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Abstract. In this note we give an elementary introduction to the theory of logarithmic differential
forms and their residues. In particular, we consider some properties of logarithmic differential forms
related with properties of the torsion holomorphic differentials on singular hypersurfaces, briefly discuss
the definitions of residues due to Poincaré, Leray and Saito, and then explain an elegant desecription of
the modules of regular meromorphic differential forms in terms of residues of meromorhic differential
forms logarithmic along a hypersurface with arbitrary singularities.
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Introduction

From the historical point of view, the concept of logarithmic differential form had its origin in
the classical theory of residues. The term "residue" (together with its formal definition) appeared
for the first time in an article by A.Cauchy (1826), although one can find such a notion as
implicit in Cauchy’s prior work (1814) about the computation of particular integrals which
were related with his research towards hydrodynamics. For the next three-four years, Canchy
developed residue caleulus and applied it to the computation of integrals, the expansion of
funetions as series and iufinite products, the analysis of differential equations, and so on ...

Though it was already transparent in the pioneer work of N.Abel. a major step towards the
elaboration of the residue concept was made by H. Poincaré who introduced in 1887 the notion
of differential residue l-form attached to any rational differential 2-form in C? with simple
poles along a smooth complex curve. Subsequently E. Picard (1901), G. de Rham (1932/36).
A Weil (1947) obtained a series of similar results about residues of meromorphie foris of degree
1 and 2 on complex manifolds: such developments were associated with colhomological ideas,
leading to the formulation of cochomological residue formulae. Such cohomological ideas were
later pursued by G. de Rham (1954) and J.Leray (1959) who defined and studied residues of
d-closed C'* regular differential g-forms on S\ D with poles of the first order along a smooth
hiypersurface D in some complex manifold S, g > 1.

Iu 1972 J.-B. Poly [24] proved that Leray residue is well determined for any (not necessarily
d-closed) serni-meromorphic differential forms w as soon as w and dw have simple poles along
a hypersurface.

In fact, for the first time these two conditions were considered by P.Deligne |11]; he introduced
the notion of meromorphic differential forms with logarithmic poles along a divisor, normal
crossings of smooth irreducible components. In such context this notion was extensively studied
in algebraie geometry and in differential equations by many authors (for example, by Ph.Griffiths,
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J.Steenbrink, N.Katz). As a result in 1975, Kyoji Saito [25] considered merornorphic differential
forms satisfied these conditions in the case of divisors with arbitrary singularities. Somewhat
later, his note has been published in a vohune [26] of the RIMS-publication series. which is
not accessible to many of those interested in the subject. Saito established the basic properties
of logarithmic differential forms and studied some applications to computing Gauss-Manin
counection associated with the minimal versal deformations of simple hypersurface singularities
of types Ay and Ay. In 1980 a paper by Saito [27] was published; it contaius an essential part
of materials of the above mentioned works. Among other things, in this paper a general notion
and Important properties of residues of logarithmic differential forms are discussed in detail.

At present time the theory of logarithmic differential forms is exploited fruitfully in various
fields of modern mathematics. Among them. one can mention the following:

complex algebraic geometry (the cohomology theory of algebraic varieties and Hodge theory
[12], [10]. [29], ete.).

topology and geometry (the theory of arrangements of real and complex hyperplanes [21],
[7]. the fundamental group of the complement of a singular liypersurface [19]. etc.).

the theory of singularities, the deformation theory and the theory of Gauss-Manin connexion
[26], [4]. ete.,

the theory of D-modules, the microlocal analysis, the theory of differential equations [11],
[22], the theory of flat coordinate systems [28], ete.,

complex analysis (the theory of Abel's integrals [15], Torelli theorems, the theory of primitive
forms and their periods [16]. ete.),

the theory of special functions (generalized hypergeometric functions [12], ete.),

mathematical and theoretical physies (the theory of Frobenius varieties and the topological
field theory [20], ete.)

Of course, this list is quite incomplete and can be easily extended by the specialists in
related fields of mathematics.

Following our previous work [3] in this note we give an elementary introduction to the theory
of logarithmic differential forms and their residues. In Section 1 we recall the basic notations,
definitions and properties of logarithmie differential forms aloug a reduced hypersurface in a
complex analytic manifold. In Section 2 we consider some relations of logarithmice differential
forms and torsion holomorphic differentials on singular hypersurfaces. In the next sections we
briefly discuss the definitions of Poincaré. de Rham, Leray and Saito residues, and apply the
theory of regular meromorphic differential forms to the case of singular Liypersurfaces. Among
other things, we obtain a highly elegant description of these modules on an arbitrary singular
hypersurface D in terms of residues of logarithmic differential forms.

1 Logarithmic differential forms

Let U be an open subset of C™, and let D be a hypersurface defined by an equation h(z) = 0,
where h(z) = h(z...., 2, ) 18 a holomorphie function in U, and z;,.... Zy, 18 a system of

coordinates. Suppose that D is reduced, that is. h(z) has no multiple factors.

Definition 1.1 ([25], [27]) A meromorphic differential g-form w, ¢ > 0, on U is called
logarithmic (along a divisor D) if w and its differential dw have poles along D at worst of
the first order. It meaus that hw and hdw are holomorphic differential forms on UL
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Remark 1.2 In fact, for the first time the above two conditions appeared in a work by Deligne
(see [11], Prop. 3.2, (7). p.72) who studied meromorphic differential forms with logarithmic poles
along divisors with normal crossings (thus. such a divisor D is the union of its smooth irreducible
colponents).

In practical computations, the second condition is usually replaced by the condition “dh A w
is a holomorphic differential form on U™ both conditions are equivalent. in view of the identity
dlhw)=dhAw+ b dw.

Let S be an m-dimensional complex manifold. and let Q% = (Q%. d)q:t!,l.... be the de Rham
comwplex of germs of holomorphic differential forms on S, whose terms, locally at the point

T € 5, are defined as follows:
Q%‘_r = Ol copdty, NoovNidzggen Yy ([Hrpon i) € [1.m].

Let D be a reduced hypersurface of 5. and let h = () be an equation of D, locally at the point
z € D. A meromorphic g-form w is logarithmic along D at z. if hw and hdw are holomorphic.
We denote the Og -module of germs of logarithmic g-form at = and the corresponding sheaf
of logarithmic differential g-form on § by Q% (log D) and Q% (log D), respectively. Thus, the
Os-module Q% (log D) is a submodule of O%(xD), consisting of all the “differential forms with
polar singularities along D.” Obviously, the sheaves Q% (log D) and Q% coincide off the divisor
D, for all g > 0. By definition,

1

= 05, OFL(0gD) = 102,

In what follows, when we consider the local situation the point z will be taken to be 0 for
simplicity. We shall also assume that U7 is an open subset of C™ containing the origin.

0% (log D) = QY

"Sr

Example 1.3 Suppose D C U be a Lyperplane or, more generally, a smooth hypersurface
defined by the equation z; = (). Then

; d
0% o(log D) = O.€1{1<ﬁ, Aoy dzm>

1

is a free Ogg-module of rank m. generated by the forms dz; /2. dzs. .. .. dzn,. Moreover,

q
0% ,(log D) = /\Q};,_[](l‘-’gD): l<g=<m

Example 1.4 More generally, let us consider the case when D is the union of & < m coordinates
hyperplanes in § = C™. In other words, D is a strong normal crossing. This case considered in
many works published before Saito’s preprint [25]. Then the defining equation of D is written
as follows: b = z; -+ 2z = (. and an easy calculation shows that

0L, (log D) = og_t,<ﬁ, B dzm>._

2 Zk

and for all 1 € ¢ < m there are the following isomorphisms

g
Q?;-_”{lug D)= /\ lef{](log D).

Thus, 0% ,(log D) is a free Ogp-module of rank (:’;)
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The following statement is a direct consequence of the basic definition (see [1], or [2], §1).

Claim 1.5 Let D C U be a reduced hypersurface defined by the equation h = 0. Then for any
q > 1 there erists a natural isomorphism of Ogy-modules

0%, m ((dh/h) A Q%I]l) 2 dh A Qf;;]l{log D).

Proof. Let us remark at first that there is a natural inclusion
Do () ((dh/h) AOEL) — dh A Q% (log D).

If an element w € -Q%.u belongs to the Ogg-module on the left side, then it can be represented
in the form w = (dh/h) A 7 for some 7 € Q}]}l. Hence, by definition,

(n/h) € Q% (log D) = w € dh A Q% (log D),

and we obtain the desirable inclusion. On the other hand, h-lel{log D) C Q%:,l. Multiplication

by Adh induces the map

dh A Q5 (log D) — % 7% i

Obviously this gives us the inverse map to the first inclusion. This completes the proof of Claim.

Lemma 1.6 ([27], (1.1).iti))) Let w be a meromorphic g-form on U, q > 0. and let D C U be
a hypersurface as above. Then w is logarithmic along D if and only if there exist a holomorphic
function g defining a hypersurface V' C U, a holomorphic (g — 1)-form € and a holomorphic
g-form n on U such that

a)dime DNV <m— 2,

dF
b) g:.,'::f\g—r,l.
b

Proof. For simplicity let us cousider the case m = 2. Suppose that w is a logarithmie g-form.
Then we have

aydz; + asdz hia, — hia
w= % dhhw= %dzl A dzg = b{z)dzy A dzs,
1 1

where a;.a; and b(2) are holomorphie, and A} = 8h/dz;. i = 1,2. Further,

, hlajdz, + hiasdzs
how=————"""=

h

h,a1dz + hiaidze  hlas — hha dh
btk i, YO i 3 l.fzg=—!\al+b(z)d22.

h : h h

It means that

hiw = % Aay +b(z)dz.
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There is analogous representation for hjw, and hence for any gw, where g € J(h) = (h}.hi),
the Jacobian ideal of h. Since D is reduced, there is a function g € J(h) defining a non-zero
divisor in Op/(h) as required in the condition a).

Conversely, the relation b) implies that

hw = dh x’\é—i—z.
g g

that is, hw and dh A w are holomorphic in codimension > 2. hence, in virtue of the Riemann
extension theorem, they are holomorphic everywhere. This completes the proof when m = 2.
The general case can be considered analogously.

Corollary 1.7 ([25]) With the preceding notations the following conditions are equivalent:

1) w e Q% (log D),
Oh df

2) %\h € }—E ANWT 4+ forall i=1,....m.
Zj 1

Corollary 1.8 The sheaves Q%(logD). g = 0.1.....m. are Og-modules of finite type: the

direct sum %g‘z[]ﬂg(log D) is an Og-exterior algebra closed under the exterior differentiation d.

As a consequence, 0%(log D) are coherent sheaves of Og-modules for all ¢ > 0.

2 Torsion differentials

In this section we counsider simple relations between logarithmic differential forms and torsion
Lolomorphic differentials on hypersurfaces with singularities. By definition, Op g = Ogg/(h)0sp.
and
T e q g-1
Q0 =%,/ (9%, +dhAQT,), g2= 1.

Thus, Q% , is the Op g-module of gerns of holomorphic differential forms on the hypersurface

D at the point 0 € D. The module O}, is usually called the module of Kihler regular

differentials. The standard differentiation d induces the action on 0%, denoted by the same

syiibol. Thus, the de Rhiam complex of sheaves of germs of holomorphic differential forms on
D is well defined:

Qp = (9%, 4d)

For completeness, recall the notion of torsion. Given a commutative ring A with the total

g=0,1,..."

ring of fractions F, and an A-module N of finite type, we consider the kernel of the canonical
map t: N — N ®4 F. the torsion submodule of N, and denote it by Tors N it consists of all
the elements of N which are killed by non-zero divisors of A.

It is well-known that torsion differentials Tors 0%, play a key role in analysis of topology
and geometry of singular varieties. Iu the case of an isolated n-dimensional singularity (D.0),
the torsion modules Tors Q%J.[] are trivial for all ¢ = 1.....n — 1. while Tors QF , is a finite
dimensional vector space. Furthermore, if D is the quasi-homogeneous germ of a hypersurface
or complete intersection with isolated singularities then dim ¢TorsQF, = p, where p is the
Milnor number of D; it is a very important topological invariant of the singularity.

The following examples show that generators of the module of logarithmie differential forms
are naturally expressed through torsion differentials on D.
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Example 2.1 Suppose § = C? and consider the hypersurface D given hy the equation h =
ry = (. It is a plane curve with a node. Iu other words, it 1s an A;-singularity, a very particular
case of strong normal crossing from Example 1.4. Then

= & fsAd
QL ,(log D) = O";{]<E %> !]%{][logD)Eﬂs,u<%>

are free Ogg-modules of rank 2 and 1. respectively. In this case there is also the following
representation: Q% (log D) = Ogol(dh/h. 8/h), where § = ydz — zdy. It is not difficult to verify
that § € Tors QD o- Indeed, taking a non-zero divisor (z + y) € Op,y one obtains the following
identities in Ok, :

(z+y)-0 = zyds — $’dy + yidr — zydy = —(z — y)dh + 2h({dz — dy) = 0.
Moreover, in this case, Tors Q) , = Opg(8) = C{F), u= L.

Example 2.2 (cf. [30]) With the preceding notations let D C S be a plaue curve with a cusp
given by the equation h = z2 —4® = 0. In other words, it is an A,-singularity. Easy caleulations

show that
dh  2ydz — 3z dr A dy
QL (log D) = {95‘_{,<? %> 02 (log D) = O;;.U<TJ>

are again free Ogp-modules of rank 2 and 1. respectively. Notice that the munerator of the
second generator of QL (log D). the differential 1-form § = 2ydx — 3zdy. represents an element
of the forsion submodule Tors QD{] C Qb Indeed, in our case 4 = Opy = C{2, %), N =
Q}D{] F = C(t). and the mapping : is given by the normalization of D, that is, = = #*, y = t%
Thus, (8) = 1(2ydz— 3zdy) = 2t2dt3 —3t3dt® = 0, that is, 8 € Ker(1) = Tors Q} ;. Equivalently,
take a non-zero divisor £ € Opg. One then obtains z-6 = 2zydz — 3z%dy = 5hdz — 3zdh = () in
Opo = Q%/(hQ%g+dhAQsy). Further calculations show (ef. [30]) that Tors Qh o = Opo(f) =
C(8, y-#), that is, p = 2.

Proposition 2.3 ([1]) Forg = 1.....m, there are eract sequences of Oggy-modules
-1 4 wdh
00— Q?;‘,nl '?[1 (10“ D) 2 Oq n)"h '?[1 — Q%}.{J — 0,

0 — 0% /dh A Q% (log D) 2 0% /dh A Q% — Q% — 0,

dh

q q-1 g
0— Q%y+ £ ALy — 9%, (log D) 2, Tors Q5L — 0.

where the homomorphisms of exterior and wsual multiplication are denoted by Ndh and by -h,
respectively.

Proof. The exactness of the first and second sequences fDll()“b directly from the hasic
Definition 1.1. Let us counsider a differential g-form w € ﬂ% , represented an element of the

quotient qu-{] /R (?q.;-{] (log D). Suppose dh A w = h-n, n € QL. and set & = w/h. It is obvious
that h& and dh A & are holomorphie, hence & 0?;{] (log D) by definition. Tlus the first
sequence is exact from the left. Evidently it is exact from the right too. In the same way. one
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can easily prove the exactness of the second sequence. The exactuess from the left of the third
sequence follows from definition. In view of Lemma 1.6, it is clear that Im(-h) C Tors Q%
because for a non-zero divisor g one has the following chain of implications:

i} .
gw = % N+ = glhw)=dhANE+Rp=0 = hw € Tors Q%‘_n.

Now let take an element w € Tors Q% . By definition, there is a non-zero divisor g € Opg such

that gw = 0. We will denote by and w their representatives in Ogy and Q% .. res sectively.
g g I 5,03 18]

Then one has gw =dhAE+ R, £ € 0‘.;{] n € Q% . Since g is a non-zero divisor, the condition

b) of Lemma 1.6 is satisfied. This implies that w/h =& € _Q‘f; ollog D), that is, w € Im (-h).

Remark 2.4 It is well-known [L4] that Tors 0%, , = 0, 0 < g < ¢, where ¢ = codim (Sing D, D)
and Sing D is the singular locus of D. Oun the other side, auy reduced Lypersurface (or complete
intersection) D is normal if and ouly if ¢ > 2 by virtue of Serre’s eriterion (“R; and S, conditions
imply normality”). Hence, when D is normal then the exact sequence of Proposition 2.3 implies
the following isomorphisms

Th
0% (log D) = 0% +%mgn 1<g<ec

It is not difficult to see that the support of Tors QL is contained in the singular locus
Sing D of the hypersurface D. Moreover, there is a system of generators of Op-module Tors 0}
containing at least m — 1 elements.

Corollary 2.5 There are the following long exact sequences of Ogg-modules

0— 0%, + 2 A 0?;_[] — 05[]( og D) Ay QD 0 — Q%{];"Tors %, — 0,

0—dhAQLY (log D) — 0%, 8 %A f??—;—nl — 0%,(log D) —, Tors 0%, —0.

Proof. This is an immediate consequence of Proposition 2.3 and Claim 1.5.

Remark 2.6 The last sequence is very useful in computing the torsion modules in the case
when Qqs{](log D) is a free Ogp-module; it gives us an Ogg-free resolution of the torsion module.
Following P.Cartier [9] a hiypersurface D C S is called Saito divisor or, more often, Saito free
divisor if for some g > 1 and. consequently, for all g, the Og-module Q% (log D) is locally free.
For example. the diseriminants of the minimal versal deformations of isolated hypersurface or
complete intersection singularities are Saito free divisors.

3 DPoincaré residue

The following construction [15] is a direct generalization of the original Poinacaré definition of
the residue 1-form associated with any rational 2-form in C2.

Let w be a meromorphic differential m-form on an m-dimensional complex analytic manifold
S with a polar divisor D < §. Thus, locally we have a representation:

@) AL Aday
T h(z) ’
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where f and h are germs of holomorphie funetious, and h is a local equation of D. By definition,
the Poincaré residue résp(w) is a meromorphic (m — 1)-form on D whose singularities are
contained in the singular locus Sing D C D. To define this form explicitly, let us note that at
each point € D\ Sing D at least one of the derivatives of h does not vanish:

Oh

62:4; L=

£ 0.

Then the Poincaré residue of w in a small neighbourhood of x is defined as follows:

m_if{z}dzm...,f\c?in...;\dzm
Oh(z) [0z

résp(w) = (—1)
D

It is not difficult to verify that this restriction depends neither on the index i@ nor on the local
coordinates and on defining equations of D. Moreover, the Poincaré residue is holomorphic on
the complement S\ D. When D is smooth, one can take h(z) = 2,,. and then. as usually.

dzy Aoohday
résp F(Z)dz 5 = f(z)dzy A ... Adzpey,
znl

that is, résp(w) is holomorphic ou D. As a result one has the following sequence of sheaves

m my Teés m=1
(R o gy i W

where QF(D) denotes the sheaf of meromorphic forms on § having a simple pole along the
divisor D. In particular, one concludes that the germ of every holomorphic (m — 1)-form on
the nonsingular divisor D is a Poinearé residue. It is obvious that this is true globally when the
first cohomology group vanishes: H'(S, Q%) = 0.

4 Leray residue-form

As remarked in Introduction De Rham and Leray considered d-closed '™ regular differential
forms on S\ D having simple poles on D, where D is a submanifold of codimension 1 in a
smooth manifold S. In particular, they proved that locally for such a form there is the following
represenation:
(%) W= ﬂ NE+ 1,
h

where £ and # are germs of regular differential forms on S. In fact, £ is globally and uniquely
determined: it is closed on D. If w is holomorphic on S\ D then the form £, is holomorphic on
D. The form £, is called the Leray residue-form on D: it is denoted by res[w]. It is not difficult
to see that the definition of the Leray residue-form generalizes the Ponacaré residue described
above.

Similarly to the construction from the end of the previous section, making use of local
representation (x), forauy g =1...., m one gets (see [23]) the exact sequence

Tes
0— 0% — Q4D) — 05 —0,
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Below we show that a generalization of this sequence to the case when the divisor D has
arbitrary singularities requires more delicate considerations.

5 Saito residue map

In fact, Leray considered d-closed forms on §'\ D in order to construct a natural homomorphism
of cohomology spaces H?(S\ D) — H?"Y(D). and then the co-boundary homomorphisms of
homology groups H,_;(D) — Hy(S\ D). the main ingredient of his famous residue-formula.

Furthermore, in 1972 J.-B. Poly [24] proved that the representation () are valid for auy
semi-meromorphic differential form w as soon as w and dw have simple poles along a smooth
hypersurface D C S. By definition, a differential form w is called semi-meromorphic when
locally all its coefficients can be represented as quotient of smooth and holomorphic functions.
Hence. the Leray residue is also well determined for such forms without assumption on their
d-closedness.

Following Saito |27] we describe a natural generalization of the Leray residue for meromorphic
differential forns satisfying the above two conditions for a divisor D with arbitrary singularities,
that is, for logarithmic differential forms in the sense of Definition 1.1.

Let D C S be a hypersurface, and let the sheaf Mp be the Op-module of germs of
meromorphic functions on D.

Definition 5.1 (see [27]. (2.2)) The (logarithmic) residue morphism is a homomorphism of
Og-modules
res.: Q%(log D) — Mp R0, U5,

defined locally as follows: taking the representation of the basic Lemma 1.6, for auy w €
0% (log D) we set

Tes. w = —-§.

Thus, the residue res. w is the germ of the meromorphic (g—1)-form in the module Mp y®o, ,

g=1
Q5

Claim 5.2 ([27], (2.5)) Let D C S be a hypersurface. Then for any q = 1 there exists the
following exact sequence of Og-modules

0 — Q% — Q%(log D) ™= Mp e, 057

Proof. Making use of the representation of logarithmic forms as in the definition of the symbol
res. above, oue obtains
resw=08gwe, cwel,

This completes the proof.
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Remark 5.3 In particular, for ¢ = 1 one has
0 — Qf — Qi(log D) = Mp = Mj.

where D is the normalization of D. Moreover (see [27], Lemma (2.8)), if m: D — D is the
morphism of normalization, then the image Im (res. ) contains 7.(0) consisting of the so-called
weakly holomorphic function on D. that is, of meromorphic functions, whose preimage hecomes
holomorphic on the normalization.

Remark 5.4 By this way we can consider the image of the logarithmic residue res. Q% (log D) as
an O p-module. Indeed, the definition of logaritlunflc forms implies that k- ('Q%,U{ log D)/Q%,) =
0. Hence. the multiplication by h- annihilates Im (res. ).

6 Regular meromorphic forms and Saito residue map

We are going to describe the image of the Saito residue map in terms of regular meromorphie
forms for logarithmic differential forms with poles along a divisor D C 5 with arbitrary
singularities together with a generalization of the exact sequences from Section 3 and Section 4.

Now we consider the sheaves of O p-modules wh. g > 0. called regular meromorphic differential
g-forms on the hypersurface D. So let X, dim X =n > 1. be the germ of an analytic subspace
of an m-dimensional complex manifold S, and let W% = Extiy7"(0x. QF) be the Grothendieck
dualizing module of X.

Definition 6.1 ([18], [8]) Thesheavesw%, g =0.1.....n.of regular meromorphic differential
g-forms on X are defined as follows: w% consists of all meromorphie differential forms of order

g on X such that w A n € W% for any 5 € O 7 or, equivalently, w% = Homg, {Q;_-q. \u;r)

Let us apply this Definition in the particular case when X = D is a hypersurface, that is,
n=m-—l.

Claim 6.2 Let D C U be a reduced hypersurfuce. Then res. Q?;H(log D) C w} for all ¢ =

Proof. Set dz = dz; /... Adzy,. Then with preceding notations one has a natural isomorphism
wh = Op(dz/dh). That is, wh = Homp, (5% Op(dz/dh)) for all ¢ = 0,1,....n. Then
dh q |

Corollary 1.7 implies that Z,Tes. O%(log D)m & _Q‘E'Li pep foralli=1.....m. or, equivalently,

dh A res. Q% (log D}|U C QHD’*.L" This completes the proof.
Below we use an equivalent description of the regular meromorphic differential forms w. g >

0. on the hypersurface D obtained by D.Barlet in a more general context (see (8], Lemma 4).
In fact. there is the following exact sequence of Op p-modules:

[ 1 iy b 1 2
00— \u'%.n — EXT@S:“(OD_”. Qf-;‘_{] ) —— E}Ct@s:“(OD_n. Q%I] ), g=0.

where wh , C 7.5"0%, and € is induced by the multiplication by the fundamental class of D in
S. Thus, C(v) corresponds to the Cech cocycele w/h such that w = v A dh.
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Theorem 6.3 ([2], §4) Let D C S be a reduced hypersurface. Then for any g > 1 there is the
following eract sequence

0— 0" — 08 (log D) 255w, — 0.

In particular, w}, and res. Q?H(l(}g D) are isomorphic Op-modules.
Proof. It is sufficient to verify the statement locally. In view of Claimm 6.2 it remains to prove
that any element of w}, can be represented as the residue of a logarithmic g-form.

Let K.(h) be the ordinary Koszul complex associated with h, that is.

o
0— Os_neu i’ {95,_{1 = OD.(J — 0,

where K (h) = Ogpep. Kol(h) = Ogp and dy(eg) = h. d_;(1) = 1. Then we have the following
piece of the dual exact sequence

» — Homp, , (Ko(h), _Qg]l) =, Homg, ,(X: (k). Qgﬁ) —

— Extés:n((f]a.rh Q?i-j{—]l} — (.

Hence, any element of Extlﬁ,__?_['({f)g‘_{]. Qif;t]l) can be represented as a Cech (-cochain (1ore
explicitly. a (-cocyele) in the following way

v/h € Home,,(X1(h). Q%) = Ch Q5.

where v € Q4" Choose now an element v € Q%% such that

v | 2
7 Ndh e EH@E:['{OD.EJ- Q?-’,'IJ ),

corresponds to the trivial element. That is, v A dh/h is defined by an element of

d?(Homg, ,(Ko(h), Q%‘LQ)). This means that v A dh = k- 7 for some form n € Q%2 The first
g+1

exact sequence of Proposition 2.3 implies that v € k- Q% (log D). Set # = €~Y(v/h). By
definition, €(5) corresponds to a Cech cocycle v/h such that v = DA dh (take v =D, w=v
in the above description of w with the help of multiplication by the fundamental class). This
vields €(7) = v/k = ¥ A dh/h, and res. (v/h) = . Thus, for any element 7 € w}, there is a
preimage under the logarithmic residue map represented by v/h. This completes the proof.

Remark 6.4 In fact, the representation (x) implies directly that res. Q% (logD) = wj =
Op(dz/dh). in view of the formal decomposition dz/h = (dh/k) A (dz/dh). Further, it is not
difficult to verify that in the case of plane node of Example 2.1 there is natural isomorphisms
res. Q};(log D) =m,(0p) = w‘% (cf. Remark 5.3). A similar result is also valid in a more general
situation (see [27], Theorem (2.9)).

Remark 6.5 It should also be underlined that there is a far reaching generalization of main
results of this section to the case of complete intersections. In papers [3] and [6] it was developed
the theory of multi-logarithmic differential forms and their residues with applications to the
general theory of multidimensional residue and residue currents on complex spaces.
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BBIYETHI JIOTAPHMOMWIYECKNX TUOOEPEHITITAJIBHBIX ©OPM

A.T. Anekcanupos
WHetutyT npobnem ynpasneHns PAH,
yn. Mpodbeoroznasn, 65, Mockea, 117997, Poccus, e-mail: ag_ aleksandrov@mail.ru

AnnoTtauua. B 370l 3aMeTKe H3IAraeTcd UIEMENTAPIOE BEEIEHNe B TEOPUIC Jorapudmudeckiny
audchepennanniuny opy B 1Y BLUeToB. B 4acTiocTH, paccMaTpUBaloTes HeKOTopLIe CBOHCTRA J10-
rapuchyiydeckux hopu, cBA3ANNLE ¢ Kpydelney roiovopdnnx 1uddepenunanos na ocodLIX runep-
HOBEPXIIOCTAY, KPATKO 0OCVIAIOTCH LOUATHs Bohidera, Jannoie [Tyvanxape, Jleps u Caurto, a 3aTem
NPUBOANTCH KPACUBOE OUHCANNE PeryIaplnix smepovopduux audihepeliualon B TEPMUIAX BLIYETOR
sepomopdiunx guddepenupatLuni opn, JorapudMudeckux BI0AL PTHIEPHOBEPXUIOCTH ¢ IPOH3BOIL-
HLIMH 0CODEHHOCTAMH.

Kmouesrle cmoba: norapudminueckue dudubepeninaninie (hopMil, ropMa-BLIMET, peryasaplible
svepovopdile uddepeniuannine opMLl, Kpyuenne roaovopdunx uddepenunanos.



