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Abstract—The article offers several generalizations of Discrete Fourier Transform. The theoretical
basis for the generalizations is the interpolation formulas of Lagrange and Hermite. It has been
established that each polynomial generates its own corresponding Discrete Fourier Transform.
The paper proposes an algorithm for constructing new DFT generalizations. It is possible to
use the Fast Fourier Transform (FFT) to build new generalizations. The technology for using
the FFT-application in the MatLab system is described. We have revealed that the introduction
and application of the Discrete Fourier Transform on the base of the interpolation formulas of
Lagrange and Hermite allows us to build new generalizations with the necessary properties in
practical applications. The authors’ approach, as opposed to traditional methods of presentation,
has a number of advantages: first, the simplicity and naturalness of the introduction of the Discrete
Fourier Transform are achieved, and secondly, it is possible to construct the Generalized Discrete
Fourier Transform with specified properties, which is not obvious under the standard approach.
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1. INTRODUCTION

The Discrete Fourier Transform (DFT) converts the finite sequence of function values on a equidis-
tant nodes into a sequence of complex amplitudes of harmonic constituents. The inverse Discrete
Fourier Transform is the partial sum of the Fourier series on a equidistant nodes. The complex-valued
amplitudes of the harmonics are the coefficients of the partial sum of the Fourier series. DFT can be
interpreted as a representation in the frequency area of the input sequence of signal values. DFT is widely
used [4, 6, 9, 17, 20] to perform Fourier analysis in many practical applications. So, for example, DFT is
used to effectively solve equations in private derivatives and perform convolution operation, multiplying
large whole numbers, coding, filtering the signal analysis [13, 16, 25, 26]. These transforms are also
important in transmutation theory [22, 23, 24].

A number of authors note the connection between DFT and the theory of trigonometric interpolation
[2, 3, 18, 19, 20]. However, no proposals have been made to put the theory of interpolation as the basis for
DFT. In this article, we propose to fill this gap and build a theory of Discrete Fourier Transforms based
on the interpolation formulas of Lagrange and Hermite. The developed approach, in contrast to the
traditional presentation methods, makes it easy to introduce the concept of a discrete Fourier transform
and opens up the possibility of its natural generalizations with given properties.
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The main result of the article is in paragraph 3. The Generalizations of the Discrete Fourier Transform
(GDFT) are built in 3.1; the most important cases for applications are considered in 3.2-3.4: 3.2 GDFT
with new signal values; 3.3 GDFT for union of two series of equidistant nodes; 3.4 GDFT for union of
signal values and its derivative values.

Literature review. The publications [8, 10, 11, 12] systematically set out the theoretical foundations
and recommendations for the practical application of Fourier Transforms. The features of Discrete
Fourier Transforms (DFT) are considered for the function of discrete argument posed by the numerical
array of finite dimension. The Fast Fourier Transforms (FFT) algorithms and the Fourier Transforms
standard Libraries are presented. The monograph [10] is devoted to the applications of the DFT
for digital signal processing,which is characterized by great attention of the authors to the changing
educational needs of the reader. The sources [1, 5, 7, 14, 17, 22–27] set out the theoretical foundations
of DFT, FFT and FFT-algorithms and applications to different problems. The Lagrange interpolation
formula is written in a baricentric form in the papers [2, 16] and it is mostly convenient for our purpose.
The Hermite interpolation formula is explicitly recorded for the case of setting the values of the signal
and its derivatives in [15, 18, 19], which seems to be convenient for practical applications.

Purpose and objectives of the study. The purpose of this article is to prove a Generalized Discrete
Fourier Transforms with assigned properties based on Lagrange and Hermite Interpolation Formulas.
To do this, we need to solve the following tasks:

—to modify the Lagrange and Hermite interpolation formulas;
—to establish a link between the Lagrange interpolation formula and DFT by selecting a base

polynomial pN (x) = xN − 1;
—to develop the GDFT with a equidistant nodes of discrete time points with the ability to add a new

signal value;
—to develop the GDFT with the ability to combine two non-intersecting series of equidistant nodes

of discrete time points;
—to establish the GDFT on the base of Hermite interpolation formula for signal values and its

derivative values on a equidistant nodes.

2. MATERIALS AND METHODS

Our study is based on the Barycentric Lagrange Interpolation Formula, which has the appearance in
[2, 3, 16]

f (x) =
N−1∑

k=0

f (εk)
pN (x)

p′N (εk) (x− εk)
, (1)

where polynomial pN (x) of N degree

pN (x) = a0 + a1x+ ...+ aN−1x
N−1 + xN (2)

all the roots of which {εk} , k = 0, ..., N − 1 are simple. Formula (1) solves the problem of existing of a
polynomial with minimum degree that takes these values in a given set of points. As it is known from
[3], there exists the unique polynomial f(x) at most of degree N − 1 for which f(εj) = yj, if N pairs of
points are given

(ε0, y0), (ε1, y1), . . . , (εN−1, yN−1).

Here all εj are different; N is the number of signal values measured over a period; y0, y1, ..., yN−1

measured signal values in discrete time points with numbers 0, 1, ..., N − 1 that are inputs for direct
DFT and output for inverse DFT; ε0ε1, ..., εN−1 are complex amplitudes of original signal harmonics.
such amplitudes are the output for the direct transform and input for the inverse one. For further we
need an investigation from the Viet theorem.

Theorem 1. Let the polynomial of N degree pN (x) = a0 + a1x+ ...+ aN−1x
N−1 + xN has

simple roots {εk} , k = 0, ..., N − 1. Then

pN (x)

x− εk
= a0k + a1kx+ ...+ aN−2,kx

N−2 + xN−1,
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where

aN−2,k = aN−1 + εk, aN−3,k = aN−2 + aN−1εk + ε2k, ...,

a0k = a1 + a2εk + aN−1ε
N−2
k + εN−1

k . (3)

Proof. From the condition of the theorem we get

pN (x) =
(
a0k + a1kx+ ...+ aN−2,kx

N−2 + xN−1
)
(x− εk) .

Equating the coefficients at xl degree, we come to a system of linear equations

al = −al,kεk + al−1,k, l = 1, ..., N − 2, a0 = −a0,kεk.

From the last equation we get a0,k = −a0
εk
. Transform the found expression. Note that

a0 = −a1εk − ...− aN−1ε
N−1
k − εNk .

Then we find

a0k = a1 + a2εk + aN−1ε
N−2
k + εN−1

k .

From formula (3) we consistently find the values of the other coefficients.

Example 1. If pN (x) = xN − 1 it is of greatest interest. At the same time, we get

xN − 1 = xN − εNk = (x− εk)
(
εN−1
k + εN−2

k x+ εN−3
k x2 + ...+ εkx

N−2 + xN−1
)
.

Consequently, the coefficients al,k of the theorem 1 take form al,k = εN−1−l
k . Using (3) and taking into

account p′N (εk) = NεN−1
k we get the expression of the interpolation polynomial

f (x) =

N−1∑

k=0

f (εk)

N−1∑

l=0

εN−1−l
k xl

NεN−1
k

=
1

N

N−1∑

k=0

f (εk)

N−1∑

l=0

ε̄lkx
l. (4)

Changing the summation order on the right side of (4) we get a formula for an interpolation polynomial

f (x) =
1

N

N−1∑

l=0

xl
N−1∑

k=0

ε̄lkf (εk).

If we put x = εj , we come to the formula of decomposition of the signal by the base ε0j , ε
1
j , ..., ε

N−1
j in the

form

f (εj) =
1

N

N−1∑

l=0

εlj

N−1∑

k=0

ε̄lkf (εk). (5)

Definition 1. The discrete Fourier transform (DFT) of measured signal values

y0 = f (ε0) , y1 = f (ε1) , ..., yN−1 = f (εN−1)

is defined by the formula

Yl =
N−1∑

k=0

ε̄lkyk (6)

From (5) we get the formula of calculation for Discrete Fourier Transform

yj =
1

N

N−1∑

l=0

εljYl. (7)

We rewrite formulas (6), (7) as usual. We use the roots εk = e
2πi
N

k, k = 0, 1, ..., N − 1 of polynomial
pN (x) = xN − 1. Thus, the last formulas are transformed into formulas for DFT from [17]:
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direct

Yl =
N−1∑

k=0

e−
2πi
N

lkyk (8)

inverse

yj =
1

N

N−1∑

l=0

e
2πi
N

ljYl. (9)

We have presented a way to introduce a direct and inverse DFT Discrete Fourier Transform based on
the interpolation Lagrange formula.

3. MAIN RESULTS

3.1. The Generalizations of Discrete Fourier Transform (GDFT)

Use the Barycentric Lagrange Interpolation formula and the Hermite formula to generalize discrete
Fourier transform.

Definition 2. The direct generalized discrete Fourier transform (GDFT) of measured signal values
y0, y1, ..., yN−1 will be determined by formula

Yl =

N−1∑

k=0

alk
p′N (εk)

yk, l = 0, 1, ..., N − 1; yk = f (εk) , (10)

the polynomial pN (x) is given by formula (2) and satisfies the conditions of Theorem 1.

Theorem 2. If the sequence of numbers alk is set by (3), then the inverse Generalized Discrete
Fourier Transform (GDFT) has the form

yj =

N−1∑

l=0

εljYl. (11)

Proof. Based on the interpolation formula (1) and Theorem 1, we have

f (x) =

N−1∑

k=0

f (εk)

p′N (εk)

N−1∑

l=0

alkx
l.

Put x = εj . Then the equality is done

yj = f (εj) =

N−1∑

k=0

yk
p′N (εk)

N−1∑

l=0

alkε
l
j .

Let’s change the order of summing. We get

yj =

N−1∑

l=0

εlj

N−1∑

k=0

alk
yk

p′N (εk)
=

N−1∑

l=0

εljYl.

The theorem is proved.

Example 2. Let the polynomial pN (x) = xN − 1 be given. It is proved in paragraph 2 that DFT (8),
(9) is a special case of GDFT, corresponding to the equidistant separation of the segment [0, 2π] into N
equal parts.
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3.2. GDFT with New Signal Values

Consider the important case of adding a new signal value to an equidistant separation of the segment
[0, 2π] into N equal parts. To be more precise, we add one new value y = f (ε) to the N measured signal
values

y0 = f (ε0) , y1 = f (ε1) , ..., yN−1 = f (εN−1) .

We choose the polynomial p (x) from theorem 1 in the form

p (x) =
(
xN − 1

)
(x− ε) , ε �= εk, k = 0, 1, ..., N − 1.

Then we get

p (x)

x− εk
= a′0k + a′1kx+ ...+ a′N−2,kx

N−2 + xN . (12)

By equating the coefficients in the right and left parts of (12), we get

a′0k = −εN−1
k ε, a′lk = εN−l

k − εN−l−1
k ε, l = 1, .., N − 1; a′Nk = 1. (13)

Based on Theorem 1 direct GDFT is determined by the formula

εl =

N−1∑

k=0

a′lk
p′ (εk)

yk +
a′lN
p′ (ε)

y, l = 0, 1, ..., N,

where

p′ (εk) = NεN−1
k (εk − ε) , p′ (ε) = εN − 1.

Taking into account (13) GDFT is set by formulas:

direct

Y0 = −
N−1∑

k=0

ε

N (εk − ε)
yk −

y

εN − 1
, Yl =

N−1∑

k=0

ε̄lk
N

f (εk), l = 1, ..., N − 1, (14)

YN =

N−1∑

k=0

εk
N (εk − ε)

yk +
1

(εN − 1)
y,

inverse

yj =

N∑

l=0

εljYl; y =

N∑

l=0

εlYl. (15)

Note. From formulas (14), (15) we conclude that direct GDFT calculation, i.e. the calculation of
complex amplitudes Yl, l = 1, ..., N − 1 can be performed in the FFT-application from MatLab. It is
need to rewrite (5) and also return to the originals in the FFT-application.

yj =
N−1∑

l=0

εljYl + εNj YN ; y =
N−1∑

l=0

εlYl + εNYN .

Thus, this formula contains two addends, the first of which can be calculated in the FFT-application.
Therefore, the newly introduced GDFT can be calculated in the FFT-application.
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3.3. GDFT for Union of Two Series of Equidistant Nodes

Choose a polynomial p (x) =
(
xN1 − 1

) (
xN2 + 1

)
, where N1 < N2 are coprime integers. In this

case, all zeros of the polynomial p (x) are simple. We denote the zeros of the polynomial p (x) by {ε1k},
k = 0, 1, ..., N1 − 1; {ε2m}, m = 0, 1, ..., N2 − 1,

ε1k = e
i 2πlj

N1 , ε2k = e
iπ(1+2j)l

N2 . (16)

Let further
p (x)

x− ε1k
= a0k + a1kx+ ...+ aN−2,kx

N−2 + xN−1, N = N1 +N2,

p (x)

x− ε2m
= b0k + b1kx+ ...+ bN−2,kx

N−2 + xN−1, N = N1 +N2. (17)

The geometric progression formula is applicable to calculate the coefficients

p (x)

x− ε1k
=

xN1 − 1

x− ε1k

(
xN2 + 1

)
=

N1−1∑

p=0

xpεN1−1−p
1k

(
xN2 + 1

)

=

N1−1∑

p=0

xpεN1−1−p
1k +

N1−1∑

p=0

xN2+pεN1−1−p
1k =

N1−1∑

p=0

xpεN1−1−p
1k +

N1+N2−1∑

p=N2

xpεN2−1−p
1k .

Then the formulas for coefficients from (17) take the form

apk =

⎧
⎪⎨

⎪⎩

εN1−1−p
1k , 0 ≤ p ≤ N1 − 1,

0, N1 ≤ p ≤ N2 − 1,

εN2−1−p
1k , N2 ≤ p ≤ N1 +N2 − 1.

Similarly, we calculate the bpk. For this we expand the polynomial from (17) in powers of x

p (x)

x− ε2k
=

xN2 + 1

x− ε2k

(
xN1 − 1

)
=

N2−1∑

p=0

xpεN2−1−p
2k

(
xN1 − 1

)

= −
N2−1∑

p=0

xpεN2−1−p
2k +

N2−1∑

p=0

xN1+pεN2−1−p
2k

= −
N2−1∑

p=0

xpεN2−1−p
2k +

N1+N2−1∑

p=N1

xN1+pεN1+N2−1−p
2k = −

N1−1∑

p=0

xpεN2−1−p
2k

+

N2−1∑

p=N1

xN1+p
(
εN1+N2−1−p
2k − εN2−1−p

2k

)
+

N1+N2−1∑

p=N2

xN1+pεN1+N2−1−p
2k .

As a result, we get

bpk =

⎧
⎪⎪⎨

⎪⎪⎩

−εN2−1−p
2k , 0 ≤ p ≤ N1 − 1,(

εN1+N2−1−p
2k − εN2−1−p

2k

)
, N1 ≤ p ≤ N2 − 1,

εN1+N2−1−p
2k , N2 ≤ p ≤ N1 +N2 − 1.

In the example the Barycentric Lagrange Interpolation formula has the form

f (x) =

N1−1∑

k=1

y1k
p (x)

p′ (ε1k) (x− ε1k)
+

N2−1∑

k=1

y2k
p (x)

p′ (ε2k) (x− ε2k)
, (18)
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where y1k = f (ε1k) , y2k = f (ε2k) . The calculations show that

p′N (ε1l) = N1ε
N1−1
1l

(
εN2
1l + 1

)
, p′N (ε2l) = N2ε

N2−1
2l

(
εN1
2l − 1

)
. (19)

Similarly to paragraph 3.1 from (18) we get the formulas for GDFT:
direct

Yl =

N1−1∑

k=1

ε̄l1k

N1

(
εN2
1k + 1

)y1k −
N2−1∑

k=1

ε̄l2k

N2

(
εN1
2k − 1

)y2k, 0 ≤ l ≤ N1 − 1,

Yl =

N2−1∑

k=1

ε̄l2k
N2

y2k, N1 ≤ l ≤ N2 − 1,

Yl =

N1−1∑

k=1

ε̄l−N2
1k

N1

(
εN2
1k + 1

)y1k +
N2−1∑

k=1

ε̄l−N1
2k

N2

(
εN1
2k − 1

)y2k, N2 ≤ l ≤ N1 +N2 − 1. (20)

For the inverse GDFT (20) we substitute the expressions (16) and convert it to the form

y1j =

N1+N2−1∑

l=0

e
i 2πlj

N1 Yl, y2j =

N1+N2−1∑

l=0

εl2je
iπ(1+2j)l

N2 Yl. (21)

Note. The decomposition of the signal is made by harmonics set on the union of two series of
equidistant nodes

{
2πij

N1

}
, j = 0, 1, ..., N1 − 1,

{
(1 + 2j) πi

N2

}
, j = 0, 1, ..., N2 − 1.

At the same time, the signal values y1j are restored on the first equidistant nodes, and the values y2j on
the second ones.

3.4. GDFT for Union of Signal Values and its Derivative Values

The Hermite formula [15] solves the problem of existing the polynomial of minimal degree that takes
the values in a given set of points, the derivative of which takes certain values on the same set of points,
cf. [15]. As it is known, for 2N pairs of numbers

(ε0, y0), (ε1, y1), . . . , (εN−1, yN−1),

(ε0, y
′
0), (ε1, y

′
1), . . . , (εN−1, y

′
N−1),

where all εj are different, there is a unique polynomial f(x) of degree no more than 2N − 1 for which
f(εj) = yj, f

′(εj) = y′j . Here are the following designations: 2N the number of signal values and
values of its derivatives measured over the period xn, n = 0, ..., N − 1

y0, y1, ..., yN−1,

y′0, y
′
1, ..., y

′
N−1,

which are input for direct transform and output for the inverse one. In the case of roots of multiplicity 2,
it is necessary to use the Hermite interpolation formula. The standard Hermite formula contains divided
difference [19] and therefore is not suitable for our purposes. Let’s present a more convenient version of
the formula.

Theorem 3. The Interpolation Hermite polynomial has the form

f (x) =
N−1∑

i=0

2p2N (x)

p′′2N (εi) (x− εi)
2

(
yi

(
1− p′′′2N (εi)

3p′′2N (εi)
(x− εi)

)
+ y′i (x− εi)

)
. (22)
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Proof. Note that if x = εj all the addends in the right part of the formula are zero except the one with
the j number

f (εj) = 2 lim
x→εj

p2N (x)

p′′2N (εj) (x− εj)
2

(
yj

(
1− p′′′2N (εj)

3p′′2N (εj)
(x− εj)

)
+ y′j (x− εj)

)
= yj.

Similarly, it is proven that f ′ (εj) = y′j. Consider the polynomial p2N (x) =
(
xN − 1

)2
. Let εi be the

roots of polynomial p2N (x). Each of the roots has a multiplicity 2. Then we get

p′′2N (εi) = 2N2ε2N−2
i , p′′′2N (εi) = 6N2 (N − 1) ε2N−3

i .

Thus, Hermite interpolation formula takes the form

f (x) = 2

N−1∑

i=0

p2N (x)

2N2ε2N−2
i (x− εi)

2

(
yi

(
1− N2 (N − 1) ε2N−3

i

N2ε2N−2
i

(x− εi)

)
+ y′i (x− εi)

)
.

After simplifications we get

f (x) =
1

N2

N−1∑

i=0

ε2i p2N (x)

(x− εi)
2

(
yiN − y′iεi

)
+ x

(
y′i − (N − 1) ε−1

i yi
)
.

Taking into account the elementary identity

ε2k

(
xN − 1

x− εk

)2

=

2N−2∑

l=0

(N − |N − l − 1|)xlε̄l.

We get the decomposition of the interpolation polynomial f (x) by degrees of x

f (x)=
N−1∑

i=0

(
y′i − (N − 1) ε−1

i yi
)

N2

(
N−1∑

k=0

(k + 1) ε−k
i xk+1 +

2N−2∑

k=N

(2N − 1− k) ε−k
i xk+1

)

+
N−1∑

i=0

(yiN − y′iεi)

N2

(
N−1∑

k=0

(k + 1) ε−k
i xk +

2N−2∑

k=N

(2N − 1− k) ε−k
i xk

)
.

Accept the designations

Fk =

N−1∑

i=0

ε−k
i

(
yiN − y′iεi

)
, Gk =

N−1∑

i=0

ε−k
i

(
y′i − (N − 1) ε−1

i yi
)
. (23)

Then

f (x) =
1

N2

N−1∑

k=0

(k + 1) (Fk + xGk)x
k +

1

N2

2N−2∑

k=N

(2N − 1− k) (Fk + xGk) x
k, (24)

f ′ (x) =
1

N2

N−1∑

k=0

(k + 1)Gkx
k +

1

N2

2N−2∑

k=N

(2N − 1− k)Gkx
k

+
1

N2

N−1∑

k=1

(k + 1) (Fk + xGk) kx
k−1 +

1

N2

2N−2∑

k=N

(2N − 1− k) (Fk + xGk) kx
k−1.

Put in each of the formulas (24) x = εj , we get the expressions

yj =
1

N2

N−1∑

k=0

(k + 1) (Fk + εjGk) ε
k
j +

1

N2

2N−2∑

k=N

(2N − 1− k) (Fk + εjGk) ε
k
j .
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Similarly, for the values of the derivative, we receive accordingly

y′j =
1

N2

N−1∑

k=0

(k + 1)Gkε
k
j +

1

N2

2N−2∑

k=N

(2N − 1− k)Gkε
k
j

+
1

N2

N−1∑

k=1

(k + 1) (Fk + εjGk) kε
k−1
j +

1

N2

2N−2∑

k=N

(2N − 1− k) (Fk + εjGk) kε
k−1
j .

Because of the equality εNk = 1, the periodic condition is fulfilled Fk+N = Fk, Gk+N = Gk. Conse-
quently, the signal decomposition formula into harmonic signals allows simplification

yj =
1

N2

N−1∑

k=0

(k + 1) (Fk + εjGk) ε
k
j +

1

N2

2N−2∑

k=N

(2N − 1− k) (Fk + εjGk) ε
k
j

=
1

N2

N−2∑

k=0

(k + 1) (Fk + εjGk) ε
k
j +

(FN−1 + εjGN−1) ε
−1
j

N

+
1

N2

2N−2∑

k=N

(2N − 1− k) (Fk + εjGk) ε
k
j =

1

N2

N−2∑

k=0

(k + 1) (Fk + εjGk) ε
k
j

+
1

N2

N−2∑

k=0

(2N − 1−N − k) (Fk + εjGk) ε
k
j +

(FN−1 + εjGN−1) ε
N−1
j

N

=
N

N2

N−2∑

k=0

(Fk + εjGk) ε
k
j +

(FN−1 + εjGN−1) ε
N−1
j

N
=

1

N

N−1∑

k=0

(Fk + εjGk) ε
k
j .

Similarly, formula for the decomposition of the derivative into a sum of harmonic signals can be obtained

y′j =
N−1∑

k=0

Gkε
k
j +

N − 1

N

N−1∑

k=0

Fkε
k−1
j .

Definition 3. Two sets of complex amplitude Fk, Gk defined by formulas

Fk =

N−1∑

i=0

ε−k
i

(
y′iN − yiε

−1
i

)
, (25)

Gk =
N−1∑

i=0

ε−k
i

(
y′i − (N − 1) ε−1

i yi
)
, k = 0, 1, ..., N − 1

is named the direct GDFT for signal values and their derivatives

y0, y1, ..., yN−1,

y′0, y
′
1, ..., y

′
N−1.

As above, the inverse GDFT on sets of complex amplitudes Fk, Gk restores the values of the signal and
the values of its derivatives

yj =
1

N

N−1∑

k=0

(Fk + εjGk) ε
k
j , (26)

y′j =
N−1∑

k=0

Gkε
k
j +

N − 1

N

N−1∑

k=0

Fkε
k−1
j .

Note. The presence in formulas (25), (26) not only the values of the signal, but also the values of its
derivative increases the quality of signal processing.
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4. RESULTS OF TESTING THE PROPOSED APPROACHES IN PRACTICE

The calculation of complex amplitudes of Yl, l = 0, 1, ..., N − 1 harmonic signals can be performed
in the fft-application from MatLab [9]. You can also restore the signal by its complex amplitudes in the
fft-application. Program order Y = fft(X) calculates the DFT of the observed signal values X using
the Fast Fourier Transform Algorithm (FFT) [4, 6, 9, 11]. Note that the newly introduced GDFT can
be implemented in the fft-application. If you add one new value (see p.3.2) you can implement the
calculation algorithm in the fft-application from MatLab. If it is necessary to combine two series of
equidistant nodes (see p. 3.3 formulas (19),(20)) FFT algorithm can be easily transformed.

Description the calculation of direct and inverse GDFT’s, associated with the Hermite formula, is
possible to produce by Fast Fourier Transform Algorithm in the fft and ifft applications from MatLab
according to the following:

first, we define the complex amplitudes of the observed signal Y =fft(yε , n) and the complex ampli-
tudes of the observed signal derivatives Y ′ =fft(y′, n), where y, y′ are vectors signal and its derivatives,

second, we get two vectors of complex amplitudes by formulas F = NY ′ − Y,G = Y ′ − (N − 1)Y ,
thirdly, we will determine of the harmonic components of the signal and its derivatives is carried out

by the formulas (26) in the form
y = ifft( 1

N (F + εG), n), y′ = ifft( 1
N (G+ (N − 1)ε̄F ), n).

5. CONCLUSIONS AND FUTURE STEPS

The article summarizes and generates the Discrete Fourier Transforms, based on the Lagrange and
Hermite interpolation formulas; signal analysis apparatus was improved. New options for the considered
generalizations of Discrete Fourier Transforms were appeared:

—the ability to add new signal values without significantly changing the FFT algorithm
—the possibility of combining two independent samples of signal observations,
—the ability to add signal derivatives.
Based on the presented results, you can develop algorithms for filtering, coding signals by modifying

well-known ones. As a result, the quality of signal processing is improved.
To solve the problem it is necessary

1. Explore properties new GDFT.

2. Create an algorithm to add some new more than one signal values to process GDFT.

3. Create new GDFT based on generalized interpolation Hermite formula to process of signal values
and its derivatives to the second order.
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