1 > 0$. Hence, the function $(\phi')^2$ admits only weak singularities at the points $z = 0, \tau, 1$. More precisely,

$$z(z-\tau)(z-1)[\phi'(z)]^{2} \in \mathring{H}(\overline{D};0,\tau,1).$$
(16)

Let us set $h(s) = \arg z'(s)$ for brevity and introduce the functions $h_1 = \max(h - 2\pi, -\pi)$ and $h_2 = \min(h - \pi, 0)$; these functions, as well as h, belong to the class H[0, l]. In view of (13) we have the inequality $h_1 \leq h_2$. Since $h(0) = \pi - \theta_1^+$ and $h(l) = \pi + \theta_0^+$, the values of the functions h_j at the endpoints of the interval are related by the inequalities $h_1(0) \leq -\pi \leq h_2(0)$ and $h_1(l) \leq 0 \leq h_2(l)$. Therefore, there exists a function $\varphi \in H[0, l]$ such that

$$h_1 \le \varphi \le h_2, \qquad \varphi(0) = -\pi, \qquad \varphi(l) = 0.$$
 (17)

So, if the imaginary part Im f of an analytic function f(z) in D^+ solves the Dirichlet problem

$$\operatorname{Im} f \big|_{\sigma} = \varphi, \qquad \operatorname{Im} f \big|_{I_0} = 0, \qquad \operatorname{Im} f \big|_{I_1} = -\pi, \tag{18}$$

then it is easy to see that $(z-\tau)^{-1}e^{f(z)} \in H(\overline{D^+})$. In view of (17), it follows that we can apply Cauchy's theorem to the function $[\phi'(z)]^2e^{f(z)}$, which yields

$$-\operatorname{Im}\left(\int_{\sigma} + \int_{I_0} + \int_{I_1} \right) [\phi'(z)]^2 e^{f(z)} dz = I_{\sigma} + I_0 + I_1 = 0.$$
 (19)

Consider all three terms of this equality separately. In view of (14), on the arc σ we have $\phi[z(s)] = iv[z(s)]$. Differentiating this equality, we obtain $[\phi'(z)]^2 z' = -|\phi'|^2 e^{-ih}$, which, combined with (18), gives

$$I_{\sigma} = \int\limits_{0}^{l} |\phi'|^2 e^{\operatorname{Re} f} \sin[arphi(s) - h(s)] \, ds.$$

According to (17), the function $e^{f(t)}$ is real on the intervals J_k , so that

$$I_k = -2 \int_{J_k} e^f u' v' dt = -\frac{1}{2} \int_{J_k} \left[(v' + u')^2 - (v' - u')^2 \right] dt.$$

Substituting here the expression obtained by differentiating (15), we obtain

$$2I_0 = \int_0^\tau \left(e^{f \circ \alpha} - e^f \alpha' \right) [(v' - u')^2 \circ \alpha] \alpha' dt + \int_{\alpha(\tau)}^\tau e^f (v' - u')^2 dt,$$

$$2I_1 = \int_\tau^1 \left(e^{\operatorname{Re} f \circ \beta} - e^{\operatorname{Re} f} \beta' \right) [(v' + u')^2 \circ \beta] \beta' dt + \int_\tau^{\beta(\tau)} e^{\operatorname{Re} f} (v' + u')^2 dt.$$

Now, notice that by virtue of (17) the function φ is bounded between 0 and $-\pi$, so that Re f decreases on J_0 and increases on J_1 . Therefore, in view of (12),

$$(e^{f \circ \alpha} - e^f \alpha')|_{J_0} \le 0, \qquad (e^{\operatorname{Re} f \circ \beta} - e^{\operatorname{Re} f} \beta')|_{J_1} \ge 0.$$

In addition, (17) implies the inequality $-2\pi \leq \varphi - h \leq -\pi$, according to which the function $\sin[\varphi(s) - h(s)]$ is nonnegative on [0, l]. Thus, all terms in (19) are represented as sums of positive definite integrals. Consequently, the integrands in all these integrals identically vanish; hence, $\phi = 0$, which contradicts the assumption $\phi \neq 0$.

Theorem 4, just as Bitsadze's theorem, contains an implicit constraint on the choice of the point τ . The question arises as to whether it is possible to remove this constraint for some domains D. In the canonical case, when σ and γ are the arcs of a circle and a hyperbola, respectively, this question can indeed be answered positively with the use of the approach pointed out in [4]. The following theorem extends this class of domains.

Theorem 5. Suppose that the arc γ is of class C^2 , the domain D^- is convex, and the domain D^+ is convex with respect to the circles that are tangent to the real axis outside the interval J = [0,1] (including the family of straight lines parallel to this axis). Then problem (5^+) is uniquely solvable in the class H for any choice of the point τ .

Proof. We give a proof of this theorem separately for the cases of $\alpha'(\tau) = 1$ and $\alpha'(\tau) \neq 1$. Let $\alpha'(\tau) = 1$. As already pointed out above, the domain D^- is convex if and only if $\alpha'' \geq 0$ (by assumption, the arc γ and, hence, the function α are of class C^2). Therefore, $\alpha'(t) \leq 1$ for $t \leq \tau$ and $\alpha'(t) \geq 1$ for $t \geq \tau$. Since

$$\beta'(t) = \frac{1}{\alpha'[\beta(t)]} \le 1, \qquad \beta(t) \ge \tau = \beta[\alpha(\tau)],$$

it follows that $\beta'(t) \leq 1$ for $t \geq \tau$. Thus, condition (12) of Theorem 4 holds for the domains D_k^- . Let us verify that condition (13) of this theorem is also valid.

By assumption, the domain D^+ is convex with respect to the family of horizontal lines. Let us take a point z_0 on σ with the maximum ordinate y; this point divides σ into two arcs σ_k with the endpoints $z=z_0$ and $z=k,\ k=0,1$. Then the ordinate y as a function of the arc length s monotonically increases on the curve σ_1 . Therefore, $y'(s) \geq 0$ or, which is the same, the unit vector z'(s) lies in the upper half-plane. Similarly we can verify that on σ_0 the vector z' lies in the lower half-plane. In other words, $0 \leq \arg z' \leq \pi$ on σ_1 and $\pi \leq \arg z' \leq 2\pi$ on σ_0 . Thus, the conditions of Theorem 4 are completely satisfied, and hence problem (5^+) is uniquely solvable in the class H.

ON DIRICHLET-TYPE PROBLEMS FOR THE LAVRENT'EV-BITSADZE EQUATION

Let us turn to the case of $\alpha'(\tau) \neq 1$. Consider the function $f(a) = [a - \alpha(\tau)]^2 (a - \tau)^{-2}$ on the real axis outside the interval (0,1). This function strictly monotonically decreases from 1 to f(0) on $(-\infty,0]$ and from f(1) to 1 on $[1,\infty)$. As pointed out above, under the assumption that the domain D^- is convex, both inequalities (8) hold; therefore, there exists a unique point a at which

$$\left[\frac{a - \alpha(\tau)}{a - \tau}\right]^2 = \alpha'(\tau). \tag{20}$$

Consider the linear-fractional transformation

$$\omega(z) = \frac{z}{b(1-z)+z}, \qquad b = \frac{a}{a+1} > 0,$$
 (21)

which maps the upper half-plane, as well as the interval [0,1], onto itself and leaves the points z=0 and z=1 fixed. Denote by \widetilde{D}^+ , $\widetilde{\sigma}$, and $\widetilde{\tau}$ the images of D^+ , σ , and τ , respectively, under this transformation and set $\widetilde{\alpha}=\omega\circ\alpha\circ\omega^{-1}$ and $\widetilde{\beta}=\omega\circ\beta\circ\omega^{-1}$. We will regard a solution u to problem (5^+) in the domain D^+ as a solution to the problem with the boundary conditions (6) and (7_0) and (7_1) on J_0 and J_1 , respectively. Then the substitution $(\widetilde{u}+i\widetilde{v})[\omega(z)]=(u+iv)(z)$ leads to a similar problem in the domain \widetilde{D}^+ with respect to $\widetilde{\sigma}$ and to the translations $\widetilde{\alpha}$ and $\widetilde{\beta}$. Therefore, it remains to verify that the latter problem satisfies the conditions of Theorem 4.

Under the transformation ω , the circles tangent to the real axis at the point a turn into straight lines parallel to this axis. Therefore, the domain \widetilde{D}^+ is convex with respect to these lines, and so, as shown above, the curve $\widetilde{\sigma}$ satisfies condition (13). Consider the translations $\widetilde{\alpha}$ and $\widetilde{\beta}$. The inverse transformation of (21) is obtained by replacing b with 1/b; hence, we obtain the following expressions for the derivatives of the translations:

$$\widetilde{lpha}'[\omega(t)] = lpha'(t) igg[rac{t-a}{lpha(t)-a}igg]^2, \qquad \widetilde{eta}'[\omega(t)] = eta'(t) igg[rac{t-a}{eta(t)-a}igg]^2.$$

Therefore, conditions (12) for the translations $\widetilde{\alpha}$ and $\widetilde{\beta}$ and the point $\widetilde{\tau}$ reduce to the inequalities

$$\alpha'(t) \left[\frac{t-a}{\alpha(t)-a} \right]^2 \le 1, \quad 0 \le t \le \tau, \qquad \beta'(t) \left[\frac{t-a}{\beta(t)-a} \right]^2 \le 1, \quad \tau \le t \le 1.$$

Obviously, to prove these inequalities, it suffices to establish that

$$[f(t)-1](t-\tau) \ge 0, \qquad f(t) = \alpha'(t) \left[\frac{t-a}{\alpha(t)-a} \right]^2. \tag{22}$$

According to (20), the equation

$$f(t) = 1 (23)$$

has a root τ . Let us verify that this equation has no other roots on the interval [0,1]. Indeed, suppose the contrary, and let $f(\tau_0) = 0$ and, say, $\tau_0 < \tau$. Then the function $(a-t)^2 \alpha'(t) - [a-\alpha(t)]^2$ vanishes at the ends of the interval $[\tau_0, \tau]$. Therefore, there exists a point t_0 in the interval (τ_0, τ) at which the derivative of this function vanishes:

$$-2(a-t_0)\alpha'(t_0) + (a-t_0)^2\alpha''(t_0) + 2[a-\alpha(t_0)]\alpha'(t_0) = 0.$$

Hence, $(a-t_0)^2 \alpha''(t_0) + 2[t_0 - \alpha(t_0)]\alpha'(t_0) = 0$, which is impossible because the first term here is nonnegative and the second is positive.

Now, consider the function

$$g(t) = \frac{1}{t-a} - \frac{1}{\alpha(t) - a}, \qquad 0 \le t \le 1,$$

which is nonpositive and vanishes at the ends of the interval [0,1]. Using the notation (22), we can write the derivative of this function as $g'(t) = (t-a)^{-2}[f(t)-1]$. In view of the above facts about equation (23), the derivative g' vanishes at the unique point τ , at which the function g attains its minimum. As a result, we arrive at inequality (22), which completes the proof of the theorem.

Suppose that under the conditions of Theorem 5 the function f belongs to $H(\sigma \cup \gamma)$ and $u_{\tau}(z)$ is a solution to problem (5^+) with the right-hand side $f|_{\sigma \cup \gamma_0 \cup \gamma_1}$. As $\tau \to 1$, the arc γ_{τ} "vanishes," and it is natural to expect that u_{τ} tends to the solution u of the Dirichlet problem. As pointed out above, this solution has a logarithmic singularity at the point z = 1. Similarly, as $\tau \to 0$, the limit solution admits a logarithmic singularity at the point z = 0.

The question of whether alternative (ii) of Theorem 3 holds still remains open.

ACKNOWLEDGMENTS

This work was supported by the Federal Target Program "Scientific and Scientific-Pedagogical Personnel of Innovative Russia" for 2009–2013 (state contract nos. P693 and 02.740.11.0613).

REFERENCES

- G. M. Goluzin, Geometric Theory of Functions of a Complex Variable (Nauka, Moscow, 1966; Am. Math. Soc., Providence, RI, 1969).
- 2. A. P. Soldatov, "Problems of Dirichlet Type for the Lavrent'ev-Bitsadze Equation. I: Uniqueness Theorems," Dokl. Akad. Nauk 332 (6), 696-698 (1993) [Russ. Acad. Sci., Dokl. Math. 48 (2), 410-414 (1994)].
- 3. A. P. Soldatov, "Problems of Dirichlet Type for the Lavrent'ev-Bitsadze Equation. II: Existence Theorems," Dokl. Akad. Nauk 333 (1), 16–18 (1993) [Russ. Acad. Sci., Dokl. Math. 48 (3), 433–437 (1994)].
- 4. A. P. Soldatov, "The Dirichlet Problems for the Lavrent'ev-Bitsadze Equation," Diff. Uravn. **30** (11), 2001–2009 (1994) [Diff. Eqns. **30**, 1846–1853 (1994)].
- A. V. Bitsadze, "Ill-Posedness of the Dirichlet Problem for Equations of Mixed Type," Dokl. Akad. Nauk SSSR 122 (2), 167–170 (1958).
- 6. A. P. Soldatov, "On Some Boundary Value Problems in Function Theory with a Non-Carleman-Type Shift," Candidate (Phys.-Math.) Dissertation (Steklov Inst. Math., Moscow, 1974).
- 7. N. I. Muskhelishvili, Singular Integral Equations: Boundary Value Problems in Function Theory and Some of Their Applications to Mathematical Physics (Nauka, Moscow, 1968); Engl. transl. of the 2nd ed.: Singular Integral Equations (Wolters-Noordhoff, Groningen, 1967).

Translated by I. Nikitin