УДК 615.07

ИСПОЛЬЗОВАНИЕ ТЕСТА «РАСТВОРЕНИЕ» ДЛЯ ОЦЕНКИ СКОРОСТИ ВЫСВОБОЖДЕНИЯ ГИПОКСЕНА ИЗ ТРАНСДЕРМАЛЬНОГО ПЛАСТЫРЯ

С.О. ЛОСЕНКОВА¹ Э.Ф. СТЕПАНОВА ²

¹⁾Смоленская государственная медицинская академия

²⁾Пятигорская государственная фармацевтическая академия

e-mail::losenkova-so@mail.ru

В статье представлены сведения о разработке методики теста «растворение» с целью стандартизации трансдермального пластыря с гипоксеном (поли(дигидроксифенилен)тиосульфонатом натрия).

Ключевые слова: тест «Растворение», лопастная мешалка, УФ-спектрофотометрия, трансдермальный пластырь с гипоксеном.

Трансдермальные лекарственные формы относятся к парентеральным лекарственным формам с контролируемой скоростью доставки лекарственных веществ (ЛВ).

В настоящее время разработан проект общей фармакопейной статьи (ОФС) на лекарственную форму «ТТС» для ГФ XII издания. Проект разработан на основании материалов ведущих зарубежных фармакопей: Европейской, Британской, в которых одним из тестов контроля качества ТТС является тест растворения [6, 7], вошедший в проект ОФС «ТТС» для ГФ XII.

Тест «Растворение» для трансдермальных пластырей позволяет прогнозировать скорость высвобождения ЛВ из матрицы чрескожно в системный кровоток и соответственно, время наступления терапевтического эффекта. Поэтому условия проведения испытания должны быть приближены к физиологическим параметрам. Тест «Растворение» является биофармацевтическим методом исследования in vitro и его проводят на приборах «Вращающаяся корзинка», «Лопастная мешалка», «Проточная ячейка». Число оборотов вращения лопасти или корзинки, а также скорость потока подбирают экспериментально [1]. Поэтому с целью разработки норм качества для трансдермального пластыря с поли(дигидроксифенилен)тиосульфонатом натрия авторами предложена методика теста «Растворение».

Экспериментальная часть. В процессе исследований, касающихся оптимизации компонентов для трансдермального пластыря, сконструированы 4 состава адгезивной матрицы, отличающиеся количественным содержанием гипоксена (поли(дигидроксифенилен)тиосульфоната натрия). Адгезивную матрицу получалисогласразработанной технологической К субстанции схемы. ли(дигидроксифенилен)тиосульфоната натрия(0,027; 0,054; 0,081; 0,11) прибавлялитёплый 0,5% раствор натрия метабисульфита в пропиленгликоле-1,2, спирт этиловый 95%(консервант), поливинилпирролидон (ПВП К30) среднемолекулярный (Biochemica). Всё тщательно гомогенизировали. Далее подвергали воздействию источника ультразвука (ультразвуковой скальпель УРСК-7н) в течение зосекунд (22-25кгц) с целью растворения поли(дигидроксифенилен)тиосульфоната натрия и гомогенизации смеси. После растворения поли(дигидроксифенилен)тиосульфоната натрия смесь переносили на непроницаемую плёнку-подложку с неметаллизированной стороны площадью 25смІ. Высушивали при комнатной температуре 24 часа. Количество поли(дигидроксифенилен)тиосульфоната натрия рассчитано с учётом влажности препарата, составляющей 8,43%.

Тест «Растворение» является биофармацевтическим методом исследования invitro и позволяетоценить не только характер высвобождения ЛВ из ЛФ, но и определитьзависимостьстепени высвобождения гипоксена(поли(дигидроксифенилен)тиосульфоната натрия)от его количественного содержания в лекарственной форме (ЛФ). Тест «Растворе-

ние» проводили с использованием аппарата мешалочного типа «Лопастная мешалка» или «Лопасть над диском» (тестер растворимости ErwecaDT 700)на основании материалов зарубежных фармакопей [7].Определение количественного содержания высвобождающегося гипоксенапроводили методом УФ-спектрофотометрии.

В качестве материалов использованы липкая лента, фольга пищевая, мембрана «Карбосил». Среда растворения -0,05% раствор натрия метабисульфита в фосфатном буфере (рH=7,4; объём 600мл), температура 37°С±0,5°С, скорость вращения лопасти 50 об/мин. Фосфатный буфер или вода очищенная хорошо моделируют кровеносную систему организма. В состав буферного раствора введён натрия метабисульфит для предотвращения разложения гипоксена в водном растворе.

В некоторых литературных источниках указано, что данный тест можно проводить без мембраны (диализной плёнки) в том случае, если адгезивная матрица пластыря и ЛВлипофильны. В нашем исследовании матрица и ЛВгидрофильны, поэтому необходимо использовать полупроницаемую мембрану (диализную плёнку).

Трансдермальные пластыри площадью 25смІс разным содержанием ЛВ помещали в изготовленные пакеты из диализной полисилоксанкарбонатной плёнки «Карбосил» толщиной 45-50 мкм (площадью 36cm²) при этом не допускали образование складок. Прибор для реализации теста растворения представлял собой стандартную группу из 8 термостатированных стаканов с лопастными мешалками. Подготовленный образец с мембраной помещали в держатель на первое уплотнительное кольцо, прижимали вторым уплотнительным кольцом, закрепляли гайками. Для контрольного опыта из мембраны «Карбосил» готовили такой же образец пластыря, но без гипоксена, таким же способом закреплённый в держателе. Держатели с образцами прикрепляли липкой лентой к нижней части лопастных мешалок. Помещали в каждые 6 сосудов указанный объём (600мл) предварительно термостатированной (37°C) среды растворения. В 5 круглодонных сосудов опускали мешалки с держателями пластырей, содержащими гипоксен мембраной в фосфатный буфер, а в 6-й мешалку с держателем образца, не содержащим гипоксен. Тест растворения начинали немедленно с указанной скоростью. Лопастные мешалки с держателями вращались в поверхностном слое воды (1-2мм). Из каждого сосуда через отверстие в крышке отбирали пипеткой по 3,0мл пробы раствора через определённые промежутки времени 0,5, 2, 4, 24часа из центра среды растворения [3, 5].

Удаляемый объём замещали чистым растворителем. 3,0мл диализата помещали в кювету спектрофотометра СФ 2000-02. Анализировали спектрофотометрически в диапазоне волн 200-380нм, измерение проводили в максимуме 305±3нм при толщине слоя 10мм. В качестве раствора сравнения использовали 0,05% раствор натрия метабисульфита в фосфатном буфере. Фоновое влияние контрольного образца (держатель с пластырем без учитывали при расчёте количественного содержания ли(дигидроксифенилен)тиосульфоната натрия. Параллельно, в тех же условиях измеряли оптическую плотность разведения рабочего стандартного образца ли(дигидроксифенилен)тиосульфоната натрия [4].

Выбранные промежутки времени позволяют зарегистрировать начало высвобождения ЛВ из ЛФ, время максимального высвобождения, а также указать на пролонгированный характер высвобождения.

Количество грамм(Mti) растворённого поли(дигидроксифенилен)тиосульфоната натрия (i-я проба) в указанные периоды времени (ti) с 1смI, в г/смI вычисляли по формуле 1:

$$(Ati - Ak)$$
 $Y 0,1$ $Y 1,0$ $Y 1,0$

где M(ti) – количество граммгипоксена, высвобождающегосяза определённый период времени; Ati – оптическая плотность раствора і-й пробы к моменту времени ti; Ак – оптическая плотность раствора контрольного образца; Ао - оптическая плотность раствора РСО гипоксена. При определении M(ti) через 2, 4, 24часа формула 2 приобретала следующий вид:

$$(Ati - A\kappa)$$
4 0,141,04600,0 + $X(ti)$, (2)
 $M(ti) = Ao$ 4 100,045,0

где X(ti) – содержание гипоксена в граммах в отобранной пробе (3,0мл), предназначенной для количественного определения через 2, 4, 24часа.

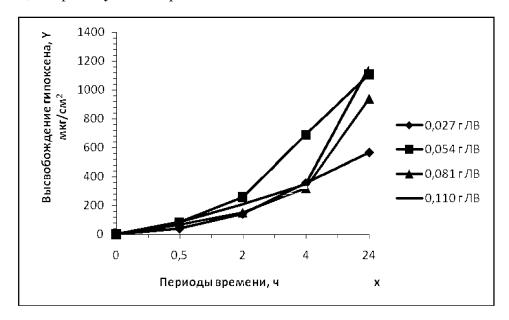
$$X(ti) = M(ti)/200$$
 (3)

Опыты проведены с 6 образцами пластыря каждой серии, отличающейся количественным содержанием поли(дигидроксифенилен)тиосульфоната натрия. Фоновое влияние контрольного образца (держатель с пластырем без ЛВ) нулевое. Результаты эксперимента представлены в таблицах 1, 2, 3.

Таблица 1 Количественное содержание поли(дигидроксифенилен)тиосульфоната натрия в диализате в разные периоды наблюдения

Периоды	Nº1	Nº2	Nº3	Nº4
наблюдения	наблюдения (0,027г)		(0,081г)	(0,110г)
Зоминут	0,0010 0,0010	0,0021 0,0017	0,0015 0,0017	0,0019 0,0021
	0,0009 0,0010	0,0018 0,0022	0,0017 0,0017	0,0026 0,0023
	0,0010 0,0009	0,0025 0,0021	0,0015 0,0017	0,0014 0,0024
2часа	0,0039 0,0034	0,0076 0,0062	0,0036 0,0037	0,0051 0,0049
	0,0038 0,0031	0,0051 0,0068	0,0037 0,0038	0,0054 0,0049
	0,0036 0,0033	0,0060 0,0072	0,0038 0,0039	0,0058 0,0054
4часа	0,0089 0,0090	0,0165 0,0178	0,0075 0,0075	0,0085 0,0085
	0,0090 0,0086	0,0165 0,0175	0,0082 0,0085	0,0072 0,0092
	0,0087 0,0089	0,0171 0,0176	0,0085 0,0078	0,0087 0,0104
24часа	0,0136 0,0138	0,0266 0,0281	0,0219 0,0240	0,0280 0,0300
	0,0143 0,0143	0,0276 0,0283	0,0227 0,0241	0,0290 0,0262
	0,0143 0,0143	0,0281 0,0272	0,0235 0,0244	0,0300 0,0310

Примечание: №1 – пластырь с содержанием гипоксена 0,027г, №2 – пластырь с содержанием гипоксена 0,054г, №3 – пластырь с содержанием гипоксена 0,081, №4 пластырь с содержанием гипоксена 0,110г.


Таблица 2

Метрологическая характеристика метода

Периоды на- блюдения	Nº1	№ 2	Nº3	Nº4
ЗОМИНУТ	\overline{X} =0,00095 $\Delta \overline{X}$ =0,057·10 ⁻³ ϵ =±6,05%	$\overline{\overline{X}}$ =0,00207 $\Delta \overline{\overline{X}}$ =0,302·10 ⁻³ ϵ =±14,56%	$\overline{\overline{X}}$ =0,00163 $\Delta \overline{\overline{X}}$ =0,108·10 ⁻³ ϵ =±6,63%	$\overline{\overline{X}}$ =0,00212 $\Delta \overline{\overline{X}}$ = 0,452·10 ⁻³ ϵ =±21,32%
2часа	\overline{X} =0,00352 $\Delta \overline{X}$ =0,321·10 ⁻³ ϵ =±9,12%	$\overline{\overline{X}}$ =0,00648 $\Delta \overline{\overline{X}}$ =0,949·10 ⁻³ ϵ =±14,64%	$\overline{\overline{X}} = 0.00375$ $\Delta \overline{\overline{X}} = 0.110 \cdot 10^{-3}$ $\epsilon = \pm 2.93\%$	\overline{X} =0,00525 $\Delta \overline{X}$ =0,373· 10 ⁻³ ϵ =±7,10%
4часа	$\overline{\overline{X}}$ =0,00885 $\Delta \overline{\overline{X}}$ =0,172·10 ⁻³ ϵ =±1,94%	$\overline{\overline{X}}$ =0,01720 $\Delta \overline{\overline{X}}$ =0,592 ·10 ⁻³ ϵ =±3,44%	$\overline{\overline{X}}$ =0,00800 $\Delta \overline{\overline{X}}$ =0,488·10 ⁻³ ϵ =±6,10%	\overline{X} =0,00873 $\Delta \overline{X}$ =1,090·10 ⁻³ ϵ =±12,48%
24часа	$\overline{\overline{X}} = 0.0141$ $\Delta \overline{\overline{X}} = 0.332 \cdot 10^{-3}$ $\epsilon = \pm 2.35\%$	$\overline{\overline{X}} = 0.02770$ $\Delta \overline{\overline{X}} = 0.686 \cdot 10^{-3}$ $\epsilon = \pm 2.48\%$	$\overline{X} = 0.02340$ $\Delta \overline{X} = 1.006 \cdot 10^{-3}$ $\epsilon = \pm 4.30\%$	\overline{X} =0,02892 $\Delta \overline{X}$ =1,860·10 ⁻³ ϵ =±6,43%

Далее скорость подачи гипоксена из матриц определяли как тангенс угла наклона стационарного участка прямой.

Puc. 1. Типичный профиль высвобождения invitroполи(дигидроксифенилен)тиосульфоната натрияиз трансдермальных пластырей с различным его содержанием через определённые промежутки времени

Таблица з

Количество высвободившегося (мкг/смІ), степень высвобождения (%) и скорость подачи гипоксена за промежуток времени (мкг/ч·смІ) из пластырей с различным содержанием поли(дигидроксифенилен)тиосульфоната натрия

Периоды наблюдения		Значение по-	Значение пока-	Значение по-	Значение пока-
		казателей че-	зателей через	казателей че-	зателей через
		рез интервалы	интервалы вре-	рез интервалы	интервалы вре-
		времени	мени	времени	мени
		<u>0,027г ЛВ</u>	<u>0,054г ЛВ</u>	<u>0,081г ЛВ</u>	<u>0,110г ЛВ</u>
0,5часа	A(мкг/смI)	38,00±2,30	82,67±12,07	65,33±4,34	84,87±18,07
	X,%	3,58±0,200	3,83±0,559	2,02±0,135	1,92±0,406
	V(мкг/ч·смІ)	76,00±4,60	165,33±24,14	130,67±8,67	169,73±36,13
2часа	A	140,66±12,85	259,33±37,96	150,00±4,40	209,93±14,93
	X,%	13,02±1,188	12,00±1,757	4,63±0,135	4,77±0,335
	V(0,5-2часа)	68,44±8,97	117,78±24,30	56,44±3,27	83,38±18,55
4часа	A	354,00±6,90	686,67±23,70	320,00±19,51	349,20±43,60
	X,%	32,78±0,638	31,79±1,094	9,88±0,600	7,96±0,993
	V(2-4часа)	106,67±6,86	213,67±19,66	85,00±8,98	69,63±23,77
24часа	A	564,00±13,27	1106,00±27,43	937,33±40,23	1156,67±74,40
	X,%	52,22±1,228	51,21±1,271	28,93±1,240	26,39±1,642
	V(4-244)	10,5±0,82	20,97±1,35	30,87±2,02	40,37±3,82

Таким образом, степень и скорость высвобождения поли(дигидроксифенилен)тиосульфоната натрия(гипоксена) из пластыря изменяется пропорционально при его содержании не более 0,054 г. Последующее увеличение концентрации ЛВ (до 0,081г) в пластыре способствовало уменьшению степени высвобождения поли(дигидроксифенилен)тиосульфоната натрияв 2-2,5 раза.

Степень высвобождения поли(дигидроксифенилен)тиосульфоната натрияиз трансдермальныхпластырей с содержанием 0,027 г и 0,054 г ЛВ через 30 минут может быть не более 5%, через 2 часа — более 5%, но не более 15%, через 4 часа — до 35%, через 24 часа — более 50%.

Выводы

1. Скорость трансдермальной подачи изменяется пропорционально содержанию гипоксена(поли(дигидроксифенилен)тиосульфоната натрия)до 0,054г ЛВ в пластыре.

2. Разработанная методика теста «Растворение» для трансдермальных пластырей легко воспроизводима, соответствует принятой в зарубежных фармакопеях и может быть использована с целью включения в ФСП на трансдермальный пластырь с гипоксеном.

Список литературы

- 1. Давыдова, К.С. Тест «Растворение» в контроле качества лекарственных средств / К.С. Давыдова, Ю.И. Кулинич, И.Е. Шохин // Ремедиум. 2010, №5. С.42.
- 2. Мизина, П.Г.Введение лекарственных веществ через кожу достижения и перспективы (обзор) / П.Г. Мизина, В.А. Быков, Ю.И.Настина [и др.] // Вестник ВГУ. Серия: Химия. Биология. Фармация. 2008, №1. С.176-183.
 - 3. НД «Транстек 20, 30,40» № 42-12758-03.
 - 4. ФСП «Гипоксен Поли(дигидроксифенилен)тиосульфонат натрия» № 42-0064345302.
 - 5. ФСП «Нитроперкутен ТТС» № 42-0003-0003-00.
- 6. Тохмахчи, В.Н. Разработка проекта общей фармакопейной статьи «Трансдермальные терапевтические системы» /В.Н. Тохмахчи,А.Е. Васильев, И.И. Краснюк [и др.] // Фармация. 2008, №3. С.3-6.
 - 7. Eur.Pharmacopoeia, 5ded., приложение 8,2006.

USE OF THE TEST "DISSOLUTION" FOR THE ESTIMATION OF SPEED OF LIBERATION HYPOXEN FROM TRANSDERMAL THE PLASTER

S.O. LOSENKOVA¹ E.F. STEPANOVA²

1) Smolensk State Medical Academy

²⁾ Pyatigorsk State Pharmaceutical Academy

e-mail: losenkova-so@mail.ru

In article data on working out of a technique of the test "dissolution" for the purpose of standardization transdermal a plaster with hypoxen are presented.

Key words: the test "Dissolution", mixer withblade, Uf-spektrofotometrija, transdermal a plaster with hypoxen