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Abstract. A new analytic—numerical method has been developed for solving BVPs in 3D domains
with cones of arbitrary base for certain elliptic equation with piecewise constant coeflicient. The
solution is obtained by the use of special basic functions — the Multipoles, which are costructed in an
explicit form. The method supplies high accurate evaluation of the solution, its derivatives, singularity
exponents and intensity factors near the geometrical singularities — edges and the corner vertex.
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1 Introduction

We consider boundary value problems (BVPs) for certain elliptic equation with piecewise
constant coefficient in domains with cones of arbitrary base (particularly, with polyhedral
corners). when the surface of discontinuity of the coefficient (interface surface) is a conical
one passing through the vertex of the initial cone. An equivalent statement, which is called
a transmission problem, consists in solving the Laplace equation with so called transmission
conditions on the interface surface [1].

Solutions of such BVPs have singularities at vertices of the cones [2]-[8]. Development of
effective methods for solving these BVPs. including high accuracy computation of the singularity
exponents, became a challenging issue [1]. [9]-[13].

I this work we present a new effective analytic—numerical method for high-aceuracy compu-
tation of these singularities at cones of arbitrary base (in particular, for polyhedral corners),
when conical interface surface also hias an arbitrary base. This method represents a generalization
of the Multipole method, previously developed in [14]-[16] for solving a certain class of 2D and
3D elliptic BVPs in domains of complex shape with geometric singularities of different kinds.
For the case of the Laplace equation, the Multipole method in domains with cones has been
developed in [17]-[19].

The principle underlying our method consists in using a system of basic functions that
conform to the structure of the solution near the conical surfaces of the boundary and iuterface.
We call these functions Multipoles due to their similarity to ordinary multipoles, known in the
theory of potential [20]. Such systems possess good approximation properties. Most important
is the fact that these basic functions can be expressed in explicit analytic form in terms of
special functions.

By wvirtue of these features the method proves most effective for precise computation of
exponents at the cone singularity.

The work is supported by RFBR (projects 07-01-00293, 07-01-00503) and by Program Ned of Fundamental
Research of the Mathematical Sciences Department of RAS.
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2 Statement of the problem

2.1 Domains X and Q)

Let (r. 6. ) be spherical co-ordinates of a point = in space R®. Denote by
§:={r=1,8¢€[0,q], ¢ €[0,2n)}

the unit sphere and by B? the unit ball in B3, Points # = () and # = 7 on §2 are called the
North Pole Py and South Pole Pg. respectively.

Consider two disjoint Lipschitz piecewise smooth contours £ and L, on the sphere §7, each
divides 8§ into two domains, one of which contains Pg and another Py, The domain containing
Py and bounded by L (by L;,) is denoted by 8 (by 8;,). Assume that £;, C 8 and denote
8. =8\ Sin; observe that 08, = L U L;,.

The domain X C RB* defined by the fornmla X := {r € (0.2c). (#, ¢) € 8} is an (infinite)
cone with base 8§, its boundary being the conical surface KX = {r € (0,00). (f. ¢) € L}
The domains Kin, Ker and their boundaries 3K, 0Ker are defined in a similar way, with the
vertex {0} shared by both cones, X = K, UK., conical surface 9K, contained in K U {0},
and 0K, = 0K U 0Ky.

Consider an important instance of cone X when it presents a trihedral corner with its three
faces being plane angles with common vertex {0} and with values of the angles being equal
to ma, where o € (0.2/3]. Denote by X® this trihedral corner. by 8% its base, and by L® the
coutour of this base. In this instance, the equation of contour £# can be written in the form

T(e+3); w0, &l
Lo = {(6.9) : 0= 0(p). g € [0.20)}, 8(¢) = { T(e): ¢ € (2, 4, 2.1)

with funetion T () given by the formula
T () = arccos [CUS w/v e+ cos? ;p} (2.2)

that involves parameter ¢ = (1 — coswa) (2 + 4cos ra)_l. It worth to be mentioned that
value 73 of dihedral angle between faces of K are related to the quantity wa by the formula
cosma = cos3 /(1 — cosw3).

The transmission BVP is being solved in a domain © € X homeomorphic to B* with
Lipschitz piecewise smooth boundary @Q. By definition, boundary 99 consists of the two
disjoint parts: 9 = v U T, where ~ is a closure of a simply-counected domain on the conical
surface @K with its vertex {0} being an interior point of v, and I' C X is a simply-connected
domain on a certain piecewise smooth surface. Note that X is an extension of  through T
Assume that 9%;, divides Q into two subdomains Q;, and Q... Define v, = 0K, N 7 and
ohserve that v, = #, N KN, Note that ~;, 18 the interface surface within domain O where
the transmission conditions are to be set.

Let the surface I' be divided by a Lipschitz piecewise smooth curve or contour into two
domains: D and N the latter correspond to the boundary conditions (the Dirichlet or Neumann
type) to be set on the corresponding parts of T
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2.2 The formulation of the transmission BVP with mixed Dirichlet — Neumann
boundary conditions

For a function ¢ defined on €, denote by g, (by ©er) its restriction to Qy, (to Qg ). Consider
the following transmission BVP for the Laplace equation in the domain 2:

At =0 in Q. A, =0 in Q.. (2.3)
with the transmission conditions on the interface surface

L:"in | o L"e.::| e in arz Vin |.r_ = Mex (3;,: T|5I"2:;:|,‘,,_ 1 (2‘]‘}
Yin Yin in in

where 3¢, and 3¢, are prescribed positive constants, d, being a normal derivative, and with
mixed Dirichilet — Neumann type conditions

w

=0, ¢|y=hp, OW|y=hx (2.5)

on the boundary 90 =~ UT.
We shall use the notation h(x) defined by equalities
hiz) = holz), z € D; R(z) = hxn{z), z= € N, (2.6)
and notatiou 3 defined by the formula
x =y, T € i o=, we Q. (2.7)
Transmission problem (2.3)=(2.5) can be rewritten in a generalized statement [6]-[8], [21]-
[24]. In order to do it. Soholev spaces are introduced, following [23]-[26].
L=
Denote by W}(€. v) a subspace of W} (Q) consisting of functions having zero trace on 7.
o
Similarly, define the space Wi(Q, v UD) as a subspace of W3 (€2) consisting of functions with
zero trace on v 1J D,
2
Let A be a subdomain of houndary 992, and let a be a subdomain of A. Denote by W2/?( 4, a)
a subspace of the Sobolev — Slobodetskii space FT'QI‘Q{A} counsisting of functions vanishing a.e.

ol el T
on a. Ouly the particular cases of the latter spaces W22(y U D, ~) and W20, ~ U D) are to
@

be employed below. The so called negative space W5 V2(80, v U D) is defined as a conjugate

By
space to W3/4(a9Q. v U D).
The boundary data hp and hy in conditions (2.5) are required to beloug to the spaces

ho € WH2(vUD,v),  hx € WyY2(00,~ U D). (2.8)

2 ov
A generalized solution of BVP (2.3)-(2.5) is understood to be a function v € W3 (.7)
satisfying boundary condition w|,D = hp and the integral identity

//(VL Vn)ds = [ hw nds

Q
for all test-funetions € W)(Q.~v U D), where the notation (... ) stands for the inner product
in Euclidean space B*, and 3¢ is defined by (2.7).
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Solvability of the formulated BVP is guaranteed by the following

Theorem 1. For any hp and hy satisfying (2.8) there erists a unique generalized solution
we 1%21(.(1'_.";-) of the problem (2.3)-(2.5).

It 1s clear that Theorem 1 admits a standard proof which reduces to the Riesz representation
theorem and follows well-known patterns (see e.g. [24]). Outside the boundary’s singularities,
regularity of the generalized solution of (2.3)—(2.5) 1s covered by the standard theory of elliptic
BVPs [3]. [6]. [8]. [21]. [23]. Namely, the generalized solution is infinitely differentiable at any
interior poiut x € 0% v, as well as at any interior point of . At ~;,. the generalized solution
is differentiable one-sidedly. i.e. on either side of vy, as many times as allows the smoothness
of 7. Omitting the details, we just mention that regularity of the geuneralized solution at
boundary points £ € D and z € N depends on the smoothness of boundary surface I' and
boundary data hgp, hay.

3 Construction of the system of basic functions (the Multipoles)

3.1 Reduction to a spectral problem for the Beltrami — Laplace operator with
transmission conditions

Our goal consists in constructing a system of functions U, (the Multipoles) that possess good
approximation properties and couform to the structure of the solution near the coniecal surfaces,
which contain singularities (the vertex and edges). The basic functions are defined on the whole
cone domain X; their restrictions to X, and XK., are denoted by W, ., and Uy ... respectively.
The desired properties of the basic functions require the following conditions to be met:
1) functions ¥, identically satisfy the Laplace equation in X with transmission conditions
(2.4) on dKn: 2) they identically meet the homogeneous Dirichlet condition T = 0 on dX;
3) they coustitute an orthogonal basis in Lo(8).
The Multipoles are represented in the form

U.(r, 8, ) = v Uly; 0, @), p = ulk); Rl By (3.1)

restrictions of U(u; 6, @) to 8iy and to S.. are denoted by Uk, and by Uz, respectively.
Thus U(pe(k): 8. o) = U are eigenfunctions with eigenvalues p(k) for the Laplace — Beltrami
operator in domain 8 on the unit sphere

1 d U 1 82U
i 5o ) + Grg s TAM T DU =0 mS\La (32
sinf g8 (s—.m g 9) sin2f Py e )L ) in8\ _ (3.2)

with the transmission conditions on interface line £, induced by (2.4). and with homogeneous
Dirichlet condition on L:

Uin =0. (3.3)

== (-"re:z‘ | Lin? in av D‘in |£—’in = Hex av (-'re:z‘ | . U

in L
o_ . 17 - » _ *
Denote by W, (8) a subspace of 1W)(8) consisting of functions having zero trace on L. A

o
generalized solution of BVP (3.2), (3.3) is understood to be a function U € W} (8) satisfying
the integral identity

/ ST ViV Y= i) [ UVds VYV € WiS) (3.4)
J8 J8



93 HAVYHEBIE BEJOMOCTII

“‘l Ne13(68). Brimyex 17/1 2009

where Vg stands for a tangential component to 8 of the gradient V. Note that an inuer product

[U-‘ T"J]S = [x{vs U VgV )ds
48

[}
induces an equivalent norm on W}(8).
Theorem 2. For a spectral problem (3.4). there erists a denumerable set of genera-
k=)

lized solutions U = U, € W3(8), p = u(k), k = 1.2..... The eigenvalues (k) have no finite
limit points, and p(k) — oo as k — oo. To each eigenvalue p(k) there corresponds at most a
k=)

finite number of generalized eigenfunctions U € WJ(8). The eigenfunctions {Uz} form a basis
in Ly(8) and W1(8), which is orthonormal in Lo(8) and orthogonal with respect to the inner
product [ ., .]s.

It is clear that Theorem 2 admits a standard proof following the pattern of [21].

Remark 1. In accordance with Theorem 2, all eigenvalues (k). k=1, 2, ... can be enumerated
in order of their nondecresing: each multiple eigenvalue should be counted accordind to its
multiplicity. Such renumbering establishes a one-to-one correspondence between eigenvalues
u(k) and eigenfunctions Uk.

3.2 Solution of the spectral problem

In what follows we restrict ourselves to the case of contours £, £, being star-like on §% with
respect to North Pole, when £ can be represented in the form

L={f¢):80==0() 8(p) € C(—ox, +ox), 8(p) =8(p + 27)}

and L;, cau be represeuted in a similar form.
The eigenfunctions of the problem (3.2), (3.3) are constructed using two systems of complex—
valued functions: {u™(p; 6. @) }35_g and {v™(u; 6, ) }oo_, defined by the formulas:

u™(p; 0, ) =P (cos 8) phe, v™(1; 0, ) = P(—cos 6) gt (3.5)

where Pf(t} are associated Legendre functions on the cut [27]. For short, in compli-
cated expressions we reduce the relations (3.3) to u™ (). v™ (u).

Note that if K is a circular coue, ie. L is a circumference {f# = 6, = const}, then
Re u™(y:8, ) and Tm u™(p: 8. ) are eigenfunctions of the problem (3.2), (3.3) with g = u!
being the root of mumber n(n = 1. 2....) of the equation Pz‘(cos Ay) = 0. Taking this fact

into account we rename and remumber eigenvalues p(k) as p and eigenfunctions U (u(k): 8. o)
as U ¥ (8, ¢) and UM (0, p).

Denoting restrictions of UM™*(f,¢) to 8;, and 8. by UM (6. ¢) and
UmZ.(6. ). respectively. let represent the desired eigenfunctions in the form of expansions
in terms of functions (3.5):

n,in

Um:t = Re Zi[}‘_lza,_ij: um+{{ﬂ}_ _421,_[}+ =1, ‘;1:1.{]— =i f3(‘)}

rm 0 m, m n. m+is m 0y -
Ung=Re Y {BpiEumtif) opiEamtipyl, popm @)



S.L. Skorokhodov, V.I. Vlasov. The multipole ... 94

Ohserve that functions (3.6), (3.7) with any coefficients identically satisfy the equation (3.2).
Unknown eigenvalues p and coefficients A™!%, B™!= Mm% in representations (3.6). (3.7)
should be found from relations (3.3), which unite the transmission conditions on interface line
L;, and boundary condition on outer contour L.

We shall make it in the following way. Functions U™ =(8, ) are sought as a limit

Unt(0.9) = lim UP*(M; 6, )

of consequent approximations U (0M; #, ) written in the form of finite sums (3.6), (3.7) with
coefficients depending on the length M of approximation. i.e.
M
Ura(M;6,p) =Red  ATIE(M)um™, AmOH(M) =1, AP (M) =i, (3.8)

o 1
=0

M
UrE(M;0,0) =Re Y

e {B:’*-*i(_ﬁf) u™H | gmiE(f) ymH } (3.9)

Coefficients A™!'=(M), By (M), Cr!'=()M) and approximate eigenvalues p= (M) are
determined by substituting I7,;*= (M) into the transmission and boundary conditions (3.3) and
by projecting the result outo the system of trigonometric functions exp (igy):

(L;Tfr(-lf) E}Cp(‘iq,\?)) o = [) (Lr:l:::z:(jf) i L"}rpi(jf] i:‘Xplilg-’..r"}) L . {) [31{))
(Hﬂ oUNE (M) /v — 5, UNE (M) /v, exp(iqyp) ).E. = 0, (3.11)
where g =m,...,m+M, and (fi1, fa)e or (f1. fo)z,. is the inner product in Ly(L) or in Ly (L),

Substituting representations (3.8), (3.9) into relations (3.10), (3.11) we obtain a system of linear
equations with respeect to coefficients A™!=(M), B™!=(M), C™!=(M)

DR = (), (3.12)

where
T
o_ _4:1,(]1(_1[)_ B::‘t.!]:t(‘]ur): C:a.{ld:(_\f)_ ‘qnm..-\fi(_hr}_ Brrin__-\f:t ['Jf)._ C:ln._-\afi(jﬂ

is a vector of the coefficients. Elements of matrix D™(y) of system (3.12) are expressed as
integrals over contours £ or L, of products of functions (3.5) or there normal derivatives on
Lin: so, these elements depend only on number m and parameter p.

In order to find a noutrivial solutions of homogeneous svstem (3.12), we equate the deter-
minant of its matrix to zero. and in the issue we obtain the relation det D™ () = 0. which
should be considered as a transcidental equation with respect to p. So. eigenvalue ;[ (M) is a
root of munber n (n = 1, 2, ...) of this equation.

The performed numerical experiments showed that the approximate eigenvalues and eigen-
functions converge to the exact ones. Namely. there hold the relations: 1) for any compact

M—se | (6. 2)EE

E C § it holds
} =0
2) for all coefficients in (3.8), (3.9) it holds

APE(M) — AT BMIE(M) o B, V(M) - O as M — oo;

lim Lma_x ‘{f;‘ni (M; 8, p) — UT=(8, )

3) for all eigenvalues it holds p(M) — it as M — x.
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3.3 Computation of integrals of frequently oscillating functions

One of important computational problems arising in the described algorithm is caleulation of
elements of matrix D™(u) of systew (3.12); those elements are expressed in the forn of integrals
over contours L or L, of the following type:

/ Pi(cos Bp)) exp(iby ) de. (3.13)

where #() is an equation of the contour: a and b are natural numbers, possibly very large. So,
(3.13) are integrals with frequently oscillating integrand; effective computation of those integrals
is a well-known challenging problem. A special analytic—munerical method has been developed
for computation of such integrals. This method represents integrals (3.13) as expouentially
convergent series involving integrals ft:fz cos®teos (3t) dt and related ones, which we have
computed explicitly via special functions, for whose computation high effective methods have
heen developed [28]. Particularly,

= /2 — -1
/ cos®teos (Bt)dt = mw (1l + )27 [B(l+%3, l—'—#)] .
Jo

where B(z, y) is Beta—function [27].

3.4 Numerical results

Note, that input data for the spectral transmission BVP (3.2). (3.3) consist. at first, of geometric
data, determined by outer contour L and interface line L;,, and, at second, of mechanical
quantity & 1= ./ Hep.

The method of solving this problem described in Sect. 3.2 has been realized for two types of
geometric data. For type I contour £ is L turned to the angle § L = {(f, ¢) : (6. p—0) € L=},
and L;, = L2n, a;, > «. Remind. that contour L2 is defined by (2.1), (2.2).

For type II contour £ = £2, and interface line Ly, = {(f, ) : § =y, Yo}

The dependence of eigenvalues pf and p§ on & is given on Fig. la and Fig. 1b,
respectively, for type [ of geometric data and for two variants of parameters:
) a=5/12, 6 = 1/6, asy = 7/12, 2) @ = 1/3, § = 1/6, oy, = 1/2. The graphs demonstrate
considerable dependence of eigenvalues on .

For type II of geometric data with parameters o = 5/12, f; = 2/3, k = 10 the space
views of the first U7 ™ and the second US ™ eigenfunctions with eigenvalues p¢ = 0.090288
and p§ = 1.453002 are displayed on Fig. 2 and Fig. 3, respectively. The space views represent
2D graphs of the eigenfunctions, in which coordinates (6, ) are transformed by stereographic
projection of the sphere §2 onto a plane (7. 1y ). tangential to 82 at the North Pole.

4 The Solution of the Transmission BVP in Domain )

4.1 The Multipoles Uy

Inn accordance with Theorem 2. all eigenvalues it (M) can be ennmerated as p(k), k=1,2... .,
in order of their nondecreasing: each multiple eigenrvalue should be counted according to its
multiplicity. Thus, there arises respective numeration of the eigenfunctions I,',’;”i(n‘?._ p) as
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U(u(k); 8, ) and, as a consequence, respective numeration of the multipoles Uy (r, 6, ): this
manuer of their numeration had already appeared in (3.1).

If our cone X is in fact a polyledral angle. then a suitable representation for the Multipoles
can be given. In order to formulate this representation let introduce a new systemn of spherical
co—ordinates (r, @, @) related to an edge of the polyledral angle.

Let us select a particular edge and define new Cartesian co—ordinates X.Y, Z with their
origin at the vertex {0} of the polyhedral angle disposed in such a way that the selected edge
lies on axis Z, axis X lies on a face (or its extension), and axis V' is perpendicular to this face
and is directed inside domain K. Radial co~ordinate in the new system (r. 9. @) coincides with
the above one, and angle co~ordinates are defined by the standard formulas ® = arctan (Y/X),
© = arccos (Z/r). Denote the relation between old and new spherical co—ordinates by f =
=6(0. D), p = (0. ®). Then the desired representation for Uy (f. p) = Vi (6. @) has the

form 3
¥ ¥ .
% (©, ®) = D P7m3(cos ©) sin ’”_a, . (4.1)

Coefficients D in (4.1) can be computed as an integral over any curve {© = 0y = const} C 8.,
j i S .. m®
= [ﬁ 5] PP:”*'S(CUS @n}] /{; U (8, p) it —— d®,

where 6 = 6 (0, ®), v = (0, ®).

4.2 The method of solving BVP

Now we turn to the transmission BVP (2.3)-(2.5) in domain Q with cones of arbitrary base
as described in Sect. 2. Note that JQ and i may have at most a finite number of edges and

=]
conical points. Since the houndary #¢ is Lipschitz. a Sobolev space W3 (D) is defined habitually
as a subspace of W} (D) consisting of functions having zero trace on JD. Obviously, the space

@
WHD) is a Hilbert space with the inner product

. vs W3] = [

JD

uvds + [ (Vru. Vro)ds,
Jo

where Vr stands for a tangential component to I' of the gradient V. In the following theorem,
notation II";;Z(_Q) stands for the Sobolev — Slobodetskii space with the norm. where standard
notations are used (see, e.g. [21], 23], [26]),

|Dg u—'(|:ﬂ) — Dy ¢(y) dzdy.

T —yf?

[ W) = [ W@ + 3 [9 )

|lal=1

Theorem 3. Let hp € Uazl(D) and hy € Lo(N). Then the generalized solution v € 1?’21(!1', ~)
in Theorem 1 belongs to H-'QH'Q(Q]_. and

e W2 @) < € (ko WED)I + I LN )
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with constant C' > 0 depending only on Q.

Due to the embedding U'f’m(ﬂ) into W} (A) the trace on Q) of the generalized solution

v € W2*(Q) in Theorem 3 belongs to W2(9Q). Denote by H(T) a space of all generalized
o e o

solutions ¥ € WX, ) N W2*() in Theorem 3 with boundary data hp € W3 (D) and

ha € Ly(N). Clearly. Theorem 3 implies that H (T') is a Hilbert space with the inner product

[z v]la = [ m.fds+f (Vru, Vrv)ds + [('5ﬂi@ﬂ‘ds.
' Jo D JN

For u € II';'!Q(Q), existence of the trace Vru € Lo(D) is guaranteed by the embedding of
W,72(Q) into W (). Notice that existence of trace 8,u € Lo(N) is guaranteed only for the
functions u € H(L') by virtue of Theorem 3.

For basic functions {¥;} constructed in Sect. 3 it holds

Theorem 4. The traces on I' of the basic functions {Vx} form a complete system in H(D)
which is minimal.

Proof of the completeness in Theoremn 4 is based on the approximation theorems by F. Browder
[29] for solutions of elliptic PDEs. Theorems [29] can be readily modified to include homogeneous

boundary conditions on some part of the houndary.

A Cartesian produet H(D,N) def

@
a, € W3(D), a,, € Ly(N), is a Hilbert space with the inner product

1%21 (D) x Ly(N) consisting of ordered pairs {a,. a. },

[{aﬂ. a, }. {by. b}‘.}]ﬂ = / ayb,ds+ [ (Vra, . Vb, )ds + / a,b, ds
Jo Jo I

which induces the norm

||a3.a}‘.||§(=/ aﬁ|2ds+[ Vpa,b|2ds+[ |a,|? ds.
JD Jo SN

Let L: H(I') — H(D, N) be a linear operator defined as Lir = {L’-‘|D. 0;,L‘|N} Yy € H(D).
From Theorem 3 it follows

Corollary 1. The linear operator L is an isometry of H(T') outo H (D. N).
For the basic functions {¥}, from Corollary 1 and Theorem 4 follows

Corollary 2. The system {L ¥} is complete and minimal in H (D, N).

Applying Corollary 2, we approximate the solution ¥(r, 8, ¢) of the BVP (2.3)-(2.5) by a
sequence {8, )} of linear combinations with respect to the first N basic functions Tg:

i = 3 AT . i N r
v(r.8.0)= lim eM(r0.0).  tNV(rbo)=)" @ Llr 8 v). (4.2)

Here coefficients Q}c’\'] are to be found using the condition of the least square deviation of the
approximate solution ¢V from the boundary function h = {hy.h,} € H(D.N) corresponding
to (2.6) on T: || L™ — h||sc — min. This condition leads to the following system of linear
equations with respect to the unknown coefficients Qi‘\'}. wherel=1,2 ..., N;

Z"V QMG =H, GL=[L¥ LYy, K =[h LT
iy Tk ! i L i - ks K i_[!: I]?('
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The method of least squares guarantees the convergence of the sequence L™ in the Hilbert
space H(D.N), whence by Corollary 1 follows the convergence of the sequence v} in the
Hilbert space H(T). Now for the sequence of approximate solutions {1V}, reference to Theorem

g e @
3 completes the proof of its convergence in W;'?(Q) to the exact solution ¥ € W} (. ~4)N
NW2(Q).

4.3 Asymptotics near the edges

Turn again to the selected edge mentioned in Sect. 4.1. Introduce a cylindrical system of co-
ordinates related to this edge by the use of the Cartesian X.Y, Z and the spherical (r, @, @)
co—ordinate systems defined in Sect. 4.1. Namely, let Z be the co—ordinate from the above
Cartesian system, ® the co—ordinate from the above spherical system, and o is defined by the
formula g = /72 — Z2. Then the desired cylindrical co—ordinate system is (g, Z, ®).

Starting from the view (4.2) of the solution and using representation (4.1) for the multipoles
we derive an asymptotics for the solution of the BVP near the edge with diliedral angle of value
73 when o — 0., Z — (O

e

5. Do ) 248 . .
T~ gV '33_111—L3111 Zm=Y8 . ] + 92-'35111.—[3211 Zm—YB ] — ...

[8 s

Quantities J;; and Jp; appearing lLere can be expressed via coefficients of expan-
sious (4.1), (4.2), in particular J;; = 27VE[[(L + 1/8)] 7! @, D}, where T(z) is Gamma-
function [27].

Note that coefficients @} in expansion (4.2) are named intensity factors at the vertex of the
coue (polyhedral angle) and quauntities J11. Jo 1 the intensity factors at its edge. From what was
said it follows that our method provides computation of all mentioned intensity factors along
with the solution itself.

L 1 L L L o 13 1 1 1 1 o
0 1 2 3 4 5 0 1 2 a 4 5
Fig. la. Fig. 1b.

Fig. 1. Dependence of eigenvalues 4 and p) on s for type I of geometrie

data and for two variants of parameters: 1) o = 5/12, §d = 1/6, oy, = 7/12, 2) @ = 1/3,
§=1/6, o4 = 1/2.
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Fig. 2. Space view of the first eigenfunction U'" with parameters o = 5/12,
B = 2/3, k = 10 and eigenvalue p! = 0.090288.

Fig. 3. Space view of the second eigenfunction (.-'Q‘H'

By = 2/3, k = 10 and eigenvalue pf = 1.453002.

with parameters o = 5/12,



S.L. Skorokhodov, V.I. Vlasov. The multipole ... 100

Bibliography

1. 5. Nicaise, A.-M. Séndig. Transmission problems for the Laplace and elasticity operators:
regularity and boundary integral formulation // Mathem. Models and Meth. in Appl. Sci.

V. 9. Ne6. 1999. P. 855-898.

2. V.A. Koudrat'ev. Boundary value problems for elliptic equations in domains with conical
or angular points // Trudy Moskovskogo Mat. Obschestva. V. 16. 1967. P. 209-292. (Trans.
Moscow Math. Soe. V. 16. 1967. P. 227-301.)

3. V.A. Kondrat'ev, 0.A. Oleinik. Boundary value problems for partial differential equations
in nonsmooth domains // Uspekhi Mat. Nauk. V. 38, 1983. P. 3-76. Trans. Russian Math,
Survey. V. 38, 1983. P. 1-86.

4. M. Dauge. Elliptic boundary value problems in corner domains — smoothness and asymptotics
of solutions. Lect. Notes Math. Heidelberg: Springer, 1988,

5. AE. Beagles, J.R. Whiteman. General conical singularities in three—dimensional Poisson
problems // Math. Meth. Appl. Sci. V. 11. 1989. P. 215-235.

6. S.A. Nazarov, B.A. Plamenevskij. Elliptic problems in domains with pieswise smooth
boundaries, Moscow: Nauka, 1991,

7. P. Grisvard. Elliptic problems in nonsmooth domains, London: Pitman, 1985.

& P. Grisvard. Singularities in boundary value problems. Res. Notes Appl. Math., Paris:
Masson, Boun: Springer, 1992.

9. H. Blum. Numerical treatment of corner and crack singularities, In Finite element and
houndary element techniques from mathematical and engineering point of view (Edited
by E. Stein and W.L. Wendland). CISM Courses and Lectures (301). Vieuna: Springer—
Verlag. 1988. P. 171=-212.

10. E. Stephan, J.R. Whiteman. Singularities of the Laplacian at corners and edges of three-
dimensional domains and their treatment with finite element methods // Math. Meth.

Appl. Sci. V. 10. 1988. P. 339-350.

11. H. Schmitz, K. Volk, W. Wendland. Three-dimensional singularities of elastic fields near
vertices // Numer. Methods Partial Differ. Equations. V. 9. 1993. P. 323-337.

12, J.AL-S. Lubuma, S. Nicaise. Dirichlet problems in polvhedral domains IT: Approximation

by FEM and BEM // J. Comput. and Appl. Math. V. 61. 1995. P. 13-27.

13. Th. Apel. A-M. Sdndig, J.R. Whiteman. Graded mesh refinement and error estimates

for finite element solutions of elliptic boundary value problems in non=smooth domains
// Math. Meth. Appl. Sci. V. 19. 1996. P. 63-85.

14. V.I. Vlasov. On a method of solving some mixed planar problems for the Laplace equation
// Dokl. Akad. Nauk SSSR. V. 237, Ne5. 1977, P. 1012-1015. Trans. Soviet Math. Dokl
V. 237. Nej. 1977.



Beal¥

101 HAY'IHBIE BETOMOCTI [E/8 Nel3(68). Bemycex 17/1 2009

15. V.I Vlasov. Boundary value problems in domains with curved boundary. Moscow: Computing
Center Russian Acad. Sci. 1987, (In Russian).

16. V.I. Vlasov. Multipole method for solving some boundary value problems in complex-
shaped domains // Zeitschr. Angew. Math. Mech. V. 76, Suppl. 1. 1996. P. 279-282.

17. V.I. Vlasov. A meshless method for solving boundary value problems in 3D domains of
comwplex shape |/ The Fourth International Congress on Industrial and Applied Mathematics,

Edinburgh, 5-9 July 1999. Book of Abstracts. P. 323.

18, V.L Vlasov. A method of solving boundary value problems for the Laplace equation in
domaius with counes // Russin Doklady (Doklady Akademii Nauk). V. 397, Ne3. 2004,
P. 586-589. (In Russian.)

19. S.L. Skorokhodov, V.I. Vlasov. The Multipole method for the Laplace equation in domains
with polyhedral corners // Comp. Assisted Mechan. and Engin. Scien. V. 11. 2004. P. 223-
238.

20. M. Brelo. Elements of the classical theory of the potential, Moscow: Mir. 1964.

21. 0.A. Ladyzhenskaya, N.N. Ural'tseva. Linear and quasilinear equations of elliptic type,
Moscow: Nauka. 1964,

22. J.-L. Lions, E. Magenes. Problémes aux limites non homogénes et applicasions. Paris:
Dunod. 1968.

23. EML Stein. Singular integrals and differentiability properties of functions. Princeton:
University Press. 1970).

24. B.V. Palcev. On the mixed problem with nonhomogeneous boundary conditions for elliptie
equations of the second order in Lipschits domains // Matematicheskii Shornik. V. 187,

1996. P. 59-116. (In Russian.)

25. L.N. Slobodetskii. Generalised spaces of S.L.Soholev and their applications to boundary
value problems for partial differential equations // Uchenye Zapiski Leningradskogo Gosud.
Pedag. Inst. V. 197, 1958. P. 54-112. (In Russian.)

26, R. Adams. Sobolev spaces, New York: Acad. Press. 1975.

27. H. Bateman, A. Erdelyi. Higher transcendental functions, New York: Me Graw-Hill Co.
1953.

28. Yu.L. Luke. Mathematical functions and their approximations, New York: Academic
Press. 1975.

29. F.E. Browder. Function analysis and partial differential equations, 2 // Math. Ann. V.
145. 1962. P. 81-226.



S.L. Skorokhodov, V.I. Vlasov. The multipole ... 102

METO/ MVJIBTUIIOJ/IEN O/ HEKOTOPHIX SJIJINIITUYECKUX
KPAEBBIX 3AJAY C PA3SPBIBHBIM KO3@QOUITHUEHTOM

C.JI. Ckopoxouos, B.I1. Buacos
Beiuncnutensteiid uentp um. A A Jopoanuusina PAH,
yn. Basunoga, 40, Mockea, 119991, Pocens e-mail: skor@ccas.ru,vlasov@ccas.ru

AHHDTELLIHH. PBB[’)FlﬁOTaII AlATUTHKO-HUCTRHIILIA MeTOd pellellns KpaeBLIX 3alad B HPOCTpall-
CTREILIX 00IacTAX ¢ KOHVCAMH [IPOUIBOILIIOIO OCHOBAIINA J14 TIHITHYECKOIO YPABIEHNA C KyCOo4H0-
MOCTOANILIM KOS(‘I)(I)HLLHEIITOZ\I. Pewnenne 3a1a4u HMAXOIUTCH ¢ HCNOJIL30BAHHEM CHeNHATLIIBLIX Hazuc-
HLIX (‘b}'IIKJJ.HH = M}'.."IL’I‘HILO.-'IEH. KOTODLIE CTROATCA B ABIOM BHIE. Metog obecneunbaeT BLICOKOTOUIIOE
BLIYMHCICIINE PELIENA, ero NPoH3BOIIILIX, NOKA3ATE e CHUTYIAPIIOCTH H KDS(hd)liJJ.HEIlTOB HIITElICHE-
HocTH BOIN3M reoMeTpHYECKHXY ocobenocTel — peﬁep H BEPRIIMIILL KOy CA.

Kawuesbie c1oBa: KpaeBble 3a1a49i, 0BIACTH ¢ KOIYCAMM, METOT M}'.‘TL.THUO.‘IEH_. [IOKA3ATEIH CHII-
CYaAPIIOCTH, KOSd)d)HuLIEIITLd HHOTENCHBIIOCTH.



