








coarse-grained and submicrocrystalline structure exceeds the acti-
vation energy of grain-boundary self-diffusion, which corresponds
to a given structural state of grain boundaries in the coarse-grained
and submicrocrystalline state, but is lower than the activation
energy for bulk diffusion. An increase of grain-boundary struc-
ture imperfection by plastic deformation at 295K facilitates true
grain-boundary sliding. The activation energy therewith decreases
so that it differs insignificantly for the initial coarse-grained and
submicrocrystalline structure.

Such effect of the structural imperfection (non-equilibrium
degree) of high-angle grain boundaries of a random type on true
grain-boundary sliding and its activation energy stems from the
diffusion model of this process. According to the model, the true
grain-boundary sliding is a thermally activated process and is
governed by the same mechanism as grain-boundary diffusion.
The applied external stress induces only transition from a ran-
dom walk of voids, which are formed at vacancy delocalization in
the general-type boundary, to their directed motion. The latter is
accompanied by the mutual displacement of neighboring grains,
which in case of grain-boundary structure rearrangements leads to
boundary-energy reduction. The rearrangement can occur through
the diffusion inflow of matter from the grain bulk or outflow from
the boundary to the grain bulk. As a result, for any high-angle
boundary of an arbitrary type, the activation energy of true grain-
boundary sliding should be higher than the diffusion activation
energy, but lower than the bulk-diffusion activation energy.
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