A DESCRIPTION OF SEISMIC ACOUSTIC WAVE PROPAGATION
IN POROUS MEDIA VIA HOMOGENIZATION
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Abstract. We consider a linear system of differential equations describing the joint motion of an
elastic porous body and a fluid occupying the porous space. A rigorous justification is performed for
the homogenization procedures under various conditions imposed on the physical parameters as the
dimensionless size of the pores tends to zero, while the porous body is geometrically periodic and the
process’s characteristic time is sufficiently small. Such models describe the propagation of seismic
acoustic waves. In the present paper, we derive the homogenized equations, which are different
types of nonstandard wave equations depending on the relations between the physical parameters.
The proofs are based on Nguetseng’s two-scale convergence method of homogenization in periodic
structures.
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1. Introduction. In the present paper, we deal with a problem of joint motion
of a deformable solid (the elastic skeleton) perforated by a system of channels or
pores (the pore space) and a fluid occupying the pore space. In a domain Q C R?, the
dimensionless displacement vector w of the continuum medium in the dimensionless
variables

L2
$/:L$7 t/:Tt7 w/zﬁu% p;:p0p57 p/f:popf7 F/:gF
satisfies the differential equation
w _

where
(1.2) P=xPl+(1-x)P°,

0 0
(1.3) pl = a,D <x7 a—?) - (pf - al,diva—l:> 1,
(1.4) P? = oy D(z,w) + oy (divw) I,
(1.5) Py + xopdivw = 0.

Hereafter, we use the notation

D(z,u) = (1/2) (Vou + (Vou)") ;5= xpr + (1= X)ps,
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where [ is the unit tensor, the given function x(z) is the characteristic function of the
pore space, the given function F(a,1) is the dimensionless vector of distributed mass
forces, P7 is the liquid stress tensor, P° is the stress tensor in the solid skeleton, and
py is the liquid pressure.

Equations (1.1)—(1.5) mean that the displacement vector w satisfies the Stokes
equations in the pore space Q1 and the Lamé equations in the solid skeleton €2;.

On the “solid skeleton—pore space” common boundary I', the displacement vector
w and the liquid pressure p; satisfy the usual continuity condition

(1.6) [w](zo,t) =0, xpel, t>0,

and the momentum conservation law in the form

(1.7) [P-nl(xo,t) =0, xpel, t>0,

where n(xq) is the unit normal to the boundary at the point &g € T' and

ll(®o, ) = ¢(s)(®a, ) — sy (@0, 1),
py(xo,t) = lim (1), @p(xo,t) = lim  p(z,1).

x® — ® ® — ®q
x € Qg meﬂf

The problem is endowed with the homogeneous initial and boundary conditions

P
(1.8) w(z,0) =0, 8—1:(:.:70) 0, zeQ,
(1.9) w(x,t) =0, x€S=90, t>0.

The dimensionless constants «; (i = 7, v, ...) are defined by the formulas

2uT 2A7? vT
o, = Ny = —— o, = ——
T L2py A L2py’ Y L2py

’7'2 777'2 o T

72 Qpn = Lz—po = pscsﬁ7

2
2
Qp = pPrCy

where p is the fluid viscosity, v is the bulk fluid viscosity, A and 5 are elastic Lamé’s
constants, ¢y is the speed of sound in fluids, ¢, is the speed of sound in solids, L
is the characteristic size of the domain under study, 7 is the characteristic time of
the process, py and p, are the respective mean dimensionless densities of the liquid
and solid phases correlated with the mean density of water pg, and g is the value of
acceleration due to gravity.

The corresponding mathematical model described by system (1.1)—(1.9) is com-
monly used (see [2], [9]) and contains a natural small parameter £, which is the pore
characteristic size [ divided by the characteristic size L of the entire porous body:

e=—.

L
Our aim is to derive all possible limiting regimes (the homogenized equations) as
£\ 0. Such an approximation significantly simplifies the original problem and at the
same time preserves all of its main features. But even this approach is too difficult



to be realized, and some additional simplifying assumptions are necessary. In terms
of geometrical properties of the medium, it is most expedient to simplify the problem
by postulating that the porous structure is periodic.

We impose the following constraints.

Assumption 1.

(1) The domain Q = (0, 1) is a periodic repetition of an elementary cell Y¢ = Y,
where Y = (0,1)* and the quantity 1/ is an integer so that Q always contains an
integer number of elementary cells Y=.

(2) Let Y; be the “solid part” of Y, and let the “liquid part” Y; of ¥ be its open
complement. We write v = dY; N 8Y; and assume that ~ is a Lipschitz continuous
surface.

(3) The pore space Q; is a periodic repetition of the elementary cell £Y;, and the
solid skeleton €)f is a periodic repetition of the elementary cell ¢Y;. The Lipschitz
continuous boundary I'* = 9% N 89; is a periodic repetition in Q of the boundary
ey.

(4) The “solid skeleton” Q5 and the “pore space” Q% are connected domains.

Here the essential assumptions are those last three on the geometry of the ele-
mentary cells Y; and Y; and the domains Q5 and Q; As for the first assumption, we
take the simplest structure of Q (namely, the cube) just to simplify the procedure.
In principle, for the domain Q we can choose any bounded domain with a Lipschitz
continuous boundary S = 9.

Under these assumptions, we have

5= (@) = X (@)ps + (1= x*(@))ps,

where x(y) is the characteristic function of Y; in Y.
We assume that all dimensionless parameters depend on the small parameter ¢
and the (finite or infinite) limits exist:

lim oy, (2) = o, limax(e) = Ao, lim ey () = vo,

lim oy, (e) = o, lim e, (e) = py,

N0 N0
. o . Q)
lim -+ = lim — = Ay,
N0 g2 s N0 g2 !

The first research aiming to find the limiting regimes in the case where the skele-
ton was an absolutely rigid body was carried out by Sanchez-Palencia and Tartar.
Sanchez-Palencia [9, sect. 7.2] formally obtained Darcy’s law of filtration using the
method of two-scale asymptotic expansions, and Tartar [9, Appendix] rigorously jus-
tified the homogenization procedure. Using the same method of two-scale expansions,
Burridge and Keller [2] formally derived a system of Biot’s equations from problem
(1.1)~(1.9) in the case where the parameter o, was of order 2 and the rest of the
coefficients were fixed independent of . Under the same assumptions as in [2], a rig-
orous justification of Biot’s model was given by Nguetseng [8] and later by Clopeaut
et al. [3]. The most general case of problem (1.1)—(1.9) where

—1 —1 -1
/’607)‘0 ;» VO, P 5 o <0



was studied in [6].

All these authors used Nguetseng’s two-scale convergence method [7, 5].

In the present paper, we use the same method to investigate all possible limiting
regimes in problem (1.1)—(1.9) in the cases where

Vo, Px, Mo < 00; o = Ao =0, 0 <ps, no.

These cases correspond to the seismic acoustic wave propagation, where all the
processes on distances of tens of thousands of meters (L / oo) come to an end in
several seconds (7 \ 0).

We show that the homogenized equations are different types of nonstandard wave
equations for a two- or one-velocity continuum (Theorem 2.2).

This is a very interesting fact: initially a one-velocity continuum becomes a two-
velocity continuum after the homogenization procedure, which appears to be the result
of different smoothness of the solution in the solid and liquid components:

/ aM(E)XE|VwE|2dx < Cp, / ax(e)(1 — XE)|VwE|2dx < Cp,
Q Q

where Cj is a constant independent of the small parameter €. To preserve the best
properties of the solution, we must use the well-known extension lemma [1, 4] and
extend the solution from the solid part to the liquid part and conversely. At this stage,
the criteria py and Ay become crucial. Namely, let w3 (w$) be an extension of the
liquid (solid) displacements to the solid (liquid) part, and let gy = Ay = co. Then the
limiting (homogenized) system describes the one-velocity continuum. This is because
of the fact that each of the sequences {w"}, {w%}, and {w;} two-scale converges
to a function independent of the fast variable. This statement easily follows from
Nguetseng’s theorem.

If 1y < o0 and Ay = 00 or py = o0 and A1 < oo, then the homogenized systems
describe the two-velocity continuum.

Finally, we note that, in practice, to solve a real physical problem in, for example,
acoustics, one does not want to carry out the limiting procedure but, instead, wants
to find a simple and reliable mathematical model describing the process. But there
is only one exact (sufficiently reliable) mathematical model (1.1)—(1.9) with given
physical constants (densities, viscosities, etc.), the characteristic size L of the physical
domain under study, and the characteristic time 7 of the physical process. The small
parameter £ and the dimensionless quantities oy, cx, oy, ... are functions of them.
Changing the values of L. and 7 within some reasonable limits, one may find some
rules for the behavior of the dimensionless quantities as the small parameter tends
to zero. All possible limits of these quantities are described by conditions on pg,
Ao, p1, - .. and, as was mentioned above, each homogenized system corresponds to
a given combination of them. Thus, for a given physical situation, there exists a
combination of dimensionless criteria, which would suggest the choice of the form of
the homogenized system for obtaining the exact mathematical model. Therefore, to
find all possible homogenized systems is very important from both mathematical and
practical standpoints.

2. Main results. There are various equivalent (in the sense of distributions)
forms of representation of (1.1) and boundary conditions (1.6)—(1.7). In what follows,
it is convenient to write them in the form of the integral identities.



We say that four functions (wE7 P D5 qE) are a generalized solution of problem
(1.1)—(1.9) if they satisfy the regularity conditions

(21) w67 vw67 p;7 pi? qE € LZ(QT)

in the domain Qp = Q x (0,7'), boundary condition (1.9) in the trace sense, (1.5) and
the equations

(2.2) 5+ (1 — x%)a,divw® =0,
« ap?

2.3 E—pt 4 Y 2T

(2.3) ¢ =p5+ o

a.e. in Q7, and, finally, the integral identity

a? d
/Q (pEwE . 8—15920 —x"a,D(z,w) : D (957 a—f) —p°F -

(2.4)
=Dl ) — 4" + )T} Do) ) ddi — 0
for all smooth vector-functions ¢ = @ (@, t) such that ¢|sq = @|i—r = d@/dt|i—1 = 0.

In this definition, we changed the form of representation of the stress tensor P in
the integral identity (2.4) by introducing two new unknown functions, ¢° and p%, which
in a certain sense have the meaning of pressure. In what follows, we call functions
¢° and pS the liquid and the solid pressure, respectively, and regard (2.3) as the
state equation and equations (1.5) and (2.2) as the continuity equations. This special
choice of the continuity and state equations simplifies the use of the homogenization
procedure.

In (24), by A : B we denote the convolution (or, equivalently, the inner tensor
product) of two second-rank tensors along the both indices, i.e., A: B=tr(B*0A) =
Yoyt Ay B

Theorems 2.1-2.2 are the main results of the paper.

THEOREM 2.1. Let F be bounded in L*(Q)). Then for all £ > 0 on an arbitrary
time interval [0,T, there exists a unique generalized solution of problem (1.1)—(1.9)
and

wE £ £ £ £
s e || 5] vEe et - evave| @ sa
(2.6) 4" 12,07 + [[PF 2,0 + [[P5ll2,0- < Co,

where Cy is independent of the small parameter c.
THEOREM 2.2. Assume that the hypotheses in Theorem 2.1 hold. Then there
exists a subsequence of small parameters {¢ > 0} and functions wh, wi € L>(0,T;

W4 () such that
wh =w" in QF x (0,7T), w =w" in QF x (0,7,

and the sequences {p?}l {qg}l {pi}f {wg}} {XEwE}I {(1 - Xg)wg}} {w?}f and {wi}
converge as £\, 0 weakly in L*(Qr) to the functions Df, 4, Ps, W, wl, w, we, and
w;, respectively.



(D) If i1 = M = o0, then wy = ws = w and, in Qr, the functions w, py, q, and
ps satisfy the system of acoustic equations

0w 1 R
(2.7) Pop =~ VatiF,

1 1 .
(2.8) —pr+ —ps + divw =0,

Px 1o

Vo 8pf 1 1

2.9 = ——L = ——p,,
(2.9) L TRl Bl et

the homogeneous initial conditions

(2.10) w(z,0) = 88—1;(:::70) =0, zeQ,

and the homogeneous boundary condition
(2.11) w(z,t) n(x)=0, £S5 1t>0,

where p=mpr + (1 — m)ps is the average density of the mizture and m = fY xdy is
the porosity.

(I1) If p1 = o0 and A\ < oo, then, in Qr, the functions w/ = mw;, w®, py, q,
and ps satisfy the system of acoustic equations consisting of the state equations (2.9)
and the momentum balance equation

&?w O?w* 1 R
(2.12) prm atgf JFPSW = —EquLpF

for the liquid component, the continuity equation
1 1 . o
(2.13) —pp + —ps + mdivw ¢ + divw® =0,
Px 1o

and the relation

ow* Jwy b s
(2.14) prale (1- m)w +/O Bit —7) - z°(a, 7)d,

where

1 0w
2 (@,1) = —— V(@ t) + puF(@,1) = po—p 5 (@, 1),

in the case of Ay > 0 or the momentum balance equation in the form

P*w? . 0%wy s 1
215) 2Ty S -yl - By) (—vapsF)
in the case of Ay = 0 for the solid component. Problem (2.9), (2.12)—(2.15) is supple-
mented with the homogeneous initial conditions (2.10) for displacements in the liquid
and the solid components and the homogeneous boundary condition (2.11) for the dis-
placements w = mw; +w?.



In (2.14)-(2.15), the matrices B{(t) and B are defined below by formulas (5.37)
and (5.39), where the matriz (1 — m)l — Bj) is symmetric and strictly positively
definite.

(II) If g1 < o0 and A\; = oo, then, in Qr, the functions w/, w® = (1 — m)ws,,
Pf, q, and ps satisfy the system of acoustic equations consisting of the state equations
(2.9) and the momentum balance equation

*w/! *w, 1 R

(216) Pr 912 +p5(1 - m) 912 - _Ev‘]"’pF
for the solid component, the continuity equation

1 1
2.17 —pr+ —ps + divw’ + (1 — m)divw, = 0,

!

Px 1o
and the relation

ow’ ow, t
(2.18) % —m ;‘; +/O Bl(t — 1) 2! (x,7)dr,

where

1 Pw,
Zf(:]37t) - _qu(xﬂf) +pfF($7t) - hW(x7t)7

in the case of 1 > 0 or the momentum balance equation in the form

Pwt & w, 1
(2.19) PfW:PfBzf'WJr(mI—Bzf)' (-EVquPfF)

in the case of p1y = 0 for the liquid component. Problem (2.9), (2.16)—(2.19) is supple-
mented with homogeneous initial conditions (2.10) for displacements in the liquid and
solid components and the homogeneous boundary condition (2.11) for the displace-
ments w = w’! + (1 — m)ws.

In (2.18)(2.19), the matrices B! (t) and B} are given below by formulas (5.44)—
(5.45), where the matriz (ml — Bzf) is symmetric and strictly positively definite.

(IV) If p1 < 00 and A\ < oo, then, in Qr, the functions w, py, q, and ps satisfy
the system of acoustic equations consisting of the continuity and state equations (2.8)
and (2.9) and the relation

(2.20) w :/O Bt — 1) - Vq(z,7)dr + flz, 1),

ot
where B(t) and fla,t) are given below by (5.58) and (5.59).

Problem (2.8), (2.9), (2.20) is supplemented with homogeneous initial and bound-
ary conditions (2.10) and (2.11).

As was mentioned above, even in the most simple case (I) with vy = 0, Theo-
rem 2.2 gives the standard wave equation for the solid pressure ps but with a com-
pletely new speed of sound in the mixture, which includes the porosity, densities, and
speeds of sound in the solid and liquid components.

In the next simple case (IV) with 19 = 0, Theorem 2.2 gives a new wave equation
for the solid pressure in the form

(2.21) 88195 :/O div(B(t — 7) - Vps(, 7)) dr.




Here B(0) = ¢2I, where the time derivative of the matrix B(t) is generally unbounded
at ¢ = 0. This equation has no simple solutions like traveling waves and requires a
special analysis even for the smooth matrix B(¢).

The rest of the homogenized models described by Theorem 2.2 are much more
complicated than the model (2.21). This is natural, because one cannot expect that
a simple model gives an “accurate” approximation of the very complicated original
model (1.1)—(1.9).

3. Preliminaries.

3.1. Two-scale convergence. The justification of Theorem 2.2 is based on a
systematic use of the two-scale convergence method, which was proposed by Nguetseng
[7] and has been recently used in a wide range of homogenization problems (see, for
example, the survey [5]).

DEFINITION 3.1. A sequence {w®} C L*(Qy) is said to be two-scale convergent
to the limit W € L*(Qr x Y) if and only if the limiting relation

(3.1) lim w®(x,t) o (:137157 E) dxdt = / / Wi, t,y)o(x,t, y)dyded:
N0 Qrp £ Qr JY

holds for any function o = o(x,t,y) € C®(Qp X Y) one-periodic in y and finile in
Qr.

The existence and the main properties of weakly convergent sequences are estab-
lished by the following fundamental theorem [7, 5].

THEOREM 3.2 (Nguetseng’s theorem). 1. Any sequence bounded in L*(Qr)
contains a subsequence two-scale convergent to some limit W € L*(Qp x Y).

2. Let the sequences {w®} and {eV,w®} be bounded in L*(Qr). Then there
exists a function W = W, t,y) one-periodic in y and a subsequence {w®} such that
W, V,W € L*(Qp xY), and the subsequences {w®} and {eV w*} two-scale converge
to W and V,W, respectively.

COROLLARY 3.3. Let o € L*(Y) and o°(x) = o(x /). Assume that a sequence
{w*} C L2(Qp) two-scale converges to W € L*(Qr x Y). Then the sequence {o®w®}
two-scale converges to the function oW,

3.2. An extension lemma. A typical difficulty in homogenization problems
like problem (1.1)—(1.7) arises in passing to the limit as £ \, 0 because of the fact
that the bounds on the displacement gradient Vw® may be different in the liquid
and solid components. The classical approach to overcoming this difficulty consists in
constructing an extension of the displacement field defined merely on Q, or Q; to the
whole Q. The following lemma is valid due to the well-known results from [1, 4, 8].
We formulate it in the form convenient for us.

LEMMA 3.4. Suppose that Assumption 1 on the geometry of the periodic structure
is satisfied and w* ET/Io/Ql (). Then there exist functions w5, w; € W) such that
their respective restrictions on the subdomains Q? and QF coincide with w*, i.e.,

(32) X(z)(wi(z) —w(z)) =0, (1-x"(z))(wi(z)-w(x))=0, z€Q,
and, in addition, the estimate
(3.3) [willz,0 < Cllwlla,0:,  [D(@w))ll2,0 < Ol D@ w)|l2,0:, 0 = [ s,

holds true, where the constant C depends only on the geometry of Y and is independent
of .



3.3. Some notation. Further we denote the following:

(1)
(®)y = / Pdy, (P)y; = / x®dy, (P)y, = / (1= x)Pdy.
Y Y Y
(2) If a and b are two vectors, then the matrix a ® b is defined by the formula
(a®b)-c=a(b-c)

for any vector c.

4. Proof of Theorem 2.1. Estimates (2.5)-(2.6) follow from the energy equal-
ity in the form

d / <8w5>2 /
— o +a 1 —x")D(z,w®) : D(x,w")dx
ﬁ{g ) e [0 =xDG ) i)
w2
+ap/XE(divwE)zderan/(I—XE)(divwE)zdx +ozl,/xg (div > dx
Q Q Q ot

ow* ow* OF oOw°®
4.1 D — ):D —ldz = e . d
1) +aH/QX (x 915) (x 915) v /Qp oot

if we use Holder, Gronwall, and Korn inequalities and extension Lemma 3.4. In
turn, the energy equality (4.1) follows from (1.1) if we express the stress tensor P
and the liquid pressure py using state equations (1.2)—(1.4) and continuity equation
(1.5), multiply the result by dw*/dt, and integrate by parts. Note that all terms on
the “solid skeleton—pore space” interface I'* disappear due to boundary conditions
(1.6)—(1.7).

The same estimates (2.5)—(2.6) guarantee the existence and uniqueness of the
generalized solution for problem (1.1)—(1.9).

5. Proof of Theorem 2.2.

5.1. Weak and two-scale limits of sequences of displacements and pres-
sures. First, we use Lemma 3.4 and conclude that there are functions wh, wi €

L0, T; W4(€)) such that
wh =w" in Q% x (0,T), wi=w"inQf x (0,7).

By Theorem 2.1, the sequences {p%}, {¢°}, {p5}, {w"}, {w3}, {/auVw5}, {wi},
and {,/axVw:} are bounded in L?(Qr). Hence there exists a subsequence of small
parameters {£ > 0} and functions p;, ¢, ps, w, wy, and w, such that

(5.1) P; s g P s, W w, wh o wp,  wi— w

weakly in L?(Qr) as € \, 0.
Note also that

(5.2) (1= )arDla,ws) =0, e, D, w5) — 0

strongly in L?(Qr) as £ \, 0.
Relabeling if necessary, we assume that the sequences themselves converge.



By Nguetseng’s theorem, there exist functions Ps(x,t,y), Ps(x,t,y), Q(z, 1, y),
Wiz, t,y), Wiz, t,y), and W,(x,t,y) that are one-periodic in y and satisfy the
condition that the sequences {p5}, {p;}, {¢°}, {w}, {w53}, and {w(} two-scale con-
verge to Pz, t,y), Ps(x,t,y), Qz, t,y), Wz, t,y), Wz, t,y), and W,(x,t,y),
respectively.

LEMMA 5.1. If g = o0 (A = 00), then W p(x,t,y) = we(x,t), x(y)W(z, t,y) =
X(y)wf(:c7t)f and w! = <W>Yf = mwy (WS(CIZ7t7 y) = ws(z,t), (1-x(y))W(z, t,y)
= (1 —x(y))ws(z,t) and w* = W)y, = (1 — m)w,).

Proof. Suppose that 1 = oo, and let ¥(a,,y) be an arbitrary smooth scalar
function periodic in y. The sequence {o7;}, where

ows
= [ Va0 /e, (w10 0,
J

is uniformly bounded in . Therefore,

8wf7 £ e
/ e (z,t)¥(x, t,x/c)dx = a5 —0
Q

Xy 4/ Q)

as € \, 0, which is equivalent to
ov
Wf,i(x7 t7 y)—($7 t7 y)dZEdy - 07 Wf = (Wf,17 Wf,?? Wf,3)7
QJy dy;

or Wy(x,t,y) = wys(z,t). Therefore taking the two-scale limit as £ X\, 0 in the
relation x*(w® —w%) = 0, we arrive at

XYW (z,t,y) = x(y)wy. O

5.2. Micro- and macroscopic equations. We start the proof of the theorem
from the macro- and microscopic equations related to the continuity equations.

LEMMA 5.2. For almost all x € Q and y € Y, the weak and two-scale limits of
the sequences {p5}, {p5}, {¢°}, {w}, {w5}, and {w} satisfy the relations

(5.3) @ = qx/m, Pr =psx/m, Ps = ps(1 = x)/(1 = m), Q = P+ vop, '0P/dt;
(5.4) g/m=ps/(1—m), q=rps+wvop, ‘dpy/dt;

(5.5) Pr/ps +ps/mo + divw = 0;

(5.6) w(x,t) n(x)=0, €S8 t>0;

(5.7) div, W = 0;

(5.8) W =xW;+({1-x)W,.

Proof. In order to prove (5.3), into (2.4) we substitute the test function ¥° =
etp (x,t, x/e), where ¥ (,t, y) is an arbitrary one-periodic function of y that is finite
on Y; (or finite on Y; or finite on Y'). Passing to the limit as £ N\, 0, we obtain

Next, fulfilling the two-scale passage to the limit in the state equation (2.3) and
in the relations

(1-x")¢" =0, x°p;=0



we arrive at the last equation in (5.3) and the relations

(I_X)Q:O7 XPS:O7

which together with the first two equations in (5.9) prove the first three equations in
(5.3).

The second equation in (5.4) is the result of integration of the last equation in
(5.3) over the domain Y5.

The first relation in (5.4) follows from (5.3) and the last equation in (5.9): the
sequence {(¢° + p%)} two-scale converges to (Q + Ps) = (¢ + ps).

Equations (5.5)—(5.7) appear as a result of the two-scale passage to the limit in
(1.5) and (2.2) with the proper test functions being involved. Thus, for example, (5.5)
and (5.6) arise if we consider the linear combination of (1.5) and (2.2)

1 1
(5.10) —p% + —p; +divw® =0,

Op O
multiply it by an arbitrary function independent of the “fast” variable /¢, and then
pass to the limit as £ \ 0. To prove (5.7), it suffices to consider the two-scale limiting
relations in (5.10) as £ \, 0 with the test functions ¢ (x/c) h(x,t), where ¢ and h
are arbitrary smooth functions.

To prove (5.8), it suffices to consider the two-scale limiting relations in
w* = x*w; + (1 - x°)ws. O

5

LEMMA 5.3. For almost all (x,t) € Qp, the relation

O?w/! ’w® 1
5.11 —— s = —— oF
(5.11) v N v —Va+p
holds true.
Proof. Substituting a test function of the form ¥ = (x,t) into integral identity
(2.4) and passing to the limit as £ \ 0, we arrive at (5.11). O
LEMMA 5.4. Let gy = oo and A\y < oo. Then, in Ys, the functions W° =

(1= x)W, wy, and g satisfy the microscopic relations

P*W?

1
(512) psw :AlAyWS —VyRS —qu+psF7 y€Y5-7

(5.13) W =ws, yenv,
in the case Ay > 0 or the microscopic relations

P*W?

1
(5.14) P = ~VyR = —Vg+pF, yev,

(5.15) (W' —wy) n=0, yen,
in the case Ay = 0.

The problem is endowed with the homogeneous initial data

5

(5.16) W (y,0) = 8915

(¥,0)=0, yeYi.



In (5.15) n is the unit normal to .

Proof. The differential equations (5.12) and (5.14) follow as £ \, 0 from integral
equality (2.4) with the test function ¥ = @(xe 1) - h(x,t), where ¢ is solenoidal and
finite in Y.

The boundary condition (5.13) is a consequence of the two-scale convergence of
the sequence {,/axV,w*} to the function v/A;V, W (x, ¢, y). By this convergence, the
function V,W (z,t,y) is L*-integrable in Y. The boundary condition (5.15) follows
from (5.7)—(5.8) and the relation W ; = wy. O

In the same way, one can prove the following lemma.

LEMMA 5.5. Let p1 < 00 and A\ = oo. Then, in Y, the functions w/ = xW,
wg, and q satisfy the microscopic relations

’w/ oW/ 1
(5.18) W/ =w, yey,

in the case p1 > 0 or the microscopic relations

»>w/ 1
(5.19) PI—p = -V, R — —Na+tpeF, yeYy,

(5.20) (Wf —w) n=0, ye-~,

in the case 1 = 0. The problem is endowed with the homogeneous initial data
ow/
(5.21) W/(y,0) = ——(,0) =0, yeY;

LEMMA 5.6. Let p1 < 00, Ay < 00, and p = prx + ps(1 — x). Then, inY, the
functions W and q satisfy the microscopic equation

OPW [0t + 1/mVq — pF
(5.22) porPw / JmVq—p }

=divy {1 xD(y, OW/0t) + M (1 — x)D(y, W) — RI}

and the homogeneous nitial data
ow
(5.23) W(y,0) = —5-(5,0) =0, yeV

In the proof of the last lemma, we additionally use Nguetseng’s theorem, which
states that the sequence {eD(z, w®)} two-scale converges to the function D(y, W).

5.3. Homogenized equations. Lemmas 5.2 and 5.3 imply the following lemma.
LEMMA 5.7, Let pi1 = Ay = 00. Then wy = w, = w and, in Qr, the functions
w, pr, ¢, and p,; satisfy the system of acoustic equations
0w

1
5.24 o = —— oF
(5.24) P —Vaq+ pF,

1 1
(5.25) —pr+ —ps + divw =0,
Px 1o



5.26 - e .
(5.26) a=rrt = TP

the homogeneous initial conditions

(5.27) w(z,0) = 88—‘;’(:.:70) =0, zeQ,

and the homogeneous boundary condition
(5.28) w(x,t) -n(x)=0, £S5 t>0.

LEMMA 5.8. Let yy = oo and Ay < oo. Then, in Qr, the functions wy, w®,
Pf, q, and ps satisfy the system of acoustic equations consisting of the state equations
(5.26), the momentum balance equation for the liquid component

Pwy 0*w® 1

5.29 s— = ——V oF,
(5.29) Prm=—gm t s —Va+p
the continuity equation

1 1 . o
(5.30) —pp + —ps + mdivw ¢ + divw® =0,

Px 1o
and the relation

ow?® 0 t

(5.31) ;‘; ~( _m)%+/o Bt —7) - 2*(, 7)dr,

where

1 0w
2 (@,1) = —— V(@ t) + puF(2,1) = po—pst(@,1),
m ot
in the case of Ay > 0 or the momentum balance equation for the solid component in
the form

P*w? . Pw s 1
53 p ey TRl (= -8 (~2va s )

in the case of Ay = 0. Problem (5.26), (5.29)—(5.32) 4s supplemenied by homogeneous
initial conditions (5.27) for displacements in the liquid and solid components and the
homogeneous boundary condition (5.28) for the displacements w = mwy + w”.
In (5.31)—(5.32), the matrices Bi(t) and Bj are defined by formulas (5.37) and
(5.39), where the matriz ((1 —m)I — B) is symmetric and strictly positive definite.
Proof. Equation (5.29) follows directly from (5.11). The continuity equation
(5.30) follows from (5.5) if we take into account that

w = mw; + w’.

To find the last two equations (5.31) and (5.32), we just have to solve the system
of microscopic equations (5.7), (5.12)—(5.16) and use the formula

There are two different cases.



(a) If Ay > 0, then the solution of the system of microscopic equations (5.7),
(5.12), and (5.13) supplemented with the homogeneous initial data (5.16) is given by
the formulas

t 3 ]
W = /O (v(a:m) +) Wyt — T)z;(:m)> dr,

i=1

t 3
R? :/ z:RS’i(yﬂf—7')25(:::77)cl77 z° = (21, 23, 23),
0 =1

and the functions W**(y,t) and R®*(y,t) are defined by virtue of the periodic initial
boundary value problem

W’ ; ;
(533) pSW — )\1AWS”L + VR = 07 Yy € 5/;7 t> 07
(5.34) div,W** =0, yeVY,t>0,
(5.35) W =0, yevy, t>0,

; OW !
(536) WS’l(y7 O) - 07 PsT(%O) = €4, Yy e 5/;
In (5.36), e; is the standard Cartesian basis vector.
Therefore,
L ow

5.37 Bi(t) = t i
(5.37) ) <Z > >Y<>®e

s

Note that (5.33) is understood in the sense of distributions and the function B ()
has no time derivative at ¢ = 0.

(b) If Ay = 0, then in solving the system (5.7), (5.14), (5.15), and (5.16), we
first find the pressure R*(x,t,y) by solving the Neumann problem for the Laplace
equation in Y; in the form

3

R (z,t,y) = > Reui(y) (2, 1),
i=1

where R, ;(y) is the solution of the problem
(538) AyRs,i - 07 Yy e YS7 vyRs,i =N €4, Yy, <Rs,i>YS = 0.

Formula (5.32) is the result of integration of (5.14) over the domain Y; and

3

(5.39) Bs =Y (VRsi)y, ® e,
i=1



where the matrix B = ((1 —m)I — Bj) is symmetric and strictly positive definite. In
fact, let R = Z?Zl R, ;& for any unit vector € = (£1,£2,&3). Then

(B-&)-&=(&—-VR))y,

and (B-£)-€ = 0if and only if R is a linear function in y. On the other hand, it follows
from the assumption about the geometry of the domain Y; that all linear periodic
functions on Y; are constant. Finally, the normalization condition (R, ;)y, = 0 yields
that B = 0. However, this is impossible, because the functions R, ; are linearly
independent. a

LEMMA 5.9. Let py < 0o and A\ = oo. Then, in Qr, the functions w/, w,,
Pf, q, and ps satisfy the system of acoustic equations consisting of the state equations
(5.26), the momentum balance equation for the solid component

*w/! 0w, 1 R

the continuity equation

1 1

(5.41) —ps + —ps +divw’ + (1 — m)divw, = 0,
Px 1o

and the relation
ow’ Jw, t

(5.42) ——=m +/ Bl(t—7) 2/ (=, 7)dr,
ot ot o !

where

1 Pw,
Zf(:]37t) - _qu(xﬂf) +pfF($7t) - hW(x7t)7

in the case of 1 > 0 or the momentum balance equation for the liquid component in
the form

Pwt & w, 1
(5.43) PIa :PfBzf'WJr(mI—Bzf)' (-EVquPfF)

in the case of iy = 0. Problem (5.26), (5.40)—(5.43) is supplemented with the homoge-
neous initial conditions (5.27) for displacements in the liquid and solid components and
the homogeneous boundary condition (5.28) for the displacements w = w’ +(1—m)w,.
In (5.42)~(5.43), the matrices B! (t) and B} are given below by formulas (5.44)—
(5.45), where the matriz (ml — Bzf) s symmetric and strictly positive definite.
Proof. The proof of this lemma repeats that of the previous lemma. Here we have
to solve the system of microscopic equations (5.7), (5.17)—(5.21) and use the formula

wf = <W>yf .
Thus,

3 fi
(s so-(S55) wse
Yy

i=1




3

(5.45) Bj = Z<VRf,i>Yf ® ey,
i—1

where the functions W/ ’i(y7 t) solve the periodic initial boundary value problem

(5.46) Py 82;:;” - MAGV;;M YVRI =0, yeY t>0,
(5.47) div,WhHi =0, yeV; t>0,

(5.48) Whi=0, yen~, t>0,

(5.49) Wiy, 0) =0, py W (y,0) =e;, yevy,

ot

and the functions Ry ;(y) solve the periodic boundary value problem
(5.50) AyRp; =0, yeYy;, VyRpys-n=n-e, yev;, (Rpi)y, =0.

Note that, as before, the matrix (ml — Bzf ) is symmetric and strictly positive defi-
nite. o

The proof of Theorem 2.2 is completed by the following lemma.

LEMMA 5.10. Let u1 < o0 and Ay < 00. Then, in Qr, the functions w, py, q,
and ps satisfy the system of acoustic equations consisting of the continuity and state
equations (5.25) and (5.26) and the relation

ow

(5.51) e /o Bt —7)-Ve(z,7)dr + f(x,1),

where B(t) and f(x,t) are given below by (5.58) and (5.59).

Problem (5.25), (5.26), (5.51) is supplemented with the homogeneous initial and
boundary conditions (5.27) and (5.28).

Proof. To derive the momentum conservation law (5.51), we must solve the system
of microscopic equations (5.7), (5.22) with the initial conditions (5.23) and use the
formula

Let

t 3
— q,t _ )t — .
W f/o E {W (y,t =) (@ 7) + Wy, t T)E(:Bﬂ')}dﬂ

i=1

t 3
= / Z {Rq7i(y7t - 7—) aq (237 7—) + RF’i(yﬂt - T)Fi(x7 7—)} d7—7
0 Ox;

1=

where F = Z?Zl Fie,;.



Then the pair {W, R} is a solution of system (5.7), (5.22) and (5.23) if and only
if the functions {W%%(y,t), R%(y,t)} and {W!(y,t), RF(y,1)} are periodic in y
solutions of the equations

. OWD? ; ] 92w
(5.52)  div, {MXD (y T) + (1 =)Dy, W) - R(“I} =P

(5.53) div, W?" =0,

, ow’r ; , _oPW
(5.54)  div, {MXD (y o ) +A1(1 = x) Dy, W) — RF”I} e
(5.55) div, W =0

in the domain Y for £ > 0 and satisfy the initial conditions

, AW 9 1
(556) Wq7l(y70) = 07 ﬁ—(y70) = ——€, T < K
ot m
: ow’"
(5.57) WH(y,0) =0, ——(y,0)=e;, zeY
Here e; is the standard Cartesian basis vector.
Therefore,
. oW
5.58 = ERrw— i
(5.58) Bl =Y (Zwn)) e
i=1
t 3 Fi
oW+
5.59 fla,t) = t— EFi(x,r)dr.
(5.59) (a.1) /Z< . T>>Y (2, 7)dr

The solvability and uniqueness of problems (5.52), (5.53), (5.56) and (5.54), (5.55),
(5.57) follow directly from the energy identity

a ’ i ..
%/Y (ﬁ (8‘2; (y7t)> +)\1D(y7 Wﬂ7l(y7t)) :D(y7 Wj7l(y7t))> dy

g AW I AW 1 .
+/ / pD (y 5 (yﬁ)) D (y 5 (yﬁ)) dydr = -3’
0 b % T T 2

fori=1,2,3and j =g¢q, F.
Here

g1 = <%>Y 87 — ().

As before, equations (5.51) are understood in the sense of distributions and the func-
tion B(t) has no time derivative at ¢ = 0. |
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