УДК 581.5; 96

ВЛИЯНИЕ АНТРОПОГЕННЫХ ФАКТОРОВ ХИМИЧЕСКОЙ ПРИРОДЫ НА МОРФО-БИОЛОГИЧЕСКУЮ ИЗМЕНЧИВОСТЬ *PLANTAGO MAJOR* L. И *PLANTAGO MEDIA* L.

Е.И. Попова

Тобольская биологическая станция РАН
Россия, 626150,Тюменская обл., г. Тобольск, ул. имени академика Юрия Осипова, 15.
E-mail: popova-3456@mail. ru

Широкомасштабное антропогенное воздействие на окружающую среду потребовало создания системы комплексного фонового мониторинга, задачами которого являются систематические наблюдения за загрязнениями окружающей среды, оценка и прогноз их состояния. Из растительных объектов удобно использовать ценопопуляции Plantago major L. и Plantago media L.

Ключевые слова: *Plantago major* L., *Plantago media* L., экология, тяжелые металлы.

Введение

Анализ фонового состояния окружающей среды свидетельствует о тенденции накопления в ней ряда химических соединений, отрицательно воздействующих на биологические системы. Антропогенное загрязнение территории города Тобольска и Тобольского района из года в год усиливается, происходит деградация естественных экосистем и снижение видового разнообразия растений [1].

В систему наблюдений должны входить следующие основные процедуры: выделение объекта наблюдения; обследование выделенного объекта наблюдения; составление информационной модели для объекта наблюдения; планирование измерений; оценка состояния объекта наблюдения и идентификации его информационной модели; прогнозирование изменения состояния объекта наблюдения; представление информации в удобной для использования форме и доведение её до потребителя. Это позволит оценить показатели состояния функциональной целостности экосистем и среды обитания человека, выявить причины изменения этих показателей и оценить последствия таких изменений, создать предпосылки для определения мер по исправлению возникающих негативных ситуаций до того, как будет нанесен ущерб [2].

С учетом вышеизложенного, в регионе нефтепереработки и нефтехимии исследования изменений, происходящих в популяциях растений, подверженных воздействию различных загрязнений в системе: почва — растение, перспективны в теоретическом и прикладном аспектах.

Объекты и методы исследования

Из растительных объектов удобно использовать *Plantago major* L. и *Plantago media* L. как антропотолерантных видов с широким географическим распространением и преимущественно семенным размножением. Исходя из определенной практической значимости подорожников и их адаптированности к сильному антропогенному стрессу в условиях урбанизированной и промышленной среды, знание особенностей их биологии, онтогенеза и морфогенеза важно для индикации состояния среды [3, 4, 5].

На этапе полевых исследований первоначально были выделены модельные ландшафтные участки с различной антропогенной нагрузкой, на которых исследованы параметры приоритетных загрязнителей почвы, определено содержание *Cu*, *Zn*, *Pb* в растениях *P. major* L. и *P. media* L. Модельный участок № 1 – восточная часть города, прилегающая к промышленной зоне ТНХК (Тобольский Нефтехимический комбинат); модельный участок № 2 – обочина автодороги, прилегающая к промышленной зоне ТГМЗ (Тобольский Гормолзавод); модельный участок № 3 – опушка смешанного леса,

около д. Винокурово (контроль); модельный участок № 4 – северная часть города, пустырь, примыкающий к промышленной зоне ТЗЖБИ (Тобольский завод железобетонных изделий); модельный участок № 5 - обочина автодороги, южная часть города около Никольского взвоза; модельный участок № 6 – жилой микрорайон № 9, с современной, плотной высокоэтажной городской застройкой.

Тяжелые металлы в почве и растениях определяли атомноимиссионным методом на спектрометре «OPTIMA-7000 DV» с индуктивно связанной плазмой в лаборатории «Экотоксикология» Учреждения Российской академии наук Тобольской биологической станции РАН.

Результаты и их обсуждение

В почвах наблюдаемых модельных участков, подверженных химическому воздействию, тяжелые металлы варьировали в пределах: цинк – от 3.09 до 80.10 мг/кг (контроль 2.06), медь - от 0.28 до 1.50 (контроль 0,3), свинец - от 1.20 до 7.10 (контроль 1.02).

Путем химического анализа золы растений P. major L. и P. media L. выявлена степень накопления анализируемых химических элементов. Содержание цинка в растениях наиболее загрязненных районов изменялось от 5.60 до 11.20 мг/кг (P. major L.) и от 2.04 до 9.05 мг/кг (P. media L.). Накопление меди варьировало у P. major L. от 0.69 до 1.00 мг/кг, а у *P. media* L. от 0.20 до 0.88 мг/кг. Содержание свинца у *P. major* L. также значительно превышало аналогичные показатели *P. media* L. Во всех случаях P. major L. в значительно большем количестве аккумулирует тяжелые металлы по сравнению с P. media L., но аккумулирующая способность изученных видов растений максимально проявляется по отношению к меди (из трех изученных металлов), а минимально - к свинцу.

Выявлена высокая положительная корреляция между содержанием тяжелых металлов в почве и растениях (*P. major* L. r = 0.58-0.99; *P. media* L. r = 0.48-0.98). В согласии с этим, в названном ряду участков закономерно повышается содержание Cu, Znи Pb в растениях P. major L. и P. media L.

Интенсивная техногенная нагрузка приводит к существенному уменьшению средних размеров особей P. major L. и P. media L., что отражается и на всех морфометрических параметрах (табл. 1).

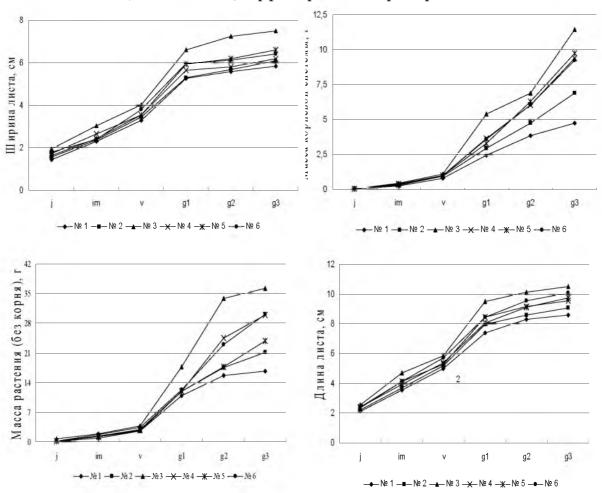
Таблица 1 Характеристика P. media L. на разных этапах онтогенеза по комплексу количественных признаков на фоне различных антропогенных нагрузок

Модельный	Возрастное состояние, х±m _х						
участок	j	im	v	g_1	g_2	g_3	
1	2	3	4	5	6	7	
	Масса растения (без корня), г						
№1 (THXK)	0.09±0.003*	0.22±0.01*	1.20±0.07*	5.60±0.40*	8.34±0.40*	10.84±0.47*	
№2 (TΓM3)	0.10±0.005*	0.25±0.01*	1.47±0.09*	6.22±0.35*	10.26±0.40*	14.43±0.51*	
№3(Контроль)	0.15±0.005	0.36±0.01	3.12±0.15	8.01±0.45	13.99±0.75	17.49±0.40	
№4 (ЖЗБИ)	0.11±0.005*	0.28±0.01*	1.63±0.10*	6.94±0.41	11.29±0.66*	14.46±0.76*	
№5(Никольски й взвоз)	0.06±0.005*	0.29±0.02*	1.83±0.09*	7.06±0.50	11.55±0.55*	13.18±0.64*	
№6 (9 мик- он)	0.10±0.005*	0.29±0.01*	1.78±0.13*	7.41±0.33	12.18±0.52	15.36±0.85	
Масса листьев. г							
№1 (THXK)	0.04±0.005*	0.14±0.01*	0.74±0.07*	3.84±0.25*	4.11±0.30*	6.51±0.30*	
№2 (TΓM3)	0.05±0.005*	0.20±0.02*	0.96±0.07*	4.24±0.36*	5.25±0.31*	7.48±0.17*	
№3 (Контроль)	0.09±0.002	0.25±0.01	2.16±0.15	5.18±0.35	7.04±0.30	9.91±0.44	
№4 (ЖЗБИ)	0.06±0.005*	0.20±0.01*	1.17±0.10*	4.38±0.28*	5.89±0.27*	7.80±0.34*	
№5 (Николь- ский взвоз)	0.05±0.005*	0.19±0.02*	1.21±0.10*	4.23±0.22*	5.79±0.22*	7.73±0.31*	
№6 (9 мик- он)	0.05±0.005*	0.21±0.01*	1.22±0.11*	4.93±0.23	6.26±0.26*	9.42±0.38	
Масса одного листа. г							
№1 (THXK)	0.02±0.002*	0.04±0.003*	0.23±0.02*	0.61±0.04*	0.63±0.05*	0.81±0.03*	
№2 (TΓM3)	0.02±0.002*	0.04±0.002*	0.25±0.02*	0.69±0.03*	0.77±0.05*	0.85±0.03*	
№3 (Контроль)	0.03±0.002	0.06±0.002	0.41±0.03	0.84±0.04	0.93±0.04	1.23±0.08	
№4 (ЖЗБИ)	0.02±0.002*	0.06±0.002*	0.28±0.02*	0.75±0.04	0.80±0.05*	0.94±0.03	

Продолжение таблицы 1

1	2	3	4	5	6	7		
№5(Никольск ий взвоз)	0.02±0.002*	0.05±0.002*	0.27±0.02*	0.72±0.04*	0.84±0.04	0.88±0.05		
№6 (9 мик- он)	0.02±0.001*	0.05±0.002*	0.29±0.02*	0.76±0.03	0.88±0.04	1.01±0.05		
Масса корневой системы. г								
№1 (THXK)	0.03±0.002*	0.07±0.002*	0.35±0.02*	1.03±0.07*	1.14±0.08*	1.30±0.08 *		
Nº2 (TΓM3)	0.04±0.002*	0.08±0.002 *	0.39±0.03*	1.19±0.10*	1.29±0.09*	1.72±0.21*		
№3 (Кон- троль)	0.05±0.003	0.21±0.013	0.53±0.04	1.79±0.16	1.99±0.14	2.62±0.20		
№4 (ЖЗБИ)	0.04±0.003*	0.13±0.002*	0.39±0.03*	1.39±0.10*	1.63±0.14*	1.70±0.11*		
№5(Никольск ий взвоз)	0.04±0.003*	0.09±0.003*	0.43±0.03*	1.24±0.09*	1.47±0.12*	1.62±0.09 *		
№6 (9 мик- он)	0.04±0.003*	0.13±0.002*	0.35±0.02*	1.19±0.10*	1.63±0.14*	1.72±0.21*		
		Масса генер	ативного побе					
№1 (THXK)	-	-	-	0.52±0.03*	0.63±0.06*	0.71±0.06*		
№2 (TΓM3)	-	-	-	0.65±0.04*	0.74±0.06*	0.82±0.04 *		
№3 (Кон- троль)	-	-	-	0.89±0.07	0.95±0.06	0.91±0.10		
№4 (ЖЗБИ)	-	-	-	0.65±0.05*	0.68±0.04*	0.83±0.06 *		
№5(Никольск ий взвоз)	-	-	-	0.69±0.06*	0.85±0.06*	0.94±0.05		
№6 (9 мик- он)	-	-	-	0.73±0.06	0.82±0.06*	0.92±0.06		
Длина листа. см								
№1 (THXK) №2 (TГM3)	1.58±0.09*	1.92±0.08*	2.42±0.05*	5.60±0.19*	7.08±0.23*	7.75±0.18*		
№3 (Кон-	1.73±0.07* 2.01±0.08	2.12±0.07* 2.43±0.08	2.77±0.06* 3.37±0.11	7.10±0.19* 8.13±0.21	7.44±0.20* 8.60±0.18	7.94±0.21* 8.88±0.27		
троль)				_				
№4 (ЖЗБИ) №5(Никольск	1.72±0.07*	2.15±0.08*	3.04±0.08*	7.70±0.23	7.82±0.25*	8.14±0.19* 8.18±0.22		
ий взвоз) №6 (9 мик-	1.89±0.08	2.21±0.08	3.09±0.09*	7.27±0.20*	7.71±0.24*	8.22±0.23		
он)	1.89±0.08	2.18±0.09	3.09±0.09*	7.54±0.25	7.88±0.18*	8.22±0.23 *		
	Ширина листа. см. 0.72+0.07* 1.11+0.08* 1.50+0.00* 4.10+0.17* 4.80+0.21* 5.24±0.26							
№1 (THXK)	0.73±0.07*	1.11±0.08*	1.59±0.09*	4.10±0.17*	4.80±0.21*	5.24±0.20 *		
№2 (TГM3)	1.02±0.06*	1.15±0.08*	1.64±0.09*	4.16±0.14*	5.08±0.22*	5.36±0.21*		
№3 (Кон- троль)	1.18±0.09	1.46±0.08	1.94±0.09	4.70±0.19	5.94±0.27	6.15±0.27		
№4 (ЖЗБИ)	1.03±0.06*	1.18±0.08*	1.74±0.07*	4.34±0.15	5.28±0.18*	5.71±0.21		
№5(Никольск ий взвоз)	1.04±0.08*	1.40±0.08	1.74±0.09*	4.30±0.18	5.29±0.20*	5.84±0.21		
№6 (9 мик- он)	1.10±0.07*	1.27±0.10*	1.79±0.07*	4.36±0.23	5.31±0.21	5.70±0.25		
No (mrzzza)			кс листа. см					
Nº1 (THXK)	1.55±0.06	1.62±0.05	1.61±0.04	1.64±0.04	1.46±0.04	1.44±0.04		
№2 (ТГМЗ) №3 (Кон-	1.61±0.05 1.63±0.06	1.65±0.05 1.66±0.04	1.63±0.04 1.66±0.04	1.66±0.04 1.71±0.04	1.40±0.03 1.44±0.04	1.47±0.04 1.44±0.03		
троль) №4 (ЖЗБИ)	1.58±0.04	1.60±0.04	1.61±0.04	1.68±0.04	1.46±0.04	1.52±0.04		
№5(Никольск ий взвоз)	1.54±0.05	1.65±0.04	1.65±0.05	1.67±0.04	1.55±0.05	1.51±0.04		
№6 (9 мик- он)	1.63±0.04	1.63±0.05	1.63±0.04	1.52±0.04*	1.38±0.03	1.53±0.04		
U11)	Число листьев. шт.							
№1 (THXK)	3.10±0.06	4.16±0.07	5.10±0.06	5.94±0.15*	7.80±0.12*	9.52±0.13		
№2 (TГM3)	3.12±0.06	4.21±0.08	5.21±0.08	5.98±0.14*	7.94±0.13*	10.00±0.11		

100			
10.3			
	93	r g	
×		. 49	


Окончание таблицы 1

№3 (Контроль)	3.34±0.09	4.42±0.09	5.49±0.10	6.68±0.15	8.50±0.12	10.53±0.14		
№4 (ЖЗБИ)	3.21±0.08	4.24±0.09	5.28±0.09	6.30±0.16	8.20±0.15	10.01±0.14		
№5(Никольский взвоз)	3.28±0.09	4.36±0.09	5.32±0.09	6.24±0.14*	8.22±0.15	10.24±0.16		
№6 (9 мик- он)	3.21±0.08	4.28±0.09	5.32±0.09	6.22±0.14*	8.33±0.12	10.33±0.16		
	Число генеративных побегов. шт.							
№1 (THXK)	-	-	-	1.62±0.14*	7.97±0.14*	9.45±0.10		
№2 (TΓM3)	-	-	-	1.69±0.11*	8.48±0.14*	9.54±0.10		
№3 (Контроль)	-	-	-	1.88±0.13	9.54±0.10	9.78±0.08		
№4 (ЖЗБИ)	-	-	-	1.81±0.14	9.13±0.14	9.56±0.10		
№5(Никольский	-	-	-	1.74±0.10	9.10±0.12	9.72±0.09		
взвоз)								
№6 (9 мик- он)	_	-	-	1.85±0.13	9.18±0.15	9.69±0.39		

Примечание: * – различия с контролем достоверны на уровне Р < 0.005.

Наибольшую пластичность обнаруживают такие признаки как длина, ширина, а также надземная масса растений и масса корневой системы. Таким образом, указанные морфометрические параметры могут иметь наибольшее диагностическое значение при оценке качества среды. Изменчивость морфологических признаков имеет однонаправленный характер у обоих видов.

В ювенильном (j), имматурном (im) и виргинильном (v) состояниях морфологические признаки *P. major* L. и *P. media* L. на всех шести участках различаются незначительно, что нагляднее можно представить в графическом виде. В качестве примера у *P. major* L. на рис. 1 изображены результаты морфометрических измерений наиболее лабильных, т.е. значимых в биоиндикационном аспекте, морфометрических параметров.

Puc. 1. Морфологическая пластичность P. major L. на разных этапах онтогенеза

Заключение

На основании результатов анализа почвы, исследованные модельные участки г. Тобольска выстраиваются в следующий ряд по мере усиления антропогенных нагрузок, в том числе по содержанию тяжелых металлов: контрольный модельный участок \rightarrow 9 микрорайон \rightarrow Никольский взвоз \rightarrow ТЖЗБИ \rightarrow ТГМЗ \rightarrow ТНХК.

Морфометрические параметры ценопопуляций P. major L. и P. media L. отличаются высоким варьированием. Интенсивная техногенная нагрузка приводит к существенному уменьшению средних размеров особей P. major L. и P. media L., что отражается и на всех морфометрических показателях.

Наиболее перспективными для биоиндикационных исследований следует признать морфометрические параметры P. major L. и P. media L. на стадиях онтогенеза g_1 , g_2 , g_3 . В отношении всех морфометрических параметров биоиндикационная ценность P. major L. превосходит ценность P. media L. Как для P. major L., так и P. media L. выявленные закономерности справедливы и в разногодичном аспекте.

Величина коэффициентов корреляции, определяющая взаимосвязь анализируемых характеристик, также находится в зависимости от условий меняющихся факторов среды, значительно ослабевая при усилении стрессовой ситуации.

Список литературы

- 1. Обзор. Экологическое состояние, использование природных ресурсов, охрана окружающей среды Тюменской области. / Департамент недропользования и экологии Тюменской области. Тюмень, 2005. 212 с.
- 2. Яблоков А.В., Ларина Н.И. Введение в фенетику популяций. Новый подход к изучению природных популяций. М.: Высшая школа, 1985. 159 с.
- 3. Van Dijk H., Wolff K. Allozyme variation and genetic structure in Plantago Species // Plantago: A. Multidisciplinary Study. Berlin: Springer-Verlag, 1992. P. 190-192.
- 4. Жукова Л.А. Популяционная жизнь луговых растений. Йошкар-Ола: РИИК Ланар, 1995. 224 с.
- 5. Григорьев И.Л. Засоренность пахотных земель семенами сорных растений и пути ее снижения // Научн. тр. Воронежского СХИ. 2000. № 59. С. 30-33.

INFLUENCE OF ANTROPOGENOUS FAKTORS OF CHEMICAL NATURE ON MORPHO-BIOLOGICAL VARIABILITY OF *PLANTAGO MAJOR* L. AND *P. MEDIA* L.

E.I. Popova

Tobolsk Biology Station RAS Academician Yuri Osipov St., 15, Tobolsk City, Tyumen Region, 626150, Russia

E-mail: popova-3456@mail. ru

The widespread human interference with the nature and environment caused the necessity of creating a system of a complex monitoring of the environmental background which must systematically watch and control the pollution of the environment, evaluate and give a forecast for their state. It is convenient to use the populations of Plantago major L. and Plantago media L. out of all vegitation objects.

Key words: Plantago major L., Plantago media L., ecology, heavy metals.