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Abstract This paper consists of two parts. In the first part we give a brief survey
of results on Buschman–Erdélyi operators, which are transmutations for the Bessel
singular operator. Main properties and applications of Buschman–Erdélyi operators
are outlined. In the second part of the paper we consider multi-dimensional integral
transforms of Buschman–Erdélyi type with Legendre functions in kernels. Complete
proofs are given in this part, main tools are based on Mellin transform properties and
usage of Fox H -functions.
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1 Buschman–Erdélyi Operators

For a given pair of operators (A,B) an operator T is called transmutation (or
intertwining) operator if on elements of some functional spaces the following
property is valid

T A = B T . (1)

And how the transmutations usually works? Suppose we study properties for a
rather complicated operator A. But suppose also that we know the corresponding
properties for a model more simple operator B and transmutation (1) readily exists.

S. M. Sitnik
Belgorod State National Research University (BelGU), Belgorod, Russia
e-mail: sitnik@bsu.edu.ru

O. V. Skoromnik (�)
Polotsk State University “PSU”, Novopolotsk, Belarus
e-mail: post@psu.by

© Springer Nature Switzerland AG 2020
V. V. Kravchenko, S. M. Sitnik (eds.), Transmutation Operators and Applications,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-35914-0_13

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35914-0_13&domain=pdf
mailto:sitnik@bsu.edu.ru
mailto:post@psu.by
https://doi.org/10.1007/978-3-030-35914-0_13


294 S. M. Sitnik and O. V. Skoromnik

Then we usually may copy results for the model operator B to corresponding
ones for the more complicated operator A. This is shortly the main idea of
transmutations.

Let us consider for example an equation Au = f , then applying to it a
transmutation with property (1) we consider a new equation Bv = g, with v =
T u, g = Tf . So if we can solve the simpler equation Bv = g, then the initial one
is also solved and has solution u = T −1v. Of course, it is supposed that the inverse
operator exists and its explicit form is known. This is a simple application of the
transmutation technique for finding and proving formulas for solutions of ordinary
and partial differential equations.

The monographs [2, 6–8, 17, 23, 57, 59] are completely devoted to the trans-
mutation theory and its applications, note also author’s survey [50]. Moreover,
essential parts of monographs [9, 12, 24, 30–32, 34–39, 45, 60], include material on
transmutations, the complete list of books which investigate some transmutational
problems is now near of 100 items.

The term “Buschman–Erdélyi transmutations” was introduced by the author and
is now accepted. Integral equations with these operators were studied in mid-1950th.
The author was first to prove the transmutational nature of these operators. The
classical Sonine and Poisson operators are special cases of the Buschman–Erdélyi
transmutations and Sonine–Dimovski and Poisson–Dimovski transmutations are
their generalizations for the hyper-Bessel equations and functions.

The Buschman–Erdélyi transmutations have many modifications. The author
introduced convenient classification of them. Due to this classification we introduce
Buschman–Erdélyi transmutations of the first kind, their kernels are expressed
in terms of Legendre functions of the first kind. In the limiting case we define
Buschman–Erdélyi transmutations of zero order smoothness being important in
applications. The kernels of Buschman–Erdélyi transmutations of the second kind
are expressed in terms of Legendre functions of the second kind. Some combination
of operators of the first kind and the second kind leads to operators of the third
kind. For the special choice of parameters they are unitary operators in the standard
Lebesgue space. The author proposed the terms “Sonine–Katrakhov” and “Poisson–
Katrakhov” transmutations in honor of V. Katrakhov who introduced and studied
these operators.

The study of integral equations and invertibility for the Buschman–Erdélyi
operators was started in 1960-th by P. Buschman and A. Erdélyi, [4, 5, 14, 15].
These operators also were investigated by Higgins, Ta Li, Love, Habibullah, K.
N. Srivastava, Ding Hoang An, Smirnov, Virchenko, Fedotova, Kilbas, Skorom-
nik and others. During this period, for this class of operators were considered
only problems of solving integral equations, factorization and invertibility, cf.
[44].

The most detailed study of the Buschman–Erdélyi transmutations was taken by
the author in 1980–1990th [20, 46, 47] and continued in [19–22, 46–49, 51–56] and
some other papers. Interesting and important results were proved by N. Virchenko
and A. Kilbas and their disciples [26, 27, 61].
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Let us first consider the most well-known transmutations for the Bessel operator
and the second derivative:

T (Bν) f =
(
D2

)
Tf, Bν = D2 + 2ν + 1

x
D, D2 = d2

dx2 , ν ∈ C. (2)

Definition 1 The Poisson transmutation is defined by

Pνf = 1

�(ν + 1)2νx2ν

∫ x

0

(
x2 − t2

)ν− 1
2
f (t) dt, �ν > −1

2
. (3)

Respectively, the Sonine transmutation is defined by

Sνf = 2ν+ 1
2

�( 1
2 − ν)

d

dx

∫ x

0

(
x2 − t2

)−ν− 1
2
t2ν+1f (t) dt, �ν <

1

2
. (4)

The operators (3)–(4) intertwine by the formulas

SνBν = D2Sν, PνD
2 = BνPν. (5)

The definition may be extended to ν ∈ C. We will use more historically exact term
as the Sonine–Poisson–Delsarte transmutations [50].

An important generalization for the Sonine–Poisson–Delsarte are the
transmutations for the hyper-Bessel operators and functions. Such functions
were first considered by Kummer and Delerue. The detailed study on these
operators and hyper-Bessel functions was done by Dimovski and further, by
Kiryakova. The corresponding transmutations have been called by Kiryakova
[31] as the Sonine–Dimovski and Poisson–Dimovski transmutations. In hyper-
Bessel operators theory the leading role is for the Obrechkoff integral transform
[10, 11, 13, 31]. It is a transform with Meijer’s G-function kernel which
generalizes the Laplace, Meijer and many other integral transforms introduced
by different authors. Various results on the hyper-Bessel functions, connected
equations and transmutations were many times reopened. The same is true for
the Obrechkoff integral transform. It my opinion, the Obrechkoff transform
together with the Laplace, Fourier, Mellin, Stankovic transforms are essential basic
elements from which many other transforms are constructed with corresponding
applications.

Let us define and study some main properties of the Buschman–Erdélyi transmu-
tations of the first kind. This class of transmutations for some choice of parameters
generalize the Sonine–Poisson–Delsart transmutations, Riemann–Liouville and
Erdélyi–Kober fractional integrals, Mehler–Fock transform.
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Definition 2 Define the Buschman–Erdélyi operators of the first kind by

B
ν,μ
0+ f =

∫ x

0

(
x2 − t2

)− μ
2

Pμ
ν

(x

t

)
f (t)d t, (6)

E
ν,μ
0+ f =

∫ x

0

(
x2 − t2

)− μ
2
P

μ
ν

(
t

x

)
f (t)d t, (7)

B
ν,μ
− f =

∫ ∞

x

(
t2 − x2

)− μ
2

Pμ
ν

(
t

x

)
f (t)d t, (8)

E
ν,μ
− f =

∫ ∞

x

(
t2 − x2

)− μ
2
P

μ
ν

(x

t

)
f (t)d t. (9)

Here P
μ
ν (z) is the Legendre function of the first kind, Pμ

ν (z) is this function on
the cut −1 ≤ t ≤ 1 ([1]), f (x) is a locally summable function with some growth
conditions at x → 0, x → ∞. The parameters are μ, ν ∈ C, �μ < 1, �ν ≥ −1/2.

Now consider some main properties for this class of transmutations, following
essentially [46, 47], and also [48, 50]. All functions further are defined on positive
semiaxis. So we use notations L2 for the functional space L2(0,∞) and L2,k for
power weighted space L2,k(0,∞) equipped with norm

∫ ∞

0
|f (x)|2x2k+1 dx, (10)

N denotes the set of naturals, N0-positive integer, Z-integer and R-real numbers.
First, add to Definition 2 a case of parameter μ = 1. It defines a very important

class of operators.

Definition 3 Define for μ = 1 the Buschman–Erdélyi operators of zero order
smoothness by

B
ν,1
0+ f = 1S

ν
0+f = d

dx

∫ x

0
Pν

(x

t

)
f (t) dt, (11)

E
ν,1
0+f = 1P

ν−f =
∫ x

0
Pν

(
t

x

)
df (t)

dt
dt, (12)

B
ν,1
− f = 1S

ν−f =
∫ ∞

x

Pν

(
t

x

)
(−df (t)

dt
) dt, (13)

E
ν,1
− f = 1P

ν
0+f = (− d

dx
)

∫ ∞

x

Pν

(x

t

)
f (t) dt, (14)

where Pν(z) = P 0
ν (z) is the Legendre function.

Theorem 1 The next formulas hold true for factorizations of Buschman–Erdélyi
transmutations for suitable functions via Riemann–Liouville fractional integrals and
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Buschman–Erdélyi operators of zero order smoothness:

B
ν, μ
0+ f = I

1−μ
0+ 1S

ν
0+f , B

ν, μ
− f = 1P

ν− I
1−μ
− f, (15)

E
ν, μ
0+ f = 1P

ν
0+ I

1−μ
0+ f, E

ν, μ
− f = I

1−μ
− 1S

ν−f. (16)

These formulas allow to separate parameters ν and μ. We will prove soon
that operators (11)–(14) are isomorphisms of L2(0,∞) except for some special
parameters. So, operators (6)–(9) roughly speaking are of the same smoothness in
L2 as integrodifferentiations I 1−μ and they coincide with them for ν = 0. It is also
possible to define Buschman–Erdélyi operators for all μ ∈ C.

Definition 4 Define the number ρ = 1−Re μ as smoothness order for Buschman–
Erdélyi operators (6)–(9).

So for ρ > 0 (otherwise for Re μ > 1) the Buschman–Erdélyi operators are
smoothing and for ρ < 0 (otherwise for Re μ < 1) they decrease smoothness in
L2 spaces. Operators (11)–(14) for which ρ = 0 due to Definition 4 are of zero
smoothness order in accordance with their definition.

For some special parameters ν, μ the Buschman–Erdélyi operators of the first
kind are reduced to other known operators. So for μ = −ν or μ = ν + 2
they reduce to Erdélyi–Kober operators, for ν = 0 they reduce to fractional
integrodifferentiation I

1−μ
0+ or I

1−μ
− , for ν = − 1

2 , μ = 0 or μ = 1 kernels reduce to

elliptic integrals, for μ = 0, x = 1, v = it − 1
2 the operator B

ν, 0
− differs only by a

constant from Mehler–Fock transform.
As a pair for the Bessel operator consider a connected one

Lν = D2 − ν(ν + 1)

x2
=

(
d

dx
− ν

x

) (
d

dx
+ ν

x

)
, (17)

which for ν ∈ N is an angular momentum operator from quantum physics. Their
transmutational relations are established in the next theorem.

Theorem 2 For a given pair of transmutations Xν, Yν

XνLν = D2Xν, YνD
2 = LνYν (18)

define the new pair of transmutations by formulas

Sν = Xν−1/2x
ν+1/2, Pν = x−(ν+1/2)Yν−1/2. (19)

Then for the new pair Sν, Pν the next formulas are valid:

SνBν = D2Sν, PνD
2 = BνPν. (20)
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Theorem 3 Let Re μ ≤ 1. Then an operator B
ν, μ
0+ on proper functions is a Sonine

type transmutation and (18) is valid.

The same result holds true for other Buschman–Erdélyi operators, Eν, μ
− is Sonine

type and E
ν, μ
0+ , B

ν, μ
− are Poisson type transmutations.

From these transmutation connections, we conclude that the Buschman–
Erdélyi operators link the corresponding eigenfunctions for the two operators.
They lead to formulas for the Bessel functions via exponents and trigonometric
functions, and vice versa which generalize the classical Sonine and Poisson
formulas.

Now consider factorizations of the Buschman–Erdélyi operators. First let us list
the main forms of fractional integrodifferentiations: Riemann–Liouville, Erdélyi–
Kober, fractional integral by function g(x), cf. [44],

Iα
0+,xf = 1

�(α)

∫ x

0
(x − t)α−1 f (t)d t, (21)

Iα−,xf = 1

�(α)

∫ ∞

x

(t − x)α−1 f (t)d t,

Iα
0+,2,ηf = 2x−2(α+η)

�(α)

∫ x

0

(
x2 − t2

)α−1
t2η+1f (t)d t, (22)

Iα
−,2,ηf = 2x2η

�(α)

∫ ∞

x

(
t2 − x2

)α−1
t1−2(α+η)f (t)d t,

Iα
0+,gf = 1

�(α)

∫ x

0
(g(x) − g(t))α−1 g′(t)f (t)d t, (23)

Iα−,gf = 1

�(α)

∫ ∞

x

(g(t) − g(x))α−1 g′(t)f (t)d t.

In all cases �α > 0 and the operators may be further defined for all α, see [44].
In the case of g(x) = x (23) reduces to the Riemann–Liouville integral, in the
case of g(x) = x2 (23) reduces to the Erdélyi–Kober operator, and in the case of
g(x) = ln x—to the Hadamard fractional integrals.

Theorem 4 The following factorization formulas are valid for the Buschman–
Erdélyi operators of the first kind via the Riemann–Liouville and Erdélyi–Kober
fractional integrals:

B
ν, μ
0+ = I

ν+1−μ
0+ I

−(ν+1)

0+; 2, ν+ 1
2

(
2

x

)ν+1

, (24)

E
ν, μ
0+ =

(x

2

)ν+1
Iν+1

0+; 2, − 1
2
I

−(ν+μ)
0+ , (25)
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B
ν, μ
− =

(
2

x

)ν+1

I
−(ν+1)
−; 2, ν+1I

ν−μ+2
− , (26)

E
ν, μ
− = I

−(ν+μ)
− Iν+1

−; 2, 0

(x

2

)ν+1
. (27)

The Sonine–Poisson–Delsarte transmutations also are special cases for this class
of operators.

Now let us study the properties of the Buschman–Erdélyi operators of zero order
smoothness, defined by (11)–(14). A similar operator was introduced by Katrakhov
by multiplying the Sonine operator with a fractional integral, his aim was to work
with transmutation obeying good estimates in L2(0,∞).

We use the Mellin transform defined by [40]

g(s) = Mf(s) =
∫ ∞

0
xs−1f (x) dx. (28)

The Mellin convolution is defined by

(f1 ∗ f2)(x) =
∫ ∞

0
f1

(
x

y

)
f2(y)

dy

y
, (29)

so the convolution operator with kernel K acts under the Mellin transform as a
multiplication on multiplicator

M[Af ](s) = M [
∫ ∞

0
K

(
x

y

)
f (y)

dy

y
](s) = M[K ∗ f ](s) = mA(s)Mf (s), (30)

mA(s) = M[K](s).

We observe that the Mellin transform is a generalized Fourier transform on
semiaxis with Haar measure dy

y
, [18]. It plays important role for the theory of special

functions, for example the gamma function is a Mellin transform of the exponential.
With the Mellin transform the important breakthrough in evaluating integrals was
done in 1970th when mainly by O. Marichev, the famous Slater’s theorem was
adapted for calculations. The Slater’s theorem taking the Mellin transform as
input gives the function itself as output via hypergeometric functions, see [40].
This theorem occurred to be the milestone of powerful computer method for
calculating integrals for many problems in differential and integral equations. The
package Mathematica of Wolfram Research is based on this theorem in calculating
integrals.
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Theorem 5 The Buschman–Erdélyi operator of zero order smoothness 1S
ν
0+

defined by (11) acts under the Mellin transform as convolution (30) with
multiplicator

m(s) = �(−s/2 + ν
2 + 1)�(−s/2 − ν

2 + 1/2)

�(1/2 − s
2 )�(1 − s

2 )
(31)

for �s < min(2 + �ν, 1 − �ν). Its norm is a periodic in ν and equals

‖Bν,1
0+ ‖L2 = 1

min(1,
√

1 − sin πν)
. (32)

This operator is bounded in L2(0,∞) if ν �= 2k + 1/2, k ∈ Z and unbounded if
ν = 2k + 1/2, k ∈ Z.

Corollary 1 The norms of operators (11)–(14) are periodic in ν with period 2
‖Xν‖ = ‖Xν+2‖, Xν is any of operators (11)–(14).

Corollary 2 The norms of the operators 1S
ν
0+, 1P

ν− are not bounded in general,
every norm is greater or equals to 1. The norms are equal to 1 if sin πν ≤ 0.
The operators 1S

ν
0+, 1P

ν− are unbounded in L2 if and only if sin πν = 1 (or ν =
(2k) + 1/2, k ∈ Z).

Corollary 3 The norms of the operators 1P
ν
0+, 1S

ν− are all bounded in ν, every

norm is not greater then
√

2. The norms are equal to 1 if sin πν ≥ 0. The operators
1P

ν
0+, 1S

ν− are bounded in L2 for all ν. The maximum of norm equals
√

2 is achieved
if and only if sin πν = −1 (��� ν = −1/2 + (2k), k ∈ Z).

The most important property of the Buschman–Erdélyi operators of zero order
smoothness is the unitarity for integer ν. It is just the case if we interpret for
these parameters the operator Lν as angular momentum operator in quantum
mechanics.

Theorem 6 The operators (11)–(14) are unitary in L2 if and only if the parameter
ν is an integer. In this case the pairs of operators (1S

ν
0+, 1P

ν−) and (1S
ν−, 1P

ν
0+) are

mutually inverse.

To formulate an interesting special case, let us suppose that operators (11)–(14)
act on functions permitting outer or inner differentiation in integrals, it is enough to
suppose that xf (x) → 0 for x → 0. Then for ν = 1

1P
1
0+f = (I − H1)f, 1S

1−f = (I − H2)f, (33)
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and H1, H2 are the famous Hardy operators,

H1f = 1

x

x∫

0

f (y)dy, H2f =
∞∫

x

f (y)

y
dy, (34)

I is the identic operator.

Corollary 4 The operators (33) are unitary in L2 and mutually inverse. They are
transmutations for the pair of differential operators d2/dx2 and d2/dx2 − 2/x2.

The unitarity of the shifted Hardy operators (33) in L2 is a known fact [33].
Below in application section, we introduce a new class of generalizations for the
classical Hardy operators.

Now we list some properties of the operators acting as convolutions by the
formula (30) and with some multiplicator under the Mellin transform and being
transmutations for the second derivative and angular momentum operator in quan-
tum mechanics.

Theorem 7 Let an operator Sν act by formulas (30) and (18). Then:

(a) its multiplicator satisfies a functional equation

m(s) = m(s − 2)
(s − 1)(s − 2)

(s − 1)(s − 2) − ν(ν + 1)
; (35)

(b) if any function p(s) is periodic with period 2 (p(s) = p(s−2)), then a function
p(s)m(s) is a multiplicator for a new transmutation operator Sν

2 also acting by
the rule (18).

This theorem confirms the importance of studying transmutations in terms of the
Mellin transform and multiplicator functions.

Define the Stieltjes transform by (cf. [44])

(Sf )(x) =
∞∫

0

f (t)

x + t
dt.

This operator also acts by the formula (30) with multiplicator p(s) = π/ sin(πs),
it is bounded in L2. Obviously p(s) = p(s − 2). So from Theorem 7 it follows a
convolution of the Stieltjes transform with bounded transmutations (11)–(14), also
transmutations of the same class bounded in L2.
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In this way many new classes of transmutations were introduced with special
functions as kernels.

Now we construct transmutations which are unitary for all ν. They are defined
by formulas

Sν
U f = − sin

πν

2
2S

νf + cos
πν

2
1S

ν−f, (36)

Pν
U f = − sin

πν

2
2P

νf + cos
πν

2
1P

ν−f. (37)

For all values ν ∈ R they are linear combinations of Buschman–Erdélyi transmu-
tations of the first and second kinds of zero order smoothness. Also they are in
the defined below class of Buschman–Erdélyi transmutations of the third kind. The
following integral representations are valid:

Sν
Uf = cos

πν

2

(
− d

dx

) ∞∫

x

Pν

(
x

y

)
f (y) dy (38)

+ 2

π
sin

πν

2

⎛
⎝

x∫

0

(x2−y2)−
1
2 Q1

ν

(
x

y

)
f (y) dy −

∞∫

x

(y2−x2)−
1
2 Q

1
ν

(
x

y

)
f (y) dy

)
,

P ν
Uf = cos

πν

2

x∫

0

Pν

(y

x

) (
d

dy

)
f (y) dy (39)

− 2

π
sin

πν

2

⎛
⎝−

x∫

0

(x2−y2)−
1
2 Q

1
ν

(y

x

)
f (y) dy −

∞∫

x

(y2−x2)−
1
2 Q1

ν

(y

x

)
f (y) dy

)
.

Theorem 8 The operators (36)–(37), (38)–(39) for all ν ∈ R are unitary, mutually
inverse and conjugate in L2. They are transmutations acting by (17). Sν

U is a Sonine
type transmutation and Pν

U is a Poisson type one.

Transmutations like (38)–(39) but with kernels in more complicated form
with hypergeometric functions were first introduced by Katrakhov in 1980.
Due to this, the author proposed terms for this class of operators as Sonine–
Katrakhov and Poisson–Katrakhov. In author’s papers these operators were
reduced to more simple form of Buschman–Erdélyi ones. It made possible to
include this class of operators in general composition (or factorization) method
[20, 21, 49].
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2 Multi-Dimensional Integral Transforms
of Buschman–Erdélyi Type with Legendre Functions
in Kernels

In this part we consider generalisations of Buschman–Erdélyi operators for multi-
dimensional case.

First introduce integral transforms:

(
H1

σ,κf
)
(x) = xσ

x∫

0

Hm, n
p, q

[
x
t

∣∣∣∣
(ai , αi)1,p

(bj , βj )1,q

]
tκf (t)

dt
t

(x > 0); (40)

(
Pγ

δ,1f
)
(x) =

x∫

0

(
x2 − t2)−γ /2Pγ

δ

(
x
t

)
f (t)dt = g(x) (x > 0); (41)

(
Pγ

δ,2f
)
(x) =

x∫

0

(
x2 − t2)−γ /2Pγ

δ

(
t
x

)
f (t)dt = g(x) (x > 0); (42)

here (see [[43], Section 28.4]) x = (x1, x2, . . . , xn) ∈ Rn; t = (t1, t2, . . . , tn) ∈ Rn,

Rn Euclidean n-space; x · t =
n∑

n=1
xntn denotes their scalar product; in particular,

x · 1 =
n∑

n=1
xn for 1= (1,. . . ,1). The expression x > t means that x1 > t1, . . . , xn >

tn, the nonstrict inequality ≥ has similar meaning;
x∫

0
=

x1∫
0

x2∫
0

···
xn∫
0

; by N = {1, 2, . . .}
we denote the set of positive integers, N0 = N

⋃ {0},Nn
0 = N0 × N0 × . . . × N0,

Rn+ = {x ∈ Rn, x > 0};
m = (m1,m2, . . . ,mn) ∈ Nn

0 and m1 = m2 = . . . = mn; n =
(n1, n2, . . . , nn) ∈ Nn

0 and n1 = n2 = . . . = nn; p = (p1, p2, . . . , pn) ∈ N0
and p1 = p2 = . . . = pn; q = (q1, q2, . . . , qn) ∈ N0 and q1 = q2 = . . . = qn)

(0 ≤ m ≤ q, 0 ≤ n ≤ p);
σ = (σ1, σ2, . . . , σn) ∈ Cn; κ = (κ1, κ2, . . . , κn) ∈ Cn;
δ = (δ1, δ2, . . . , δn) ∈ Rn; γ = (γ1, γ2, . . . , γn) ∈ Rn; 0 < γ < 1;
ai = (ai1, ai2 , . . . , ain ), 1 ≤ i ≤ p, ai1, ai2 , . . . , ain ∈ C (1 ≤ i1 ≤ p1, . . . , 1 ≤

in ≤ pn);
bj = (bj1, bj2, . . . , bjn), 1 ≤ j ≤ q , bj1, bj2, . . . , bjn ∈ C (1 ≤ j1 ≤

q1, . . . , 1 ≤ jn ≤ qn);
αi = (αi1 , αi2 , . . . , αin ), 1 ≤ i ≤ p, αi1 , αi2 , . . . , αin ∈ R+

1 (1 ≤ i1 ≤
p1, . . . , 1 ≤ in ≤ pn);

βj = (βj1 , βj2, . . . , βjn), 1 ≤ j ≤ q , βj1, βj2 , . . . , βjn ∈ R+
1 (1 ≤ j1 ≤

q1, . . . , 1 ≤ jn ≤ qn);
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k = (k1, k2, . . . , kn) ∈ Nn
0 = N0×. . .×N0 (ki ∈ N0, i = 1, 2, . . . , n) is a multi-

index with k! = k1! · · · kn! and |k| = k1 +k2+ . . .+kn; for l = (l1, l2, . . . , ln) ∈ Rn+
Dl = ∂ |l|

(∂x1)
l1 ···(∂xn)ln

, dt = dt1 · dt2 · · · dtn; tl = t l1 · · · t ln;
x2 − t2 = (x2

1 − t2
1 ) · · · (x2

n − t2
n); f (t) = f (t1, t2, . . . , tn); we introduce the

function

Hm, n
p, q

[
x
t

∣∣∣∣
(ai , αi)1,p

(bj , βj )1,q

]
=

n∏
k=1

Hmk, nk
pk, qk

[
xk

tk

∣∣∣∣
(aik , αik )1,pk

(bjk , βjk )1,qk

]
, (43)

which is the product of the H-functions Hm, n
p, q [z]. Such a function is defined by

Hm,n
p, q [z] ≡ Hm,n

p,q

[
z

∣∣∣∣
(ai, αi)1,p

(bj , βj )1,q

]
= 1

2πi

∫

L

Hm,n
p,q (s)z−sds, z �= 0, (44)

where

Hm,n
p, q(s) ≡ Hm,n

p, q

[
(ai, αi )1,p

(bj , βj )1,q

∣∣∣∣s
]

=

m∏
j=1

�(bj + βj s)
n∏

i=1
�(1 − ai − αis)

p∏
i=n+1

�(ai + αis)
q∏

j=m+1
�(1 − bj − βj s)

.

(45)

Here L—is a specially chosen infinite contour and empty product, if it occurs, being
taken to be one. Note that most of the elementary and special functions are special
cases of the H-function (44), and one may find its properties in the books by Mathai
and Saxena [41, Chapter 2], Srivastava et al. [58, Chapter 1], Prudnikov et al. [42,
Section 8.3] and Kilbas and Saigo [25, Chapters 1 and 2].

We introduce the function

Pγ
δ [z] =

n∏
k=1

Pγk

δk
[zk], (46)

which is the product of the Legendre functions Pγ

δ
(z) of the first kind. For complex

γ , Re(γ ) < 1, and δ, z ∈ C this function is defined by

Pγ

δ
(z) = 1

�(1 − γ )

(
z + 1

z − 1

) γ
2

2F1

(
−δ, 1 + δ; 1 − γ ; 1 − z

2

)
, |arg(z − 1)| < π,

(47)

Pγ

δ
(x) = 1

�(1 − γ )

(
1 + x

1 − x

) γ
2

2F1

(
−δ, 1 + δ; 1 − γ ; 1 − x

2

)
, −1 < x < 1,

(48)
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see ([[16], Formulas 3.2(3) and 3.4(6)], [[42], Section 11.18]), where 2F1(−δ, 1 +
δ; 1 − γ ; z)—is the Gauss hypergeometric function [[16], Section 2.1].

Our paper is devoted to the study of transforms Pγ

δ,kf (k = 1, 2) in the weighted
spaces Lν, 2 summable functions f (x) = f (x1, . . . , xn) on Rn+, such that:

‖f ‖v,2 = {
∫

R1+
xvn·2−1
n {· · ·{

∫

R1+
x

v2·2−1
2 ×

× [
∫

R1+
x

v1·2−1
1 |f (x1, . . . , xn)|2dx1]dx2} · ··}dxn}1/2 < ∞ (49)

(2 = (2, . . . , 2), v = (v1, . . . , vn) ∈ Rn, v1 = v2 = . . . = vn).
Our investigations are based on representations of Eqs. (41) and (42) via the

modified H-transform of the form (40). Mapping properties such as the boundedness
the range, the representation and the inversion of the considered transforms are
established.

Preliminaries
Denote by [X,Y ] a set of bounded linear operators acting from a Banach space X

into a Banach space Y .
The n-dimensional Mellin transform (Mf )(x) of a function f (x) =

f (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) ∈ Rn+, is defined by

(Mf )(s) =
∞∫

0

f (t)ts−1dt, Re(s) = ν, (50)

s = (s1, s2, . . . , sn) ∈ Cn; while the inverse Mellin transform is given for x ∈ Rn+
by the formula

(M−1g)(x) = M−1[g(p)](x) = 1

(2πi)n

∫ γ1+i∞

γ1−i∞
· · ·

∫ γn+i∞

γn−i∞
x−sg(s)ds, (51)

with γj = Re(sj ) (j = 1, · · · , n). The theory for these multidimensional Mellin
transforms appears in the book by Brychkov [3], see also [29, Chapter 1].

Let Mζ , R be elementary operators (see [29, Chapter 1]):

(Mζ f )(x) = xζ f (x) (ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn), (Rf )(x) = 1

x
f

(
1

x

)
. (52)

There holds the following assertion, which follows from [29] formulas (1.4.44),
(1.4.45), (1.4.46)] [25, Lemma 3.2].
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Lemma 1 Let ν = (ν1, ν2, . . . , νn) ∈ Rn (ν1 = ν2 = . . . = νn) and 1 ≤ r < ∞.

(a) Mζ is isometric isomorphism of Lν,r onto Lν − Re(ζ ),r and if f ∈ Lν,r (1 ≤ r ≤
2), then

(MMζ f )(s) = (Mf )(s + ζ ) (Re(s) = ν − Re(ζ )). (53)

(b) R is an isometric isomorphism of Lν,r ontoL1 − ν,r and if f ∈ Lν,r (1 ≤ r ≤ 2),
then

(MRf )(s) = (Mf )(1 − s) (Re(s) = ν). (54)

Let Iα0+; σ,η and Iα−; σ,η be the Erdelyi-Kober operators of fractional integration,
defined for α = (α1, α2, . . . , αn) ∈ Cn (Re(α) > 0), σ > 0, η ∈ Cn by:

(
Iα0+; σ, ηf

)
(x) = σx−σ(α+η)

�(α)

x∫

0

(
xσ − tσ

)α−1tση+σ−1f (t)dt (x > 0), (55)

(
Iα−; σ, ηf

)
(x) = σxση

�(α)

∞∫

x

(
tσ − xσ

)α−1tσ(1−α−η)−1f (t)dt (x > 0). (56)

2.1 L
ν,2–Theory and the Inversion Formulas for the Modified

H-Transform

To formulate the results presented Lν,2-theory and the inversion formulas for the
modified H-transform (40) we need the following constants, analogical for one-
dimensional case defined via the parameters of the H-function (44) [[25], (3.4.1),
(3.4.2), (1.1.7), (1.1.8), (1.1.10)]:

α1 =
{− min

1≤j1≤m1

[
Re(bj1 )

βj1

]
, m1 > 0,

0, m1 = 0;
β1 =

{ min
1≤i1≤n1

[
1−Re(ai1 )

αi1

]
, n1 > 0,

0, n1 = 0;

α2 =
{− min

1≤j2≤m2

[
Re(bj2 )

βj2

]
, m2 > 0,

0, m2 = 0;
β2 =

{ min
1≤i2≤n2

[
1−Re(ai2 )

αi2

]
, n2 > 0,

0, n2 = 0;
and so on

αn =
{− min

1≤jn≤mn

[
Re(bjn )

βjn

]
, mn > 0,

0, m2 = 0;
βn =

{ min
1≤in≤nn

[
1−Re(ain )

αin

]
, nn > 0,

0, nn = 0;
(57)



One-Dimensional and Multi-Dimensional Integral Transforms of Buschman–. . . 307

a∗
1 =

n1∑
i=1

αi1 −
p1∑

i=n1+1

αi1 +
m1∑
j=1

βj1 −
q1∑

j=m1+1

βj1, �1 =
q1∑

j=1

βj1 −
p1∑
i=1

αi1 ,

a∗
2 =

n2∑
i=1

αi2 −
p2∑

i=n2+1

αi2 +
m2∑
j=1

βj2 −
q2∑

j=m1+1

βj2, �2 =
q2∑

j=1

βj2 −
p2∑
i=1

αi2 ,

and so on

a∗
n =

nn∑
i=1

αin −
pn∑

i=nn+1

αin +
mn∑
j=1

βjn −
qn∑

j=mn+1

βjn, �n =
qn∑

j=1

βjn−
pn∑
i=1

αin; (58)

μ1 =
q1∑

j=1

bj1 −
p1∑
i=1

ai1 + p1 − q1

2
, μ2 =

q2∑
j=1

bj2 −
p2∑
i=1

ai2 + p2 − q2

2
, . . . ,

μn =
qn∑

j=1

bjn −
pn∑
i=1

ain + pn − qn

2
; (59)

α1
0 =

{1 + max
m1+1≤j1≤q1

[
Re(bj1 )−1

βj1

]
, q1 > m1,

∞, q1 = m1,
β1

0 =
{1 + min

n1+1≤i1≤p1

[
Re(ai1 )

αi1

]
, p1 > n1,

∞, p1 = n1;

α2
0 =

{1 + max
m2+1≤j2≤q2

[
Re(bj2 )−1

βj2

]
, q2 > m2,

∞, q2 = m2,
β2

0 =
{1 + min

n2+1≤i2≤p2

[
Re(ai2 )

αi2

]
, p2 > n2,

∞, p2 = n2;
. . .

αn
0 =

{1 + max
mn+1≤jn≤qn

[
Re(bjn )−1

βjn

]
, qn > mn,

∞, qn = mn,
βn

0 =
{1 + min

nn+1≤in≤p2

[
Re(ain )

αin

]
, pn > nn,

∞, pn = nn.

(60)

The exceptional set EH of a function Hm,n
p,q (s):

Hm,n
p, q (s) ≡ Hm,n

p, q

[
(ai , αi)1,p

(bj , βj )1,q

∣∣∣∣s
]

=
n∏

k=1

Hmk,nk
pk, qk

[
(aik , αik )1,pk

(bjk , βjk )1,qk

∣∣∣∣s
]
, (61)

is called a set of vectors ν = (ν1, ν2, . . . , νn) ∈ Rn (ν1 = ν2 = . . . = νn),

such that α1 < 1 − ν1 < β1, α2 < 1 − ν2 < β2, . . . , αn < 1 − νn < βn, and
functions Hm1,n1

p1, q1 (s1), Hm2,n2
p2, q2 (s2),. . . ,Hmn,nn

pn, qn (sn), have zeros on lines Re(s1) <

1 − ν1, Re(s2) < 1 − ν2, . . . , Re(sn) < 1 − νn, respectively.



308 S. M. Sitnik and O. V. Skoromnik

Applying multidimensional Mellin transform (50) to (40), taking into account
the results for the one-dimensional case [25, Formulae (5.1.14)], we obtain:

(MH1
σ,κf )(s) = Hm,n

p,q

[
(ai, αi )1,p

(bj , βj )1,q

∣∣∣∣s + σ

]
(Mf )(s + σ + κ). (62)

The following assertion presents the Lν,2-theory of the modified H-transform
(40). One dimensional case see in [25, Theorem 5.37].

Theorem 9 Let

α1 < ν1 − Re(κ1) < β1, α2 < ν2 − Re(κ2) < β1, . . . , αn

< νn − Re(κ1) < βn, ν1 = ν2 = . . . = νn;

a∗
1 = 0, a∗

2 = 0, . . . , a∗
n = 0; �1[ν1 − Re(κ1)] + Re(μ1) ≤ 0,

�2[ν2 − Re(κ2)] + Re(μ2) ≤ 0, . . . ,�n[νn − Re(κn)] + Re(μn) ≤ 0. (63)

There hold the following assertions:

(a) There exists a one-to-one map H1
σ,κ ∈ [Lν,2, Lν−Re(κ+σ),2] such the relation

(62) holds for f ∈ Lν,2 and Re(s) = ν − Re(κ + σ).

If a∗
1 = 0, a∗

2 = 0, . . . , a∗
n = 0; �1[ν1 − Re(κ1)] + Re(μ1) = 0,�2[ν2 −

Re(κ2)]+Re(μ2) = 0, . . . ,�n[νn−Re(κn)]+Re(μn) = 0 and 1−ν+Re(κ) �∈
EH, then H1

σ,κ mapsLν,2 onto Lν−Re(κ+σ),2.

(b) The transform H1
σ,κ does not depend on ν in the sense if ν and ν̃ satisfy Eq. (63)

and if the transforms H1
σ,κ and H̃1

σ,κ are defined in respective spaces Lν,2 i Lν̃,2

by Eq. (62), then H1
σ,κf = H̃1

σ,κf for f ∈ Lν̃,2
⋂

Lν,2.
(c) If a∗

1 = 0, a∗
2 = 0, . . . , a∗

n = 0; �1[ν1 − Re(κ1)] + Re(μ1) < 0,�2[ν2 −
Re(κ2)] + Re(μ2) < 0, . . . ,�n[νn − Re(κn)] + Re(μn) < 0; then for f ∈
Lν,2 H1

σ,κf is given by Eq. (40).

(d) Let λ = (λ1, . . . , λn) ∈ Cn , h = (h1, . . . , hn) > 0, and f ∈ Lν,2. If Re(λ) >

(ν − Re(κ))h − 1, then H1
σ,κf is represented in the form

(
H1

σ,κf
)
(x) = hxσ+1−(λ+1)/h d

dx
x(λ+1)/h×

×
∞∫

0

Hm,n+1
p+1,q+1

[
x
t

∣∣∣∣
(−λ, h), (ai , αi)1,p

(bj , βj )1,q, (−λ − 1, h)

]
tκ−1f (t)dt. (64)



One-Dimensional and Multi-Dimensional Integral Transforms of Buschman–. . . 309

while for Re(λ) < (ν − Re(k))h − 1 is given by

(
H1

σ,κf
)
(x) = −hxσ+1−(λ+1)/h d

dx
x(λ+1)/h×

×
∞∫

0

Hm+1,n
p+1,q+1

[
x
t

∣∣∣∣
(ai , αi)1,p, (−λ, h)

(−λ − 1, h), (bj , βj )1,q

]
tκ−1f (t)dx. (65)

(e) If f ∈ Lν,2 and g ∈ L1−ν+Re(κ+σ),2, then there holds the relation:

∞∫

0

f (x)
(
H1

σ,κg
)
(x)dx =

∞∫

0

(
H2

σ,κf
)
(x)g(x)dx, (66)

where

(
H2

σ,κf
)
(x) = xσ

∞∫

0

Hm,n
p,q

[
t
x

∣∣∣∣
(ai , αi)1,p

(bj , βj )1,q

]
tκf (t)

dt
x

. (67)

Inversion formulas for the transform H1
σ,κ are given by the following equalities

(one-dimensional case see in [[25], (5.5.23) and (5.5.24)]):

f (x) = −hx(λ+1)/h−κ d
dx

x−(λ+1)/h×

×
∞∫

0

Hq−m,p−n+1
p+1,q+1

[
t
x

∣∣∣∣
(−λ, h), (1 − ai − αi, αi)n+1,p, (1 − ai − αi, αi)1,n

(1 − bj − βj , βj )m+1,q, (1 − bj − βj , βj )1,m (−λ − 1, h)

]

× t−σ (H1
σ,κf )(t)dt (68)

or

f (x) = hx(λ+1)/h−1 d
dx

x−(λ+1)/h×

×
∞∫

0

Hq−m+1,p−n
p+1,q+1

[
t
x

∣∣∣∣
(1 − ai − αi, αi)n+1,p, (1 − ai − αi, αi)1,n, (−λ, h)

(−λ − 1, h), (1 − bj − βj , βj )m+1,q, (1 − bj − βj , βj )1,m

]

× t−σ (H1
σ,κf )(t)dt. (69)

Condition for the validity of these formulas are given by the following assertion
(one-dimensional case see in [25, Theorem 5.47]).
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Theorem 10 Let a∗
1 = 0, a∗

2 = 0, . . . , a∗
n = 0; α1 < ν1 − Re(κ1) < β1, α2 <

ν2 − Re(κ2) < β2, . . . , αn < νn − Re(κn) < βn; α1
0 < 1 − ν1 + Re(κ1) < β1

0 ,
α2

0 < 1−ν2+Re(κ2) < β2
0 ,. . . , αn

0 < 1−νn+Re(κn) < βn
0 ; and let λ ∈ Cn, h > 0.

If �1[ν1 − Re(κ1)] + Re(μ1) = 0, �2[ν2 − Re(κ2)] + Re(μ2) = 0,. . . , �n[νn −
Re(κn)] + Re(μn) = 0, and f ∈ Lν,2 (ν1, ν2, . . . , νn), then the inversion formulas

(68) and (69) are valid for Re(λ) > (1 − ν + Re(κ))h − 1 and Re(λ) < (1 − ν +
Re(κ))h − 1, respectively.

2.2 Representations in the Form of Modified H-Transform

Introduce so-called one-sided functions

K1(x) = (x2 − 1)
−γ /2
+ Pδ

γ (x) =
{

(x2 − 1)−γ /2Pδ
γ (x), x > 1,

0, 0 < x < 1; (70)

K2(x) = (1 − x2)
−γ /2
+ Pδ

γ (x) =
{

(1 − x2)−γ /2Pδ
γ (x), 0 < x < 1,

0, x > 1.
(71)

Using notations in (52) and (70), (71), present transforms (41) and (42) in respective
forms

(
Pγ

δ,1f
)
(x) =

∞∫

0

K1

(
x
t

)(
M−γ f

)
(t)dt; (72)

(
Pγ

δ,2f
)
(x) = x1−γ

∞∫

0

(
RK2

)(
x
t

)(
M−1f

)
(t)dt. (73)

The following assertion yields the Mellin transform formulas (50) of K1(x) and
K2(x) in (70) and (71).

Lemma 2 Let γ = (γ1, γ2, . . . , γn), δ = (δ1, δ2, . . . , δn), s = (s1, s2, . . . , sn) ∈
Cn.

(a) If Re(γ ) < 1, Re(s) < 1 + Re(γ + δ), Re(s) < Re(γ − δ), then

(
MK1

)
(s) = 2γ−1 �

( 1+γ+δ−s
2

)
�

( γ−δ−s
2

)

�
(
1 − s

2

)
�

( 1−s
2

) . (74)
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(b) If Re(γ ) < 1, Re(s) > 0, then

(
MK2

)
(s) = 2γ−1 �

( s
2

)
�

( s+1
2

)

�
( 1−γ−δ+s

2

)
�

(
1 + δ−γ+s

2

) . (75)

Proof By [42, 2.172.9], under conditions in (a) there holds the formula

(
MK1

)
(s) = 2γ1−s1−1

√
π

�
( 1+γ1+δ1−s1

2

)
�

( γ1−δ1−s1
2

)

�(1 − s1)

2γ2−s2−1

√
π

�
( 1+γ2+δ2−s2

2

)
�

( γ2−δ2−s2
2

)

�(1 − s2)
· ··

2γ1−sn−1

√
π

�
( 1+γn+δ1−sn

2

)
�

( γn−δn−sn
2

)

�(1 − sn)
= 2γ−s−1

√
π

�
( 1+γ+δ−s

2

)
�

( γ−δ−s
2

)

�(1 − s)
. (76)

Using the duplication formula for the gamma function

�(2z) = 22z−1
√

π
�(z)�

(
z + 1

2

)
(77)

with z = 1−s
2 , from Eq. (76) we deduce Eq. (74).

If conditions in (b) are satisfied, then according to [42, 2.172].

(
MK2

)
(s) = 2γ−s

√
π

�(s)

�
( 1−γ−δ+s

2

)
�

(
1 + δ−γ+s

2

) . (78)

Applying Eq. (77) with z = s
2 , from Eq. (78) we deduce Eq. (75). Lemma is proved.

��
Applying the convolution Mellin formula [29, (1.4.56)]

(
M

∞∫

0

K

(
x
t

)
y(t)

dt
t

)
(s) = (

MK
)
(s)

(
Mf

)
(s), (x ∈ Rn+), (79)

being valid for suitable K
( x

t

) = K
(

x1
t1

, x2
t2

, . . . , xn

tn

)
and y(x), and formulas (53) and

(54) for Mellin transform of Mζ f, Rf, we find the Mellin transform of Eqs. (72)
and (73) for suitable f .

Applying (74), we have for
(
Pγ

δ,1f
)
(x):

(
MPγ

δ,1f
)
(s) =

(
M

∞∫

0

K1

(
x
t

)(
M1−γ f

)
(t)

dt
t

)
(s) =

(
MK1

)
(s)

(
MM1−γ f

)
(s) =

= 2γ −1
�

(
(1 + γ + δ − s)/2

)
�

(
(γ − δ − s)/2

)

�
(

1 − s/2
)
�

(
(1 − s)/2

)
(
Mf

)
(1 − γ + s). (80)
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In accordance with (61), relation (80) takes the form

(
MPγ

δ,1f
)
(s) = 2γ−1

�
(
(1 + γ + δ − s)/2

)
�

(
(γ − δ − s)/2

)

�
(

1 − s/2
)
�

(
(1 − s)/2

)
(
Mf

)
(1−γ+s) =

2γ−1H0,2
2,2

[( 1−γ−δ
2 , 1

2

)
,

(
1 + δ−γ

2 , 1
2

)
(
0, 1

2

)
,

( 1
2 , 1

2

)
∣∣∣∣s

](
Mf

)
(s + 1 − γ ). (81)

Therefore, by (62), the initial integral transform (41) is modified H-transform
(40) with σ = 0, κ = 1 − γ :

(
Pγ

δ,1f
)
(s) = 2γ−1

∞∫

0

H0,2
2,2

[
x
t

∣∣∣∣
( 1−γ−δ

2 , 1
2

) (
1 + δ−γ

2 , 1
2

)
(
0, 1

2

) ( 1
2 , 1

2

)
]

t−γ f (t)dt. (82)

Similarly to the above, using Eq. (75) we have for
(
Pγ

δ,2f
)
(x) :

(
MPγ

δ,2f
)
(s) =

(
M

(
x1−γ

∞∫

0

(
RK2

)(x
t

)(
M−1f

)
(t)dt

))
(s)

=
(
M

∞∫

0

(
RK2

)(x
t

)
f (t)

dt
t

)
(s + 1 − γ ) =

= (
M

(
RK2

))
(s + 1 − γ )

(
Mf

)
(s + 1 − γ ) = (

MK2
)
(γ − s)

(
Mf

)
(s + 1 − γ ) =

= 2γ−1 �
(
(γ − s)/2

)
�

(
(γ − s + 1)/2

)

�
(
(1 − δ − s)/2

)
�

(
1 + (δ − s)/2

)(
Mf

)
(1 − γ + s). (83)

According to Eq. (61), relation (83) takes the form:

(
MPγ

δ,2f
)
(s) = 2γ−1 �

(
(γ − s)/2

)
�

(
(γ − s + 1)/2

)

�
(
(1 − δ − s)/2

)
�

(
1 + (δ − s)/2

) (
Mf

)
(1 − γ + s)

= 2γ−1H0,2
2,2

[( 1−γ
2 , 1

2

)
,

(
1 − γ

2 , 1
2

)
( 1+δ

2 , 1
2

)
,

(− δ
2 , 1

2

)
∣∣∣∣s

](
Mf

)
(s + 1 − γ ), (84)
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and hence, in accordance with Eq. (62), the initial transform
(
Pγ

δ,2f
)
(x) is also

modified H-transform (40), with σ = 0, κ = 1 − γ :

(
Pγ

δ,2f
)
(s) = 2γ−1

∞∫

0

H0,2
2,2

[
x
t

∣∣∣∣
(
1 − γ

2 , 1
2

)
,

( 1−γ
2 , 1

2

)
( 1+δ

2 , 1
2

)
,

(− δ
2 , 1

2

)
]

t−γ f (t)dt. (85)

Lν, 2-Theory of Transforms Pγ
δ,kf (k = 1, 2)

Lν, 2-theory of transforms (41)–(42) follows from Eqs. (82) and (85) with using

Theorem 9 for the H1
σ,κ -transform.

By Eqs. (82), (85), and (40), a∗
1 = a∗

2 = . . . = a∗
n = 0; �1 = �2 = . . . = �n =

0; p = (p1, p2, . . . , pn) = (2, 2, . . . , 2); q = (q1, q2, . . . , qn) = (2, 2, . . . , 2),

αi = (αi1 , αi2 , . . . , αin ) = ( 1
2 , 1

2 , . . . , 1
2 ), βj = (βj1, βj2 , . . . , βjn) =

( 1
2 , 1

2 , . . . , 1
2 ) (i = 1, . . . , p; j = 1, . . . , q); μ = γ − 1.

As for m, n and other parameters in Eqs. (57) and (59), we have:

m = 0, n = 2, α = −∞, β = min[Re(1 + γ + δ), Re(γ − δ)]; (86)

m = 0, n = 2, α = −∞, β = Re(γ ); (87)

respectively for the operators (41) and (42).

According to (80), 1 − ν does not belong to exceptional set EH of the H0,2
2,2-

function in the right-hand side of (81), if:

s �= 2m + 1, s �= 2l + 2 (l = (l1, l2, . . . , ln); m = (m1,m2, . . . ,mn) ∈ Nn
0 ),

(88)

for Re(s) = 1 − ν.

According to (83), 1 − ν does not belong to exceptional set EH of the H2,0
2,2-

function in the right-hand side of (84), if:

s �= −δ + 2m + 1, s �= δ + 2l + 2 (l = (l1, l2, . . . , ln);m = (m1,m2, . . . , mn) ∈ Nn
0 ),

(89)

for Re(s) = 1 − ν.
By Eqs. (82), (85) and (86), (87), from Theorem 9 we deduce Lν, 2-theory of the

transforms Pγ
δ,kf (k = 1, 2).

Theorem 11 Let

−∞ < ν1 − Re(1 − γ1) < min[Re(1 + γ1 + δ1), Re(γ1 − δ1)], Re(γ1 − 1) ≤ 0;

−∞ < ν2 −Re(1−γ2) < min[Re(1+γ2 +δ2), Re(γ2 −δ2)], Re(γ2 −1) ≤ 0; . . . ;

−∞ < νn − Re(1 − γn) < min[Re(1 + γn + δn), Re(γn − δn)], Re(γn − 1) ≤ 0.

(90)



314 S. M. Sitnik and O. V. Skoromnik

There hold the following assertions:

(a) There exists a one-to-one map Pγ

δ,1 ∈ [Lν,2, Lν−Re(1−γ ),2] such that the
relation (81) holds for f ∈ Lν,2 and Re(s) = ν − Re(1 − γ ). If Re(γ − 1) = 0
and Eq. (88) holds, then Pγ

δ,1 is one-to-one on Lν,2.

(b) The transform Pγ

δ,1f does not depend on ν in the sense if ν1 and ν2 satisfy

Eq. (90) and if the transforms Pγ

δ,1f and P̃γ

δ,1f are defined in respective spaces

Lν1,2
and Lν2,2

by Eq. (81), then Pγ

δ,1f = P̃γ

δ,1f for f ∈ Lν1,2
⋂

Lν2,2
.

(c) If Re(γ − 1) < 0, then for f ∈ Lν,2 Pγ

δ,1f is given by Eqs. (41) and (82).

(d) Let λ = (λ1, λ2, . . . , λn) ∈ Cn, h = (h1, . . . , hn) > 0, and f ∈ Lν,2. If

Re(λ) > (ν − Re(1 − γ ))h − 1, then Pγ

δ,1f is represented in the form(
Pγ

δ,1f
)
(x) = 2γ−1hx1−(λ+1)/h d

dx x(λ+1)/h×

×
∞∫

0

H0,3
3,3

[
x
t

∣∣∣∣
(−λ, h),

( 1−γ−δ
2 , 1

2

)
,

(
1 + δ−γ

2 , 1
2

)
(
0, 1

2

)
,

( 1
2 , 1

2

)
, (−λ − 1, h)

]
t−γ f (t)dt, (91)

while for Re(λ) < (ν − Re(1 − γ ))h − 1 is given by(
Pγ

δ,1f
)
(x) = −2γ−1hx1−(λ+1)/h d

dx x(λ+1)/h×

×
∞∫

0

H1,2
3,3

[
x
t

∣∣∣∣
( 1−γ−δ

2 , 1
2

)
,

(
1 + δ−γ

2 , 1
2

)
, (−λ, h)

(−λ − 1, h),
(
0, 1

2

)
,

( 1
2 , 1

2

)
]

t−γ f (t)dt. (92)

(e) If f ∈ Lν,2 and g ∈ L1−ν+Re(1−γ ),2, then there holds the relation:

∞∫

0

f (x)
(
Pγ

δ,1g
)
(x)dx =

∞∫

0

2γ−1(P∗γ

δ,2f
)
(x)g(x)dx, (93)

where
(
P∗γ

δ,2f
)
(x) is the transform

(
P∗γ

δ,2f
)
(x) =

∞∫

x

(
t2 − x2)−γ /2Pγ

δ

(
t
x

)
f (t)dt = g(x) (x > 0). (94)

Theorem 12 Let

−∞ < ν1 − Re(1 − γ1) < Re(γ1), Re(γ1 − 1) ≤ 0;

−∞ < ν2 − Re(1 − γ2) < Re(γ2), Re(γ2 − 1) ≤ 0; . . . ;

− ∞ < νn − Re(1 − γn) < Re(γn), Re(γn − 1) ≤ 0. (95)
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There hold the following assertions:

(a) There exists a one-to-one map Pγ

δ,2 ∈ [Lν,2, Lν−Re(1−γ ),2] such that the
relation (84) holds for f ∈ Lν,2 and Re(s) = ν − Re(1 − γ ). If Re(γ − 1) = 0
and Eq. (89) holds, then Pγ

δ,2 is one-to-one on Lν,2.

(b) The transform Pγ

δ,2f does not depend on ν in the sense if ν1 and ν2 satisfy

Eq. (95) and if the transforms Pγ

δ,2f and P̃γ

δ,2f are defined in respective spaces

Lν1,2
and Lν2,2

by Eq. (84), then Pγ

δ,2f = P̃γ

δ,2f for f ∈ Lν1,2
⋂

Lν2,2
.

(c) If Re(γ − 1) < 0, then for f ∈ Lν,2 Pγ

δ,2f is given by Eqs. (42) and (85).

(d) Let λ ∈ Cn, h > 0, and f ∈ Lν,2. If Re(λ) > (ν −Re(1−γ ))h−1, then Pγ

δ,2f

is represented in the form

(
Pγ

δ,2f
)
(x) = 2γ−1hx1−(λ+1)/h d

dx
x(λ+1)/h×

×
∞∫

0

H0,3
3,3

[
x
t

∣∣∣∣
(−λ, h),

(
1 − γ

2 , 1
2

)
,

( 1−γ
2 , 1

2

)
( 1+δ

2 , 1
2

)
,

(− δ
2 , 1

2

)
, (−λ − 1, h)

]
t−γ f (t)dt, (96)

while for Re(λ) < (ν − Re(1 − γ ))h − 1 is given by

(
Pγ

δ,2f
)
(x) = −2γ−1hx1−(λ+1)/h x

dx
x(λ+1)/h×

×
∞∫

0

H1,2
3,3

[
x
t

∣∣∣∣
(
1 − γ

2 , 1
2

)
,

( 1−γ
2 , 1

2

)
, (−λ, h)

(−λ − 1, h),
( 1+δ

2 , 1
2

)
,

(− δ
2 , 1

2

)
]

t−γ f (t)dt. (97)

(e) If f ∈ Lν,2 and g ∈ L1−ν+Re(1−γ ),2, then there holds the relation:

∞∫

0

f (x)
(
Pγ

δ,2g
)
(x)dx =

∞∫

0

2γ−1(P∗γ
δ,2f

)
(x)g(x)dx, (98)

where
(
P∗γ

δ,2f
)

is given by

(
P∗γ

δ,2f
)
(x) =

∞∫

x

(
t2 − x2)−γ /2Pγ

δ

(
x
t

)
f (t)dt = g(x) (x > 0). (99)

Inversion Formulas of Transforms Pγ
δ,kf (k = 1, 2)

By substitution Eqs. (82), (85), and (40) parameters in Eq. (60) leads to

α0 = 0, β0 = ∞; (100)

α0 = 1 + max[Re(δ − 1), Re(−δ − 2)], β0 = ∞; (101)

respectively for the operators (41), (42).
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According to Eq. (82) the relation formulas (68) and (69) for Pγ

δ,1f take the
forms:

f (x) = −21−γ hx(λ+1)/h−1+γ d
dx

x−(λ+1)/h×

×
∞∫

0

H2,1
3,3

[
t
x

∣∣∣∣
−(λ, h),

( γ+δ
2 , 1

2

)
,

( γ−δ−1
2 , 1

2

)
( 1

2 , 1
2

)
,

(
0, 1

2

)
, (−λ − 1, h)

](
Pγ

δ,1f
)
(t)dt, (102)

or

f (x) = 21−γ hx(λ+1)/h−1 d
dx

x−(λ+1)/h×

×
∞∫

0

H3,0
3,3

[
t
x

∣∣∣∣
( γ+δ

2 , 1
2

)
,

( γ−δ−1
2 , 1

2

)
, (−λ, h)

(−λ − 1, h),
( 1

2 , 1
2

)
,

(
0, 1

2

)
](

Pγ

δ,1f
)
(t)dt. (103)

According to Eq. (85) the relation formulas (68) and (69) for Pγ

δ,4f take the
forms:

f (x) = −21−γ hx(λ+1)/h−1+γ d
dx

x−(λ+1)/h×

×
∞∫

0

H2,1
3,3

[
t
x

∣∣∣∣
(−λ, h),

( γ−1
2 , 1

2

)
,

( γ
2 , 1

2

)
(− δ

2 , 1
2

)
,

(
δ+1

2 , 1
2

)
, (−λ − 1, h)

](
Pγ

δ,4f
)
(t)dt, (104)

or

f (x) = 21−γ hx(λ+1)/h−1 d
dx

x−(λ+1)/h×

×
∞∫

0

H3,0
3,3

[
t
x

∣∣∣∣
( γ−1

2 , 1
2

)
,

( γ
2 , 1

2

)
, (−λ, h)

(−λ − 1, h),
(− δ

2 , 1
2

)
,

(
δ+1

2 , 1
2

)
](

Pγ

δ,4f
)
(t)dt. (105)

Theorem 13 Let Re(γ ) = 1, −∞ < ν < min[1, Re(2 + δ), Re(1 − δ)] and let
λ ∈ Cn, h > 0.

If f ∈ Lν,2, then the inversion formulas (102) and (103) are valid for Re(λ) >

(1 − ν)h − 1 and Re(λ) < (1 − ν)h − 1, respectively.

Theorem 14 Let Re(γ ) = 1, −∞ < ν < min[1, Re(1 − δ), Re(2 + δ)] and let
λ ∈ Cn, h > 0.

If f ∈ Lν,2, then the inversion formulas (104) and (105) are valid for Re(λ) >

(1 − ν)h − 1 and Re(λ) < (1 − ν)h − 1, respectively.
In the second part of the paper we summarize the corresponding results for the

one-dimensional case, obtained in [28].
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