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Abstract— We consider a Cauchy type problem in a Banach space. Under the assumption
that the corresponding Cauchy type problem with the operator A is uniformly well-posed and
the operator B(t) is subordinate to A in some sense, we prove the unique solvability of the
considered problem and its continuous dependence on initial data.

In a Banach space Iv, consider the Cauchy type problem

Du(t) = Au(t) + B(t)u(t), t >0, (1)
lim D> 'u(t) = u, (2)

t—0

where 0 < a < 1, D tu(t) = I'2u(t) = (1/T(1 — a))fot(t — s)"®u(s)ds is the left fractional
Riemann-Liouville integral of order 1 — « (I'™° is the identity operator for @ = 1), Du(t) =
(d/dt)I'~>u(t) is the left fractional Riemann-Liouville derivative of order «, I'(-) is the gamma
function, A is linear closed densely defined operator, and B(t) is a linear closed densely defined,

not necessarily bounded operator, which depends on { and is treated as a perturbation of the
operator A.

The following results are close to the perturbation theory of semigroup generators (see
[1, Chap. 9]). We study how the addition of the term containing the operator B(t), which is

in some sense subordinate to the operator A, influences the solvability of problem (1), (2). We in-
dicate conditions under which the well-posedness of the problem is preserved after the perturbation
of the operator A by an unbounded operator B(t).

For abstract differential equations containing fractional Riemann—Liouville derivatives, results
on the solvability of perturbed equations are obtained for the first time. Such problems are topical
in connection with numerous applications of the theory of fractional differential equations in physics
and mathematical modelling. For such applications, see [2, Chap. 8; 3, Chap. 5; 4, Chap. §].

Along with problem (1), (2), for 1 > 3 > «, we consider the unperturbed problem
DPu(t) = Au(t), t>0, (3)
lim D tu(t) = uo. (4)

t—0

Definition 1. A solution of problem (3), (4) is a continuous function u(t), ¢ > 0, such that

I'"Pu(t) is a continuously differentiable function for £ > 0 and the function u(t) ranges in D(A)
[D(A) is the domain of the operator A| and satisfies problem (3), (4).

Definition 2. Problem (3), (4) is said to be uniformly well posed if there exists an operator
function T5(t) defined on £ and commuting with A and numbers M; > 0 and w € R such that, for
any uy € D(A), the function T(t)u, is the unique solution of the problem and in addition,

ITa@)] < Myt e, (5)
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By Definition 2, problem (3), (4) is uniformly well posed if the solution of this problem exists,
is unique, and, by (5), continuously depends on the initial data uniformly with respect to ¢ in any
compact set in (0,00). In addition to these usual requirements, Definition 2 contains additional
information on the behavior of the solution as t — 0 and ¢ — oo [inequality (5)].

Let us state conditions under which we shall prove the unique solvability of problem (1), (2).

Condition 1. The operator A is an operator such that for some /3 satisfying the inequality
a < 3 <1, problem (3), (4) is uniformly well posed for uy € D(A).

Note that the uniform well-posedness of problem (3), (4) for 0 < 5 < 1 was considered in [5-7];
for 4 =1, the uniform well-posedness of the Cauchy problem requires that the operator A be the
generator of a Ch-semigroup.

Condition 2. (i) The operator B(t¢) has domain D independent of ¢; in addition, D(A) C D.

(ii) For any x € D, the function B(t)x belongs to C'((0, 00), E), is absolutely integrable at zero,
takes values in D(A), AB(t)x € C((0,00), E), and is absolutely integrable at zero.

(iii) For any x € F, there exist constants M, > 0, v € [0,1), and w € R such that Ts(T)x € D
(the smoothing effect) and

IB@O)Ts(r)x|| < Myr e laf|, t,7 € (0,00). (6)

Note that if the operator —A is strongly positive (we use the terminology [8]), i.e.,

Ms;
T+ A

I — A7 < Re X >0, Ms > 0,

then in Condition 1 one can set 3 = 1; in this case, we have w = 0, and inequality (6) implies that
the operator B(t) is subordinate to the fractional power (—A)” (see [8, p. 298]).

If B(t) is a bounded operator and the operator A satisfies Condition 1, then inequality (6) holds
fory=1-p5.

The commutativity of the operators A and B(t) is not assumed. As will be proved in forthcoming
considerations, Conditions 1 and 2 provide the unique solvability of problem (1), (2).

In the proof, we use the nonnegative function (see [9, p. 357|)

o+ioco
1
— tz —72")d it t>0
Fon(t) = 2ri / exp(tz —72")dz i > (7)
0 it t <0,

where ¢ > 0, 7 > 0, 0 < v < 1, and the branch of the function z¥ is chosen so as to ensure that
Rez” > 0 for Rez > 0. This branch is a single-valued function on the complex z-plane with a cut
along the negative part of the real axis. The convergence of the integral (7) is guaranteed by the
factor exp(—7z").

In addition, note that the function f;,(t) with ¢ > 0 can be expressed via the Wright function
(see [4, p. 54]),

k

Foal) = 19,0, =7t™"), Plabiz) =) m

or via a more general Wright type function (see [10, Chap. 1]),

k

1100w w8 _ - Z .
Frolt) = 1el=rt ), D) = Y o> max{0:0), pzeC. (8

1T (6 — k)’

In the following theorem, we show that the uniform well-posedness of problem (3), (4) implies
the uniform well-posedness of the corresponding Cauchy type problem for the equation of order «,
where 0 < a < 5 < 1.



Theorem 1. Let o < 3 <1, and let Condition 1 be satisfied. Then the problem
Du(t) = Au(t), t >0, (9)
lir% D tu(t) = g (10)

is uniformly well-posed, and its resolving operator has the form
To(tuo — / Fro (O T5(7 Yo dr, (11)
0

where v = o/ B and the function f,,(t) is given by relation (7).

Proof. Note that the convergence of the integral in (11) follows from the estimate (5) and from
the following inequality for the Wright function (see [10, Lemma 1.2.7]):

H(—v,0; —x) < My(1 + a™) exp(—oxt/ (),

1
n € N, nz—, o= (1 =)/ x>0
—v

To prove that the function 7T, (t)uo given by relation (11) is a solution of problem (9), (10), one
can use the relations

Do / Fo (8 Ts(7 Yo dr — / Fo () DT (g dr — AT, (D)o,

t—0

lim Do~ / o (DT (F)o dr — us,
0

which are special cases of formulas (2.2.18) and (2.2.28) proved in [10] for numerical functions.
Their proof for abstract functions can be performed in a similar way.

By taking into account the relations (see [10, formulas (2.2.3), (2.2.31)])

/ ()7 dr — %Wl, / F ()6 dr — VB, (wt”),
0 0

where F, ,(2) = 377, 2" /T (uk + o) is a Mittag-Leffler type function (e.g., see [2, p. 31]), we obtain
17,01 < [ £ ®ITar)dr < 05 [ foo®) 77 dr
0 0

s%/ﬁﬁﬁ“ﬁ+mjfxmwmm(%%wlﬁvm¢w».(m

By virtue of the well-known [11, p. 134] asymptotic behavior

n

1 1
EH7Q(Z) = ;Z(lfg)//"' exp(zl/u) _ Z

1
%+0<—>, ceR i oo, (13
2T —ppe O\ (9

of the Mittag-Leffler function for 0 < u < 2, from (12), we derive the inequality

T, ()] < Mgt®* exp(wot), wo > wi”. (14)



Therefore, in accordance with Definition 2, to complete the proof of the theorem it remains to
justify the uniqueness of the solution of problem (9), (10). Let u,(t) and us(t) be two distinct
solutions of problem (9), (10) satisfying inequality (5). Then

)\aL(ul(t) — Ug(t)) = AL(Ul(t) - UZ(t))v

where [ is the Laplace transform. We have thereby arrived at a contradiction, since if
L(ui(t) — ua(t)) # 0, then all points A* such that ReA > w belong to the pointwise spectrum
of the operator A, which is impossible, since these points should be regular by virtue of the neces-
sary condition for the uniform well-posedness [6]. The proof of the theorem is complete.

Remark 1. For the special case in which v = «/3 = 1/2, we have (see [9, p. 369, formula (32)])

T 72
- t) = ——=exp| —— |,

and relation (11) acquires the form

T/2(t)uo 2tf T exp ( ) Ts(T)uo dr. (15)

The representation (15) can provide the smoothing effect [see Condition 2 (iii)| for the resolving
operator Tj3,5(t) for the case in which the operator T3(¢) does not have this property, for example,
if A and B are differential operators.

Let us state the solvability theorem for the Cauchy type problem for the inhomogeneous equation.

Theorem 2. Let 5 < 1, let Condition 1 be satisfied, and let the function h(t) € C((0,00), F)
be absolutely integrable at zero and range in D(A), let Ah(t) € C((0,00), E), and let Ah(t) be
absolutely integrable at zero. Then the problem

DPu(t) = Au(t) + h(t), £ >0, (16)
lim DP1u(t) = uo (17)

has a unique solution, which is given by the formula
t

u(®) = Tultyuo 1 [ Tult - OhE) de. (18)

0

Proof. It suffices to verify that the function
t
o) = [ Talt = (o) de
0
satisfies Eq. (16) and the zero initial condition (17). For ¢ > 0, we have

t T

L4 / (t=7) dr [ Tutr - eon(e) g

DPuy(t) = 05 @

ﬁdt/dg/ (t = 7) P To(r — (&) dr

S dt/dﬁ/(t—ﬁ—w )P TH)h(E) dr



Since the integrand in the integral with respect to £ is a continuous function of ¢t — &, we have

t—¢

Du(t) = = i [ (1= € =) To(@)hie) do

t—¢

tr [ [ T do

— lim DT - Oh(E) 1+ [ DT - Ohe) de

t

h(t) + / Ta(t — €)AB(E) d€ = h(1) + Av(0);

0

consequently, the function v(t) satisfies Eq. (16).
Next, let us verify that the function v(t) satisfies the zero initial condition (17). We have

Jim D7 () ﬁ dim (=) ar / To(r — Oh(E) de.

0 0

Since the estimate (5) holds for T5(t), we have

H/t(t—f)ﬂ dT/Tﬂ(T—ﬁ)h(ﬁ) dg

t T t

< M, /(t —7) Pdr /(T =& MO dE = MiB(B,1 — ) / 1) 1| d€

0 0

for ¢ € [0, 1], where B(-,-) is the beta function. Consequently, the function v(¢) satisfies the zero
initial condition (17). The proof of the theorem is complete.

Remark 2. A solvability theorem for the Cauchy type problem was proved in [12] for the
inhomogeneous equation (16) under the assumption that the function h(t) has fractional derivative
DPR(t) integrable in the sense of Definition 2.4 in [2]. One can readily see that this requirement
can replace Condition 2 (ii) in the assertions proved below.

Theorem 3. Let a < 3 <1, and let Conditions 1 and 2 be satisfied. Then problem (1), (2) has
a unique solution, and there exist constants M > 0 and wy > w'/¥ such that the estimate

lu@®ll < Mt*="eluo| (19)

holds.

Proof. By taking into account Theorems 1 and 2, we reduce problem (1), (2) to an integral
equation, which, by virtue of (11) and (18), can be written out in the form

u(t) — / oo (OT5(7 Yo dr + / / Fou(t — $)T5(7) B(s)u(s) dr ds, (20)



where ug, Ts(T)ug € D(A) C D and v = /3. By setting w(t) = B(t)u(t), we obtain the equation
/ Fou (O B Ts(7 ) dr + / frult — 8)BOTo(r)u(s) dr ds. (21)
To solve the integral equation (21), we use the successive approximation method with
wo(t) =0, wy(t) = /Oofm,(t)B(t)Tﬂ(T)uo dr,

Wy (L /fﬂ, O Ts(T)uo dr + / Jrw(t — $)B)Ta(m)w,(s) dr ds, ne N.

By using inequality (6), we estimate the norm of the difference

[[wa(t) — wi (D) </ frot = ) BO)T(T)wi(s)| dr ds

< M2 || // Jrw(t—8)T 7e“”/fg E77e%t de dr ds. (22)
By replacing (3 in inequalities (12) and (14) by 1 — -y, we obtain the estimate
/f@,(s)ﬁ”e“s de < Cs?UM 7 ey > i, (23)

By applying the estimate (23) twice in inequality (22) and by computing the resulting integral
[13, 2.2.5.1], we obtain

s (t) — w, (B)]] < CM2 o / / Fro(t — 87T =12 g g

< CZMZ |U0||/ l/(l ¥)— 1ew2(t75)su(17'y)716w25 ds
*CZMZ w2t||uo||/ l/(l ¥)— 181/(177)71 ds
C2M3T*(v(1 —7)) 2
— 2 a=m=towat o], (24)
I'2v(l = 7))

By using (24), by induction we obtain the inequality

CrMPT™ (v (1 — o
|wn(t) — w1 (1)]] < F(an/é _( v))W)) e lyg|l,  n e N. (25)




Indeed, let formula (25) hold for n = m. Then from inequalities (6) and (23) and by the
induction assumption, we obtain

[ 1(8) = wnn (1 ||</ frw(t = )| B T(T)(wm(s) — wm—1(s))|| d7 ds

CmMm+1Fm( ||U0||
< —y v (1—y)—1 w2 1o ]
< F(my(l— //fﬂ, )t s e“?* dr ds
m+1 a3 srm+1lpm
< C M I ( 1 — ||U0|| / l/(l ¥) 1ew2(t75)8mu(17'y)716w25 ds
M(mr(1 —

_ C"‘“MS‘HT"‘“( (=)

t(m+1)y(177)716w2t||U0||,
I'((m + (1 =7))

which completes the proof of formula (25).
Consequently, the series

O

Y (walt) — was(1))

n=1

is convergent uniformly on any interval [to,#], 0 <ty < ;. Therefore, on the same interval, w, (t)
uniformly converges to a continuous function w(t) on the interval [y, 1|, which satisfies the integral
equation (21). By virtue of (25), this function satisfies the estimate

Ck+1Mk+1Fk+1( ( )) (k+1)u(17'y)716w2t||u0||
pae L((k+ Dl =)
-  CPMETH (v (1 — )t e |
< CMoT (p(1 — 7))ttt
A =7) 2 T =) 1 =)
= OMT(r(1 = )t By 1 (CMT (L = 7)) g ],

@1 <Y lwa() = waa (D] <

where F,, ,(-) is the Mittag-Leffler function, ¢ € [to, 1], 0 < to < £;.

By taking into account the asymptotic behavior of the Mittag-Leffler function (13), one can
claim that there exist constants C; > 0 and w; > wy such that

lw(ll < Cot* e uoll,  §=w(1—9) <1 (26)

Since [to,t1] is an arbitrary interval, it follows that the function w(t) is a continuous solution
of Eq. (21) on (0,00) satisfying inequality (26) on (0,00), i.e., is absolutely integrable at zero.
Moreover, from relation (21) and Condition 2 (ii), we find that w(t) € D(A), Aw(t) € C((0, 00), £),
and Aw(t) is absolutely integrable at zero.

Finally, by using Theorem 2, from relation (20), we obtain a solution u(t) of problem (1), (2) in
the form

. / (O T5(7 o dr + / Sl — $)T(Fyw(s) dr ds,



which, by virtue of (5), (26), and (23), satisfies the estimate

o0 t oo
u(t)] §M1||uo||/f77l,(t)7ﬂ1e“th+C’1M1||uo||//fm,(t—s)Tﬂ16”3516“15d7ds
0 00
t
< CM e ol + COM ] [ (¢ = s) e s e ds
0

t
< M e g || + CCy My || /(t _ s)amlghl s < Mo lemt,
0

Next, let us prove the uniqueness of the solution of problem (1), (2). Suppose that there exists
a different solution, U(t). Then, by Theorems 1 and 2,

Ut — / oo (OT5( o dr + / / Foo(t — $)To(r)W (s) dr ds,

where W (t) is a solution of the integral equation (21).
Let us prove the uniqueness of a solution of the integral equation (21) in the class of functions
that are continuous on (0, c0) and admit the estimate (26).
Let b > 0 and t € (0,b]. Since we consider the class of functions satisfying inequality (26), it
follows that one can set
m = sup (t'"Pe W (t) —w(®)]).

t€[0,b]
The difference W (t) — w(t) satisfies Eq. (21) for ug = 0; therefore, by using inequality (23),

we obtain
t

W () —w(®)|| < CM, /(t =)0 eI W (s) — w(s)|l ds. (27)

0
Consequently,

t
|W(t) —w(t)] < CMyme** /(t — )7 % ds = CMLT(8)me= ' I°(1°71). (28)

0
By substituting (28) into (27), we obtain the inequality
W () —w(®)]] < C*MFT*(6)me= T (1°71).
By continuing this process, we arrive at the inequality
W () — w(t)|] < C*METH(8)me= T ()

CEMET*1(6) is s ons
_ " N 29
T'((k+ 1)0) etim - VEEN, (29)

which, after passage to the supremum, implies the inequality

_ CEMETH1(3)

(RS bm.



The factor
CEMET(S) s

I'((k + 1)9)

tends to zero as k — oo by virtue of the asymptotics of the gamma function [2, p. 30|

F(m+1)\/%<§)z<l+0<é>>, 2z — o0

m = sup (t' e W (t) —w(®)|) =

t€[0,b]

Consequently,

which, together with the arbitrary choice of b > 0, implies the identity W (t) = w(t) for ¢t > 0 and
completes the proof of the uniqueness.

In conclusion, note that an inequality similar to (29) will be used in the proof of Theorem 5,
and the uniqueness of the solution of the integral equation (21) also takes place in a wider class
of functions, namely, in the class of functions that are continuous on (0,00) and integrable for
t = 0. Indeed, let W (t) be a solution of the integral equation (21) for uo = 0. Then, by taking into
account (6), for t € [0, b|, we obtain the inequality

W (1) /||W ||/le,1€—3 " dr ds

= /(t =) (= )W (s)llds < m I [W (D],

0

where

T(1) = M, / O, 03— )6 exp(wet”) dé

is a continuous function for ¢ > 0 and m; = I'(6) maxscjop) Y(1).
By applying this estimate &k times, we obtain the inequality

t
mk

Fh0) / (b= )" W (s) ds,

0

W O < miT® W @) =

and consequently,

b
k
< 1
[ < o
0

kbk5
=The 1 1) /”W )l ds.

t
k
k-1 _ 1
(t )W (s) | dsdt = ok

b
9l /(t _ syt ds

Therefore, fob |W(s)||ds = 0 and ||W(¢)|| = 0 for ¢ > 0, since b > 0 is arbitrary. This completes
the proof of Theorem 3.
Theorem 3 permits one to prove the solvability of problem (1), (2) for any « such that 0 < o <

G <1 for the case in which Conditions 1 and 2 are satisfied. Let us show that similar results remain
valid if 0 <a = < 1.



Theorem 4. Let Conditions 1 and 2 be satisfied, and let o« = 3 < 1. Then problem (1), (2) has
a unique solution, for which the estimate (19) holds.

Proof. By taking into account Theorem 2, we reduce problem (1), (2) to the integral equation

£
w(t) = To(t)us + / Tt — ) B(s)uls) ds. (30)
0
By setting w(t) = B(t)u(t), we obtain the equation
t
w(t) = Bt)Ts(t)uo + /B(t)Ta(t — s)w(s) ds, (31)
0
which can be solved by the successive approximation method. We set
t
wo(t) =0, wi(t) = B&)T,(t)ug, wni1(t) = B&)To(t)uo + /B(t)Ta(t — s)w,(s)ds, neN.
0
By using inequalities (5) and (6), we estimate the norm of the difference
£
[wa () —wi ()] < M /(t —5) 7wy (s)|| ds < MFT(L = 7)e" T (¢ ) [Juo]|- (32)

0

By taking into account (32) and by arguing as in the proof of inequality (25), by induction we
obtain the inequality

My (1 =)
[(n(1 =)

Further considerations dealing with the existence of a unique solution are similar to the proof
of Theorem 3; in addition, the solution w(t) of the integral equation (31) admits the estimate

l[wn (1) — wy— 1 (D] < O e |, moe N.

o0 Mk+1rk+1(1 _ ,y)t(kle)(lf’Y)*lethuOH
lw()]] < Mot~ e fuoll + Y =2
; C((k+1)(1 =)

with some constants My > 0 and w3 > w. By using (33), we obtain the estimate (19) of the solution
u(t) of problem (1), (2) from relation (30). The proof of the theorem is complete.

< Mot~ e ||uo| (33)

Remark 3. An assertion similar to Theorem 4 can also be stated and proved for o = 5 = 1.
In this case, Condition 2 (ii) should be replaced by the following condition: for any x € D, the
function B(t)x belongs to C(|0,00), F), ranges in D(A), and satisfies AB(t)x € C([0, ), E).

Now let us prove the theorem on the continuous dependence of the solution of problem (1), (2)
on the initial conditions.

Theorem 5. Let the assumptions of Theorem 3 hold, and let u,(t) be a sequence of solutions
of the problem

D%y, (t) = Au,(t) + B(t)u, (1), t >0, (34)

lim D>, (t) = g, € D(A). (35)

If g, — uo € D(A), Ag,, — Aug, and B(t)g, converges to B(t)ug uniformly with respect tot € [to, ]

for arbitrary 0 < to < b, then the sequence u,(t) of solutions of problem (34), (35) converges to the
solution u(t) of problem (1), (2) uniformly with respect to t € [to,b] for arbitrary 0 <ty < b.



Proof. Consider the sequence

which is a solution of the problem

DU, (t) = AU, () + BOUA(E) + 1

lim D> 'U, (t) = 0. (37)

t—0

By Theorems 1 and 2, the function U, (t) satisfies the integral equation

a—1

(Ag, + B(s)gn)> drds.

U, (t) = // fra(t = 8)T5(T) (B(S)U"(S) * li(a)

By setting W,,(t) = B(t)U,(t) just as in the proof of Theorem 3, we obtain the representation

0= [ [ et = 7:t7) (Ws) b B<s>9n>) dr ds, (39)
where W, (t) satisfies the integral equation
W (t) — / / oot — 8) B@)Ts(r) (Wn(s) + %(Agn + B(s)gn)> dr ds. (39)

Let n and k be sufficiently large positive integers, and let £ > 0. By taking into account (39)
and by arguing as in the proof of inequality (29), we obtain the estimate

W (t) = Wi(t)]] < CM, /(t — )" eI (s) — Wis) |l ds

0
t

C M. 1 wa(t—s8)
(o) [t =5y e s g, — Agel 4 1B(5)gn — B(s)aul) ds,
0

m = sup (' e W, (t) — Wi(D)|) < Mom + &, M, < 1.

t€[0,b]

+

Consequently, m < /(1 — M), and since E is a complete space, it follows that the se-
quence t*°e~“1'W, (1) converges (uniformly with respect to ¢ € [0,4]) to a continuous function
1% “1'W(t) on [0, b]. Therefore, W, (t) converges, uniformly with respect to t € [to, 4], 0 < t, < b,
to a function W (t) that satisfies inequality (26), belongs to D(A) by virtue of Condition 2 (ii), more-
over, satisfies AW (t) € C'((0,00), F), and is absolutely integrable at zero.

It follows from (38) that U, (t) converges, uniformly with respect to ¢t € [to, b], to the function

Safl

()

U(t) = /70 Jru(t — 8)Ta(T) (W(s) + (Aug + B(s)uo)> dr ds,



which is a solution of problem (36), (37). Finally, u,(f) converges, uniformly with respect to

t € [to, b], to the function
tozfl

U(t) = U(t) + m

Uo,

which satisfies problem (1), (2). The proof of the theorem is complete.

Remark 4. An assertion (similar to Theorem 5) on the continuous dependence of the solution
of problem (1), (2) on the initial conditions can be stated and proved for a = 3 < 1 as well.

In the part on the unique solvability, Theorem 4 contains Theorem 8 in [7] in the special case
where the operator B is independent of ¢ and is bounded. In this case, it was proved in [7] that if
a = 3 < 1, then the resolving operator T,(¢t, A + B) of problem (1), (2) has the form

T.(t,A+ B) = ZS

where Sy(t) = T,(t, A) is the resolving operator of problem (3), (4) for # = « and

t
&ﬁ)(/n@—&mB&1QM& n—12 ..

0

Note also the paper [14] in which the theorem on a perturbation was proved for an equation that,
unlike Eq. (1), contains a fractional Caputo derivative under the assumption that the operator A
is the generator of an analytic semigroup and 8 = 1. The following example was also considered in
that paper.

Example 1. Let £ = Ly(R™). On the set D(A) = W}™(R"), we define the operator A as
follows:

Z ap1+ +pnu(t :E)
a

pl Pro L Oahr
lp|=2m

where

D7 ay ()€ = (1) Ml

[p|=2m

for arbitrary x,& € R™ and the coefficients a,(x) with |p| = 2m satisfy the uniform Hoélder condition
in R™. As was mentioned in [14], the operator A satisfies Condition 1 for # = 1 and w = 0.

We define the operator B(t) on D = W™ '(R") D D(A) by the relation

B or et @) o2 (.
B(tyu(t,z) = > ay(t,x) Da awgln / > bl agfl...a££“ .

<2m-—1 p|<2m—1
P Q

where @ C R™; the coeflicients a,(t,z) with [p| < 2m — 1 and with any ¢ > 0 are continuous,

are bounded with respect to x € R", and satisfy the Holder condition with exponent @ > « with
respect to ¢ uniformly with respect to x € R™; the coeflicients b,(t, x, &) are continuous and satisfy
the condition

/ b, (8,2, €)[2 dé dar < +oo,
//wmaw bt 0, )2 dede < Clts — 1", p>a,  C>0.

As was mentioned in [14], the operator B(t) satisfies Condition 2 for w = 0 and for some v € (0, 1).



If uo(x) € Wi™(R"™) and « < 1, then, by Theorems 3 and 5, problem (1), (2) (a Cauchy type
problem for an integro-differential equation) is well-posed and uniquely solvable.

Before considering one more example of the use of Theorem 3, note that if £ is a complex
Banach space and T'(t) is a uniformly bounded Cy-semigroup with generator A, then one can define
a positive fractional power of the operator —A (e.g., see |9, p. 357]) as

_(—A)ep - Snom / AT — A) AR, (40)

™

0

where a € (0, 1) and h € D(A).

In addition, if ¢ € E, then the resolvent of the operator —(—A4)®, which is denoted by A, in
what follows, admits the representation

sin o

(nl —As) g = /

™
0

XA — A) g
. 41
12— 2p* cos am + N2> dr (41)

Let us show that the following Cauchy type problem with the operator A, is uniformly well-
posed:

D*v(t) = Av(t), t>0, (42)
lim D o(t) = v, vy € D(A). (43)

t—0

Condition 3. The Banach space F has the Radon—Nikodym property (see [15, p. 15]); i.e.,
each absolutely integrable function F': R, — F is differentiable almost everywhere.

For example, reflexive Banach spaces have this property (see [15, Corollary 1.2.7]), and the spaces
Li(a,b), Cla,b], and ¢y (the space of sequences converging to zero) do not (see [15, Example 1.2.8,
Assumptions 1.2.9 and 1.2.10)).

If the Cauchy type problem (3), (4) is uniformly well-posed and w = 0 in inequality (5), then, as
was proved in [6], for Re A > 0 the number A\? belongs to the resolvent set 9(A) of the operator A,
for any x € F, the resolvent R(M\°) = (\°T — A)~! admits the representation

—+00
ROV — / exp(— M) Ta(t)a dt,
0
and, in addition,
d"R(\?)
dA\"

Re A >0, (44)

‘ _ MI(n+ )
= (Re A6

for all integer n > 0.

In a Banach space F that has the Radon—Nikodym property, the validity of inequalities (44)
(even for real A > 0) is also a sufficient condition for the uniform well-posedness of problem (3),
(4). In this case, the resolving operator has the form (see formula (13) in [6])

wo+ioo
1
T(tyuo = Do / N expO BOP o dA, wy > 0.

Note that Condition 3 is absent in [6] but should be imposed in the proof of the uniform well-
posedness represented there. Here we bridge the gap.



Theorem 6. Let Condition 3 be satisfied, let the operator A be the generator of a uniformly
bounded Cy-semigroup, and let A, be the operator given by relation (40). Then the Cauchy type

problem (42), (43) is uniformly well-posed.

Proof. As was mentioned above, problem (42), (43) is uniformly well-posed if the resolvent
(ul — A,)~ ! satisfies the inequality

‘ dn(luoz[_Aa)fl
for > 0.

du™
We set R(A) = (M — A)~! and, by using the representation (41), prove the validity of the
estimate (45). After the substitution from (41), we obtain the representation

< MI'(n + @)

(45)

lun+oz

(T — Ay lg — e sinonr/OO s R(ust/*)g s — sin onr/oo sz R(x)g

an §? —2scosam + 1 an §? —2scosam + 1
0 0
where 2 = us'/®, and consequently,
d"(pel — A,) " 'g  sinarw /OO sn/otl a
= — *R ds. 46
dur o §2 —2scosarm + 1 dam (@ (w)g) ds (46)

0
By using the Leibniz formula and the inequality
‘ d" R(x)

dam
which is valid by virtue of the Hille—Yosida theorem, we estimate the norm

Mn'
mn+1’

x>0,

dn
dxm

2 (z'°R(x) H ”9”ZCJ ) (—a— 1) (—a—nt i+ 2)!

n+o¢

M||g||F n-+o— 1
= E CJCJ
MNa—1) :E"+a wres?

_ Ml +a) ¢

) Mgl )
INa)pnte

Cn+10n+1
C(a)ante

n+a—1

(47)

here we have used formula 4.2.8.1 in [13] and the relation C" ™! = 0. It follows from (46) and (47)
that

which completes the proof of the theorem.

dn(luozl _ Aa)fl
dur

< M:I'(n + «) /OO ds < MI'(n + «)
- pnte §2 —2scosam +1 — e

)

Example 2. Let 0 < a < g < 1, and let —A be a strongly positive operator; then the
operator —Ag given by relation (40) is also strongly positive (see [8, p. 299]). By Theorems 3
and 6, the operator Az can be perturbed by an operator B(t) subjected to a fractional power of the
operator (—Ag)”, v € (0,1); in this case, the well-posedness of problem (1), (2) with the operator
Ap is preserved.

If the conditions imposed on the operator A are weakened, and, instead of the strong positivity,
we require the validity of the estimate

M;

—1
(A —A)7Y| < Y

A>0, M >0,



then the operator —A is said to be positive [8, p. 274|. Positive operators are not necessarily
generators of Cy-semigroups, but their fractional powers (—A)? are defined and strongly positive
for 0 < 3 <1/2[8, pp. 274, 299]. In this case, problem (1), (2) with the operator A; = —(—A)”,
0 < 3 < 1/2, can also be perturbed by the operator B(t) subjected to the fractional power (—Az)7,

v € (0,1).
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