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GRAPHS AND ALGEBRAS OF SYMMETRIC FUNCTIONS
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Abstract. We describe an algebraic technique for operating with power series whose coefficients are
represented by integrals of symmetric functions fn defined on the Cartesian powers Ωn of a set Ω
with a measure µ. Moreover, each of the coefficient functions fn is obtained by means of a special
mapping from graphs with n labeled vertices belonging to a fixed class. This technique has application
to equilibrium statistical mechanics and to problems of enumeration of graphs.
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1. Introduction. In 1938, J. Mayer proposed to describe the structure of the coefficients of power
series arising in problems of statistical mechanics of gases by means of graphs (see [6, 7]). The con-
struction used in these papers can be easily implemented in the case of the so-called group expansions
in terms of activity degrees (see [5]). The formulas determining these coefficients have complete math-
ematical proofs (see, e.g., [4, 10]). However, this algebraic technique can be generalized and hence can
be applied to a much wider range of problems in mathematical physics. In particular, it is suitable
for calculating the coefficients of the so-called virial expansions of statistical mechanics, which remain
little known (see [1]); these expansions have no rigorous proofs in the mathematical literature. This
paper is devoted to filling this gap. The outline is the following. In Sec. 2, we present necessary infor-
mation (basic notions and facts) from the theory of graphs with labeled vertices; here we omit proofs
(the reader the reader is referred to well-known monographs on graph theory, e.g., [2, 8]). In Sec. 3,
we briefly recall basic information about infinite-dimensional commutative algebras of sequences of
symmetric functions. In Sec. 4, the relationship between graphs with labeled vertices and symmetric
functions is established. The last section is devoted to the proof of the formula that plays the main
role in the construction of virial expansions.

2. Graphs with labeled vertices. Let V be a finite set of elements that are called vertices; we
denote them by lowercase Latin letters. We denote by V (2) the set of all pairs {x, y} ⊂ V . A graph with
labeled vertices (in the sequel, we use the term “graph”) over the set V is an ordered pair G = 〈V,Ψ〉,
where the subset Ψ ⊂ V (2) is called the adjacency set of the graph; its elements are called edges of the
graph 〈V,Ψ〉. The graph theory also considers graphs whose vertices are not labeled; they are defined
as the factor set 〈V,Ψ〉/P|V | by the permutation group P|V |. A graph G′ = 〈V ′,Ψ′〉 such that V ′ ⊂ V

and Ψ′ = Ψ ∩ V ′(2) is called a subgraph of the graph G.
The symmetric binary relation Ψ (the adjacency relation) on V determines a binary relation on V ,

namely, the connectedness relation. Its construction is based on the notion of a path on the graph
G = 〈V,Ψ〉. A sequence γ(x, y) = 〈x, x1, x2, . . . , xn−1, y〉 of vertices of V such that {xj , xj+1} ∈ Ψ,
j = 0, 1, . . . , n−1, x0 = x, xn = y, is called a path with the set of vertices {γ(x, y)}. A pair {x, y} ⊂ V
is said to be connected on the graph G if there exists a path 〈x, x1, x2, . . . , xn−1, y〉 containing these
vertices. The subset of pairs of connected vertices generates a binary relation, which is symmetric and
transitive; thus, it is an equivalence relation. Therefore, it generates the decomposition of the graph
into connected, pairwise disjoint components.
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Let G1 = 〈V1,Ψ1〉 and G2 = 〈V2,Ψ2〉 be connected subgraphs of a connected graph G = 〈V,Ψ〉 and
V1 ∩ V2 = {x}, V = V1 ∪ V2; Ψ = Ψ1 ∩Ψ2 = ∅, Ψ = Ψ1 ∪Ψ2. (2.1)

Then x is called a cut vertex of the graph G. Graphs without cut vertices are called blocks. By
definition, each graph {x} with one vertex has no cut vertices. If x is a cut vertex of a graph G (i.e.,
Eqs. (2.1) hold), then we say that the graph G is glued at this vertex and denote this fact as follows:
G = G1 ∨ G2 (the symbol ∨ denotes the gluing operation). A cut vertex in a connected graph G is
characterized by the following property.

Theorem 2.1. A vertex x of a connected graph G = 〈V,Ψ〉 is a cut vertex if and only if there exists
a pair of vertices y1 ∈ V , y2 ∈ V , yj 
= x, j = 1, 2, such that any path γ(y1, y2) from y1 to y2 contains
the vertex x.

If a vertex x is a cut vertex in a graph G and this graph can be represented in the form

G =

p∨

j=1

Gj,

where Gj = 〈Vj ,Ψj〉, j = 1, . . . , p, are connected graphs such that

Vj ∩ Vk = {x}, Ψj ∩Ψk = ∅, j 
= k; j, k = 1, . . . , p

and x is not a cut vertex for all these graphs, then the number p is called the degree of the cut
vertex x in the graph G. The graphs Gj are called the components corresponding to the cut vertex x.
If a vertex x is not a cut vertex, then, by definition, we assume that its degree is equal to 1. Each cut
vertex has a degree.

Theorem 2.2. Let x be a cut vertex of a connected graph G = 〈V,Ψ〉. Then there exist a number
s ≥ 2 and a unique set of connected graphs Gj = 〈Vj ,Ψj〉, j = 1, . . . , s, in which the vertex x is not a
cut vertex, such that the following relations hold :

V = V1 ∪ V2 ∪ · · · ∪ Vs, Vi ∩ Vj = {x}, i 
= j, i, j = 1, . . . , s;

Ψ = Ψ1 ∪Ψ2 ∪ · · · ∪Ψs, Ψi ∩Ψj = ∅, i 
= j, i, j = 1, . . . , s.

Corollary 2.1. Any finite non-one-vertex graph contains at least two vertices that are not cut vertices.

Introduce a more general notion of the gluing of two graphs. Let two graphs Gj = 〈Vj ,Ψj〉, j = 1, 2,
be such that V1 ∩ V2 
= ∅. The gluing G1 ∨ G2 of these graphs is the graph 〈V1 ∪ V2,Ψ1 ∪ Ψ2〉. This
notion allows one to introduce the following construction.

Assume that the graph G = 〈V,Ψ〉 contains a subgraph GB = 〈B,ΨB〉, ΨB = Ψ ∩ B(2), without
cut vertices such that there exists a set {G(z) = 〈V (z),Ψ(z)〉; z ∈ B} of connected, pairwise disjoint
subgraphs of the graph G that possess the following properties: B ∩ V (z) = {z}, ΨB ∩ Ψ(z) = ∅,
z ∈ B, and the graph G can be represented in the form

G =
∨

z∈B

[
GB ∨G(z)

]
; (2.2)

some of the subgraphs G(z), z ∈ B, may be empty. Then we say that the subgraph GB is a block of
the graph G.

Since each graph has a vertex, which is not a cut vertex, the following assertion guarantees the
existence of a block in each graph.

Theorem 2.3. Let x be a vertex of a graph G = 〈V,Ψ〉, which is not a cut vertex. Then the graph G
contains a unique block GB = 〈B,ΨB〉 satisfying the representation (2.2) and containing x.

The following assertion clarifies the formula (2.2).
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Theorem 2.4. Let x be a vertex of a connected graph G = 〈V,Ψ〉, which is not a cut vertex, and
GB = 〈B,ΨB〉 be unique block in this graph, which contains this vertex. Then the graph G can be
represented in the form

G =
∨

z∈B

⎡

⎣GB ∨
⎛

⎝
p(z)−1∨

j=1

Gj(z)

⎞

⎠

⎤

⎦ , (2.3)

where GB is the block in the graph G containing x, the numbers p(z) are the degrees of each vertex
z ∈ B in the graph G, and the connected graphs Gj(z), j = 1, . . . , p(z), are the components of the cut
set corresponding to the vertex z.

A decomposition A of a set In = {1, . . . , n} is a disjunct set {Γ1, . . . ,Γs} of subsets of In, called

the components, such that
s⋃

j=1
Γj = In and Γj ∩ Γk = ∅ for j 
= k. The number s ≡ |A| is called the

order of the decomposition. We denote by S
(s)
n the class of all decompositions of order s of the set In

and by S =
n⋃

s=1
S

(s)
n the class of all decompositions. Note that the classes S

(1)
n and S

(n)
n contain one

decomposition, respectively, S
(1)
n = {In} and S

(n)
n =

{
Γj = {j}, j = 1, . . . , n

}
.

Let Ḡ[V ; z] be the class of all connected graphs over the set of vertices V ∪ {z} with a marked
vertex z. This class is a subclass of the class of all connected graphs over V ∪ {z}. It is characterized
by the invariance under renumbering of vertices of V . Namely, let P belongs to the group P|V | of
permutations of the set V . Then the numbers of the vertex z in the sets PV ∪{z} and V ∪{z} coincide.
Any renumbering P induces a transformation PΨ ≡ {{Px,Py} : {x, y} ∈ Ψ

}
of the adjacency set Ψ

of each graph G = 〈V ∪ {z},Ψ〉 and, therefore, a transformation PG = 〈PV ∪ {z},PΨ〉 of any graph
G ∈ Ḡ[V ∪ {z}]. Then the invariance of the class Ḡ[V ; z] with respect to P means that

PḠ[V ; z] ≡ {
PG; G ∈ Ḡ[V ; z]

}
= Ḡ[V ; z].

Below, we need the following technical lemmas whose proofs are obvious.

Lemma 2.1. The class Ḡ[In;n+ 1], n ∈ N, can be represented as the disjunct union

Ḡ[In;n+ 1] =

n⋃

s=1

Ḡ(s)[In;n + 1],

where Ḡ(s)[In;n + 1] is the class of all connected graphs with the set of vertices In+1 such that the
marked vertex is a cut vertex of degree s = 1, . . . , n.

Moreover, it is obvious that PḠ(s)[In;n+ 1] = Ḡ(s)[In;n+ 1], P ∈ Pn.

Lemma 2.2. If a marked vertex n+ 1 is a cut vertex of degree s > 1, then the class Ḡ(s)[In;n + 1]
can be represented as the disjunct union

Ḡ(s)[In;n+ 1] =
⋃

A∈S(s)
n

Ḡ(s)[In;A, n+ 1]

with nonempty components, each of which is a class of all connected graphs over the set In+1 with
the marked vertex n+ 1 and the degree of the cut vertex s. In this case, the numbers of vertices
(different from n+ 1) of the connected graphs Gj , j = 1, . . . , s, that are components of the cut vertex

at the vertex n+ 1 form a decomposition A ∈ S
(s)
n with the number of components equal to s and the

vertex n+ 1 is not a cut vertex in the graph Gj .

Each of the classes Ḡ(s)[In;A, n + 1], A ∈ S
(s)
n , is invariant under renumberings P ∈ Pn of the set

In that do not change the decomposition A, i.e.,

PA =
〈
PAj ; j = 1, . . . , s

〉
=
〈
Aj ; j = 1, . . . , s

〉 ≡ A.
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Lemma 2.3. For any disjunct decomposition A = {A1, . . . , As} ∈ S
(s)
n , the class of graphs

Ḡ(s)[In;A, n + 1], n ≥ s > 1, is equivalent to the Cartesian product

Ḡ(s)[In;A, n+ 1] =
⊗

A∈A
Ḡ(1)[A;n + 1],

where Ḡ(1)[A;n+ 1] is the class of connected graphs with the set of vertices A ∪ {n+ 1}, A ∈ A, such
that the vertex n+ 1 is not a cut vertex.

Each of the classes Ḡ(1)[A;n+1] is invariant under renumberings P ∈ Pn of vertices that transform
the set A ∈ A into itself, PA = A, A ∈ A.

Based on the formula (2.3), one can prove the following assertion.

Lemma 2.4. The class Ḡ(1)[In;n+ 1], n ≥ 2, can be represented as the disjunct union

Ḡ(1)[In;n+ 1] =
⋃

B⊂In:|B|≥1

⋃

C⊂B

Ḡ[In;B;C]

of nonempty classes Ḡ[In;B;C] of graphs with a marked vertex n+ 1, which is not a cut vertex. For
each graph G ∈ Ḡ[In;B;C], the nonempty set B consists of numbers of vertices of the block GB

containing the vertex n+ 1 and C is the set of cut vertices of the graph with the degree greater than 1,
which are contained in the block GB.

Each of the classes Ḡ[In;B;C] is invariant under renumberings P of vertices that transform the sets
B and C into themselves.

For each pair of sets B ⊂ In and C ⊂ B, we denote by D(B,C) the class of functions {B(z); z ∈ C}
on C, where the set of values forms the disjunct decomposition

⋃
z∈C

B(z) = In \B, B(z) 
= ∅, z ∈ C,

and B(z1) ∩B(z2) = ∅ for z1 
= z2. The following assertion holds.

Lemma 2.5. Each class Ḡ[In;B;C], n ≥ 2, can be represented as the disjunct union

Ḡ[In;B;C] =
⋃

{B(z); z∈C}∈D(B,C)

Ḡ[In;B | {B(z), z ∈ C}]

of nonempty classes Ḡ[In;B | {B(z), z ∈ C}], {B(z); z ∈ C} ∈ D(B,C), such that each graph
G ∈ Ḡ[In;B | {B(z), z ∈ C}] with the sets B and C defined in Lemma 2.4, for which the set of
vertices of the graph glued to the block GB at the vertex z ∈ C is B(z).

Here each of the classes Ḡ[In;B | {B(z), z ∈ C}] is invariant under renumberings P of vertices that
transform the sets B and C into themselves and do not change elements of the decomposition {B(z),
z ∈ C}, PB(z) = B(z), z ∈ C.

Lemma 2.6. Each class Ḡ[In;B | {B(z), z ∈ C}], n ≥ 2, can be represented as the Cartesian product

Ḡ[In;B | {B(z), z ∈ C}] = F [B;n+ 1]⊗
(
⊗

z∈C
Ḡ[B(z); z]

)

of the class F [B;n+ 1] of graphs without cut vertices over the set of vertices B ∪ {n+ 1} and the set
of nonempty classes Ḡ[B(z); z], z ∈ C, where each class consists of all connected graphs over the set
of vertices B(z) ∪ {z} with a marked vertex z.

Here for a fixed vertex z ∈ C, each of the classes Ḡ[B(z); z] is invariant under renumberings P of
vertices that transform the set B(z) into itself.
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3. Algebras of symmetric functions. Let Ω be a set whose elements are denoted by x, y, z, . . . ;
we denote an ordered family 〈x1, x2, . . . , xn〉 ∈ Ωn by Xn. A function fn(Xn), n ≥ 2, on Ωn with
values in C is said to be symmetric if for any permutation P from the group Pn of permutations of
the set In, n ∈ N, the relation fn(PXn) = fn(Xn) holds. The set of all symmetric functions on Ωn is
a linear variety Ln(Ω). Consider the direct sum

L∞(Ω) =

∞⊕

n=0

Ln(Ω)

of linear varieties L0(Ω) ≡ C, L1(Ω) is the linear variety of functions f1(x1) on Ω and Ln(Ω) are
the linear varieties of symmetric functions fn(Xn) on Ωn, n ≥ 2. Thus, L∞(Ω) consists of sequences
f = 〈fn(Xn); n ∈ N+〉.

On the linear variety L∞(Ω), we introduce the mapping L∞ × L∞ �→ L∞, which to any pair of

sequences f(1) = 〈f (1)
n ; n ∈ N+〉 and f(2) = 〈f (2)

n ; n ∈ N+〉 assigns a sequence f = 〈fn; n ∈ N+〉 whose
elements are defined by the formula

fn(Xn) =
∑

Γ⊂In

f
(1)
|Γ|
(
X(Γ)

)
f
(2)
n−|Γ|

(
X(In \ Γ)), n ∈ N+,

where X(Γ) = 〈xj1 , . . . , xjs〉 with Γ = {j1, . . . , xs}, s = |Γ|. We assume that f is the result of applying

a binary operation denoted by ∗ to the ordered pair 〈f(1), f(2)〉 from L∞(Ω).
One can easily verify that the operation ∗ is commutative and associative. Moreover, it is distributive

with respect to the addition of elements of L∞(Ω) and bilinear with respect to the multiplication of
elements f ∈ L∞(Ω) by numbers from C. This allows one to call it multiplication on L∞(Ω). The
linear variety equipped with the multiplication operation ∗ is an algebra over the field C, which is
denoted by the same symbol L∞(Ω). The neutral element of L∞(Ω) is the sequence e = 〈δn,0; n ∈ N+〉.
Moreover, each element f of L∞(Ω) with f0 
= 0 is invertible; we denote the inverse element by f−1∗ ,
so that f ∗ f−1∗ = e, i.e., the operation of division by elements f0 
= 0 is defined. For this reason, the

set of elements L
(0)
∞ (Ω) =

{
f ∈ L∞(Ω) : f0 = 0

}
, which is a subalgebra in L∞(Ω), is a maximal ideal

in L∞(Ω) (see [11]). The following assertion can be easily proved (we omit the proof).

Lemma 3.1. For any element f ∈ L
(0)
∞ (Ω), the equality (fl∗)n(Xn) = 0 is valid for n < l. For n ≥ l,

the following formula holds:

(fl∗)n(Xn) = l!
∑

A={Γ1,...,Γl}∈S(l)
n

l∏

j=1

f|Γj |(X(Γj)).

Since elements of the algebra L∞(Ω) are C-valued functions, one can consider power series in L∞(Ω);
in particular, we introduce the exponential function

exp∗ f =
∞∑

l=0

1

l!
fl∗,

where f0∗ ≡ e. Lemma 3.1 implies the following assertion.

Lemma 3.2. For any element f ∈ L
(0)
∞ (Ω), the following formula holds:

(
exp∗ f

)

n
(Xn) =

∑

A={Γ1,...,Γ|A|}∈Sn

|A|∏

j=1

f|Γj |(X(Γj)).

On L∞(Ω), we introduce the linear operators ∂x, x ∈ Ω, as follows:

(∂xf)n(Xn) = fn+1(x,Xn).

The following assertion is proved by a direct calculation.
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Lemma 3.3. Each operator ∂x is a differentiation, i.e., for any pair of elements f and g from L∞(Ω),
the Leibnitz identity holds:

∂x(f ∗ g) = (∂xf) ∗ g + f ∗ (∂xg).
Corollary 3.1. For any x ∈ Ω and any element f ∈ L

(0)
∞ (Ω), we have

∂x exp∗ f = (∂xf) ∗ exp∗ f.
In the sequel, we assume that the set Ω is equipped with a measure structure on which a finite mea-

sure μ is defined. Then, introducing for each n ∈ N the product of measures dμ(x1)dμ(x2) . . . dμ(xn)
on Ωn and considering only measurable and summable on Ωn functions fn(Xn) in each of the func-
tional spaces Ln(Ω), for each measurable bounded function ζ(x) on Ω we define the linear functional
on Ln(Ω) by the rule

fn[ζ; fn] =

∫

Ωn

( n∏

j=1

ζ(xj)
)
fn(Xn)dμ(x1) . . . dμ(xn). (3.1)

We consider the restriction of the variety L∞(Ω) containing elements f =
〈
fn ∈ Ln(Ω); n ∈ N+

〉 ∈
L∞(Ω) with summable on Ωn components fn, n ∈ N, such that the following series converges:

∞∑

n=0

1

n!
Mn

∫

Ωn

|fn(Xn)|dμ(x1) . . . dμ(xn) < ∞, M > 0. (3.2)

We denote this restriction by the same symbol L∞(Ω).
If a function ζ(x) is bounded by a constant M > 0, |ζ(x)| < M , x ∈ Ω, then for such elements f the

following functional is defined:

f[ζ; f] =
∞∑

n=0

1

n!
fn[ζ; fn].

This functional is multiplicative; namely, the following theorem holds.

Theorem 3.1. If elements f(1) and f(2) possess the property (3.2) with a function ζ(x) satisfying the
condition |ζ(x)| < M , then their product f1 ∗ f2 also possesses the property (3.2) and the following
formula holds:

f[ζ; f(1) ∗ f(2)] = f[ζ; f(1)] · f[ζ; f(2)].
Proof. By a direct calculation, we have

fn[ζ; f
(1) ∗ f(2)] =

∫

Ωn

⎛

⎝
n∏

j=1

ζ(xj)

⎞

⎠
(
f(1) ∗ f(2)

)

n
(Xn)dμ(x1) . . . dμ(xn)

=

n∑

l=0

(
n

l

)∫

Ωn

⎛

⎝
n∏

j=1

ζ(xj)

⎞

⎠ f
(1)
l (Xl)f

(2)
n−l

(
X(In \ Il)

)
dμ(x1) . . . dμ(xn)

=
n∑

l=0

(
n

l

)
fl[ζ; f

(1)
l ] · fn−l[ζ; f

(2)
n−l].

Substituting the expression obtained into f[ζ; f(1) ∗ f(2)], we obtain

f[ζ; f(1) ∗ f(2)] =
∞∑

n=0

1

n!

n∑

l=0

(
n

l

)
fl[ζ; f

(1)
l ] · fn−l[ζ; f

(2)
n−l] = f[ζ; f(1)] · f[ζ; f(2)]. �
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Corollary 3.2. The following formula is valid :

f[ζ; exp∗ f] = exp f[ζ; f]. (3.3)

Corollary 3.3. The following differentiation formula is valid :

f[ζ; ∂x exp∗ f] = f[ζ; ∂xf] · exp f[ζ; f].
4. Graphs and symmetric functions. Let w(x, y) be an arbitrary symmetric function Ω2; we
call it the generating function. Fix n ∈ N, n ≥ 2, and assign to a pair 〈w ∈ L2(Ω),G = 〈In,Ψ〉〉 the
function on Ωn defined by the formula

hn(Xn;G) =
∏

{i,j}∈Ψ
w(xi, xj).

Each such function is called the function on Ωn associated with the graph G by the generating func-
tion w.

Based on functions hn(·;G) associated with graphs, one can construct symmetric functions, which
are elements of the space Ln(Ω). Fix a class H of graphs over In, which is invariant under permutations,
so that for P ∈ Pn and G ∈ H we have PG = 〈In,PΨ〉 ∈ H. Introduce the function

fn(Xn) =
∑

G∈H
hn(Xn;G) (4.1)

on Ωn, which is obviously symmetric. Functions fn(Xn) on Ωn constructed by (4.1) are said to be
associated with the class H. As H, we take the class Gn of all graphs over In.

Lemma 4.1. Let w(x, y) be a symmetric function on Ω2. Then the function associated with the class
Gn by the generating function w(x, y) is equal to

fn(Xn) =
∑

G=〈In;Ψ〉∈Gn

∏

{i,j}∈Ψ
w(xi, xj) =

∏

{i,j}∈I(2)n

(1 + w(xi, xj)). (4.2)

Proof. We apply induction by n based on the formula
∑

G=〈In+1;Ψ〉∈Gn+1

∏

{i,j}∈Ψ
w(xi, xj) =

∑

G=〈In;Ψ〉∈Gn

∏

{k,l}∈Ψ
w(xk, xl)

+
∑

G=〈In;Ψ〉∈Gn

∑

Γ⊂In

∏

j∈Γ
w(xn+1, xj)

⎡

⎣
∏

{k,l}∈Ψ
w(xk, xl)

⎤

⎦ ,

which provides the step of induction. Here the first sum corresponds to graphs in which the vertex
n+ 1 is not connected with vertices of In and the second sum takes into account all graphs of the class
Gn+1 in which the vertex n+ 1 is connected with vertices of graphs of the class Gn whose numbers
form the set Γ. �

Note that the class Gn os all graphs over In is invariant under permutations P ∈ Pn; therefore, for
any n ∈ N, functions fn associated with Gn are symmetric, i.e., belong to Ln(Ω).

In addition to functions fn(Xn) associated with the classes Gn, n ∈ N, n ≥ 2, introduce the sequence
of functions f̄n(Xn) with a generating function w(x, y), each of which is associated with the class Ḡn

of all connected graphs over In, n ≥ 2:

f̄n(Xn) =
∑

G=〈In;Ψ〉∈Ḡn

∏

{i,j}∈Ψ
w(xi, xj). (4.3)

Since for any n ∈ N the class Ḡn is invariant under permutations P ∈ Pn, the functions f̄n(Xn) are
symmetric for any n ≥ 2. Thus, the functions fn and f̄n belong to Ln(Ω) for any n ≥ 2. We prove
that the sequences of functions in L∞(Ω) satisfy the following theorem.
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Theorem 4.1. Let elements f = 〈fn; n ∈ N+〉 and f̄ = 〈f̄n; n ∈ N+〉 of the algebra L∞(Ω), whose
components for n ≥ 2 are defined by the formulas (4.2) and (4.3), respectively, by the same generating
function w(x, y) ∈ L2(Ω) and, moreover, f0 = 1, f̄0 = 0, and f̄1 = f1 = 1, then these elements are
related as follows:

f = exp∗ f̄.

Proof. We prove that the functions fn satisfy the relation

fn(Xn) =
∑

A∈Sn

∏

Γ∈A
f̄|Γ|(X(Γ)).

We divide all graphs of the class Gn into disjoint subclasses Gn(A), where A = {Γ1, . . . ,Γs} ∈ Sn. Con-
sider an arbitrary graph G = 〈In,Ψ〉 from Gn. This graph is uniquely decomposed into the connected
components Gj = 〈Γj,Ψj〉, j = 1, . . . , s, so that

s⋃

j=1

Γj = In,
n⋃

j=1

Ψj = Ψ

and each of the graphs Gj belongs to the class Ḡ|Γj |(Γj) of all connected graphs over the set of

vertices Γj. In this case, we refer the graph G to the class Gn(A), A = {Γ1, . . . ,Γ|A|}. Clearly, the
classes Gn(A1) and Gn(A2) are nonempty and disjoint if A1 
= A2. Then the following representation
of the sum over all graphs of the class Gn is valid:

∑

G∈Gn

· · · =
∑

A∈Sn

⎛

⎜⎝
|A|∏

j=1

∑

Gj∈G|Γj |(Γj)

⎞

⎟⎠ . . . .

Moreover, for each term of the sum, we have the relation

∏

{k,l}∈Ψ
w(xk, xl) =

|A|∏

j=1

∏

{k,l}∈Ψj

w(xk, xl),

due to the unconnectedness of the graphs Gj , j = 1, . . . , |D|. Substituting the product on the right-
hand side into the sum defining fn(Xn), we have

fn(Xn) =
∑

G∈Gn

∏

{k,l}∈Ψ
w(xk, xl)

=
∑

A∈Sn

|A|∏

j=1

⎛

⎜⎝
∑

Gj∈G|Γj |(Γj)

∏

{k,l}∈Ψj

w(xk, xl)

⎞

⎟⎠ =
∑

A∈Sn

⎛

⎝
|A|∏

j=1

f̄|Γj|(X(Γj))

⎞

⎠ . �

Applying the formula (3.3), we obtain the following result.

Corollary 4.1. Assume that a set Ω is equipped with a measure structure with a finite measure and
a bounded measurable function ζ on Ω. Then the functional f[ζ; ·] on summable elements f ∈ L∞(Ω),

f̄ ∈ L
(0)
∞ (Ω), constructed by a fixed generating function w, is defined by the formula

f[ζ, f] = exp f[ζ; f̄].

Note that this assertion remains valid in the case where the series defining this functional diverges.
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5. Symmetric functions and graphs of the class Fn. Assume that a group T of transformations
T acts on a set Ω and Ω = {Tx;T ∈ T} for any x ∈ Ω, i.e., Ω is invariant under transformations from
this group. In this section, we obtain the main result of this paper: the equation that relates values
of the functionals f[z; f̄] and f[z; g] with ζ(x) ≡ z ∈ C, where the functions g = 〈gn; n ∈ N+〉
are associated with connected graphs without cut vertices and, together with the functions of the
sequence f̄, are generated by a symmetric function w(x, y), which is invariant under transformations
T ∈ T.

Consider the subalgebra L+(Ω) of elements h of the algebra L∞(ζ) whose components hn(Xn),
n ∈ N+, are invariant under transformations of the group T (i.e., T-invariant). In particular, for n = 1,
the linear variety L1 in this algebra coincides with C.

Moreover, we assume that all components of each sequence from L+(Ω) are summable with the
T-invariant measure μ in the following sense:

∫

Ωn−1

|hn(Xn)|
n−1∏

j=1

dμ(xj) < ∞,

and the total collection of these components possesses the following property: for elements h of the

maximal ideal L
(0)
+ (Ω) = L+(Ω) ∩ L

(0)
∞ (Ω) of the algebra L+(Ω), there exists a sufficiently small

neighborhood of the point z = 0 on the plane z ∈ C in which the following power series converges:

∞∑

n=1

zn−1

(n− 1)!

∫

Ωn−1

|hn(Xn)|
n−1∏

j=1

dμ(xj) < ∞.

We consider the functional

S[z; h] = f[z; ∂xh] =
∞∑

n=0

zn

n!
fn[hn+1]

on elements h = 〈hn(Xn); n ∈ N+〉 ∈ L
(0)
+ (Ω); here the functionals fn[·], n ∈ N, are defined by the

T-invariant measure μ and the weight function ζ = 1 according to (3.1),

fn[hn+1] =

∫

Ωn

hn+1(Xn+1)
n∏

j=1

dμ(xj) and f0[h1] = h1.

To prove the main assertion, we will need the following simple combinatorial fact.

Lemma 5.1. Let ϕ(ξ1, . . . , ξs) be an arbitrary function on N
s. Then for n ≥ s, the following formula

holds:
∑

〈A1,...,As〉:
Aj 
=∅, Aj⊂In, j=1,...,s;

Aj∩Ak=∅, j 
=k;
s⋃

j=1
Aj=In

ϕ
(|A1|, . . . , |As|

)
=

∑

〈l1,...,ls〉: lj≥1;
l1+···+ls=n

n!

l1! . . . ls!
ϕ(l1, . . . , ls). (5.1)

Proof. We use induction in s. For s = 1, the sum in (5.1) consists of a single term and the formula
takes the form

∑

A1=In

ϕ(|A1|) =
∑

l1=n

n!

l1!
ϕ(l1).

The step of inductions is as follows:
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∑

〈A1,...,As+1〉:
Aj 
=∅, Aj⊂In, j=1,...,s+1;

Aj∩Ak=∅, j 
=k;
s+1⋃

j=1
Aj=In

ϕ
(|A1|, . . . , |As+1|

)

=
∑

∅ 
=As+1⊂In:
|As+1|=1,...,n−s

∑

〈A1,...,As〉:
Aj 
=∅, Aj⊂In\As+1, j=1,...,s;

Aj∩Ak=∅, j 
=k;
s⋃

j=1
Aj=In\As+1

ϕ
(|A1|, . . . , |As+1|

)

=

n−s∑

ls+1=1

(
n

ls+1

) ∑

〈A1,...,As〉:
Aj 
=∅, Aj⊂In\As+1, j=1,...,s;

Aj∩Ak=∅, j 
=k;
s⋃

j=1
Aj=In\As+1

ϕ
(|A1|, . . . , |As|, ls+1

)
.

Using the induction hypothesis for the inner sum, we write

n−s∑

ls+1=1

(
n

ls+1

) ∑

〈l1,...,ls〉: lj≥1;
l1+···+ls=n−ls+1

(n− ls+1)!

l1! . . . ls!
ϕ(l1, . . . , ls, ls+1)

=
∑

〈l1,...,ls+1〉: lj≥1;
l1+···+ls+1=n

n!

l1! . . . ls+1!
ϕ(l1, . . . , ls, ls+1). �

Corollary 5.1. Let ϕ(ξ1, . . . , ξs) be an arbitrary function on N
s. Then for summing over decomposi-

tions A = {A1, . . . , As} ∈ S
(s)
n of the set In, n ≥ s, the following formula holds:

∑

{A1,...,As}:
Aj 
=∅, Aj⊂In, j=1,...,s;

Aj∩Ak=∅, j 
=k;
s⋃

j=1
Aj=In

ϕ
(|A1|, . . . , |As|

)
=

1

s!

∑

〈l1,...,ls〉: lj≥1;
l1+···+ls=n

n!

l1! . . . ls!
ϕ(l1, . . . , ls). (5.2)

Proof. This assertion follows from the fact that each decomposition A = {A1, . . . , As} ∈ S
(s)
n of the

set In generates exactly s! ordered collections 〈A1, . . . , As〉. �
Consider the functions

f̄n+1(Xn+1) =
∑

G∈Ḡn

h(Xn+1;G), h(Xn+1;G) =
∏

{j,k}∈Ψ
w(xj , xk),

where h(Xn+1;G) on Ωn+1 are associated with graphs G = 〈In+1,Ψ〉 ∈ Ḡn by a T-invariant generating

function w(x, y) on Ω2. Moreover, f̄ = 〈f̄n+1; n ∈ N+〉 ∈ L
(0)
+ (Ω). Similarly, we introduce the functions

gn+1(Xn+1) =
∑

G∈F [In+1]

h(Xn+1;G), n ∈ N+, (5.3)

where F [In+1] is the class of graphs without cut vertices over In+1, which form the element g =
〈gn+1; n ∈ N+〉 of the algebra L+(Ω). Now we formulate the main result of this paper.

Theorem 5.1. The values S[z; f̄] and S[z; g] of the functional S[z; ·] on the elements f̄ and g satisfy
the following functional equation:

S[z; f̄] = exp
(
S
[
zS[z; f̄ ]; g

] − 1
)
. (5.4)
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Proof.
1. Note that the classes Ḡn+1[In;n + 1], n ∈ N, can be represented as disjunct unions

Ḡ[In, n+ 1] =
n⋃

s=1

Ḡ(s)[In;n + 1],

where the marked cut vertex n+ 1 has degree s. Therefore, by Lemma 2.1, each of the functions
f̄n+1(Xn+1) can be represented as the sum

f̄n+1(Xn+1) =

n∑

s=1

f
(s)
n+1(Xn+1), f

(s)
n+1(Xn+1) =

∑

G∈Ḡ(s)[In,n+1]

h(Xn+1;G). (5.5)

Due to the symmetry of the classes Ḡ(s)[In, n+1] under permutations P ∈ Pn and the T-invariance of

w(x, y), the functions f
(s)
n+1(Xn+1) are symmetric under such permutations P and T-invariant. More-

over, the following equality holds:

fn[f̄n+1] =

n∑

s=1

fn
[
f
(s)
n+1

]
.

2. By Lemma 2.2, if the vertex n+ 1 has degree s > 1, then the class Ḡ(s)[In;n+1] can be represented
as the disjunct union

Ḡ(s)[In;n+ 1] =
⋃

A∈S(s)
n

Ḡ(s)[In;A, n+ 1],

where the vertex n+ 1 of the connected graphs from Ḡ(s)[In;A, n+ 1] over In+1 has degree s and the
numbers of vertices of the connected graphs Gj , j = 1, . . . , s, that differ from the vertex n+ 1, form

a decomposition A ∈ S
(s)
n with the number of components s, and n+ 1 is not a cut vertex. Then the

functions f
(s)
n+1 can be represented as the sums

f
(s)
n+1(Xn+1) =

∑

A∈S(s)
n

f
(s)
n+1

(
Xn+1;A, n+ 1

)
,

where the functions f
(s)
n+1

(
Xn+1;A, n+ 1

)
are defined by the formula

f
(s)
n+1

(
Xn+1;A, n+ 1

)
=

∑

G∈Ḡ(s)[In;A,n+1]

h(Xn+1;G). (5.6)

They are symmetric under all P ∈ Pn that leave invariant the components of the decomposition A.
Moreover,

fn
[
f
(s)
n+1

]
=

∑

A∈S(s)
n

fn

[
f
(s)
n+1

(
Xn+1;A, n+ 1

)]
.

3. By Lemma 2.3, for any decomposition A = {A1, . . . , As} ∈ S
(s)
n , the class Ḡ(s)[In;A, n + 1],

n ≥ s > 1, is equivalent to the Cartesian product

Ḡ(s)[In;A, n+ 1] =
s⊗

l=1

Ḡ(1)[Al;n+ 1]

of the classes Ḡ(1)[Al;n+1] of connected graphs over the set Al∪{n+1}, l = 2, . . . , s, with the marked
vertex n+ 1, which is not a cut vertex. Then we have the following representation of this sum:

∑

G∈Ḡ(s)[In;A,n+1]

h(Xn+1;G) =

⎛

⎝
s∏

l=1

∑

G∈Ḡ(1)[Al;n+1]

⎞

⎠h(Xn+1;G).
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Since for each graph G ∈ Ḡ(s)[In;A, n + 1], where A = {Aj ; j = 1, . . . , |A|}, the associated symmetric
function can be represented in the form

h(Xn+1;G) =
s∏

l=1

h
(
X(Al ∪ {n+ 1});Gl

)
, G =

s∨

l=1

Gl, (5.7)

we obtain

fn[f(Xn+1;A)] =

⎛

⎝
s∏

l=1

∑

G∈Ḡ(1)[Al;n+1]

⎞

⎠ fn

[
s∏

l=1

h
(
X(Al ∪ {n+ 1});Gl

)
]

=

s∏

l=1

f|Al|

⎡

⎣
∑

G∈Ḡ(1)[Al;n+1]

h
(
X(Al ∪ {n+ 1});Gl

)
⎤

⎦ =

s∏

l=1

f|Al|
[
f
(1)
|Al|+1

(
X(Al ∪ {n+ 1}))

]
.

We used the following fact: for the graph Gl1 ∨Gl2 with the sets of vertices Al1 and Al2 , respectively,
glued from two graphs Gl1 and Gl2 at the vertex n+ 1, we have

f|Al1|+|Al2
|
[
h
(
X(Al1 ∪ Al2 ∪ {n + 1}); Gl1 ∨Gl2

)]

=
∑

X(Al1
∪Al2

)∈Ω|Al1|+|Al2
|
h
(
X
(
Al1 ∪Al2 ∪ {n+ 1}); Gl1 ∨Gl2

)

=

⎛

⎜⎝
∑

X(Al1
)∈Ω|Al1

|
h
(
X
(
Al1 ∪ {n+ 1}); Gl1

)
⎞

⎟⎠

⎛

⎜⎝
∑

X(Al2
)∈Ω|Al2

|
h
(
X
(
Al2 ∪ {n+ 1}); Gl2

)
⎞

⎟⎠

= f|Al1
|
[
h
(
X
(
Al1 ∪ {n+ 1}); Gl1

)]
· f|Al2

|
[
h
(
X
(
Al2 ∪ {n+ 1}); Gl2

)]
. (5.8)

4. Using the formulas (5.5), (5.6), (5.7), and (5.2), we obtain the following expression for the
functional fn on the functions f̄n+1(Xn+1):

fn
[
f̄n+1

]
= fn

[
f̄
(1)
n+1

]
+

n∑

s=2

fn
[
f
(s)
n+1

]
= fn

[
f
(1)
n+1

]
+

n∑

s=2

∑

A∈S(s)
n

fn
[
f
(s)
n+1(Xn+1;A)

]

= fn
[
f̄
(1)
n+1

]
+

n∑

s=2

∑

A∈S(s)
n

s∏

j=1

f|Aj |
[
f̄|Aj |+1

(
X(Aj ∪ {n+ 1}))

]

= fn
[
f̄
(1)
n+1

]
+

n∑

s=2

1

s!

∑

lj≥1, j=1,...,s:
l1+···+ls=n

n!

l1! . . . ls!

s∏

j=1

flj

[
f̄
(1)
lj+1

(
Xlj , xn+1

)]

=
n∑

s=1

1

s!

∑

lj≥1, j=1,...,s:
l1+···+ls=n

n!

l1! . . . ls!

s∏

j=1

flj

[
f̄
(1)
lj+1

(
Xlj , xn+1

)]
. (5.9)

5. Now we consider graphs of the class Ḡ(1)[In, n+1]. By Lemma 2.4, the class Ḡ(1)[In, n+1], n ≥ 2,
can be represented as the disjunct union

Ḡ(1)[In, n+ 1] =
⋃

B⊂In:|B|≥1

⋃

C⊂B

Ḡ[In;B;C]

of classes of graphs such that the vertex n+ 1 is not a cut vertex and for each graph, the set B
represents the numbers of vertices of the block containing the vertex n+ 1 and C is the set of cut
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vertices of the graph in this block. Then

f
(1)
n+1(Xn+1) =

∑

B⊂In:|B|≥1

∑

C⊂B

fn+1

(
Xn+1;B;C

)
,

fn+1

(
Xn+1;B;C

)
=

∑

G∈Ḡ[In;B;C]

h(Xn+1;G).

Therefore, the value fn
[
f
(1)
n+1

]
of the functional fn[·] is equal to

fn
[
f
(1)
n+1

]
=

∑

B⊂In :|B|≥1

∑

C⊂B

fn+1

(
Xn+1;B;C

)
. (5.10)

6. Since each class Ḡ[In;B;C] of graphs, n ≥ 2, can be represented as the disjunct union of nonempty
classes

Ḡ[In;B;C
]
=

⋃

{B(z);z∈C}∈D(B,C)

Ḡ[In;B | {B(z), z ∈ C}]

(see Lemmas 2.4 and 2.5), the functions fn+1(Xn+1;B;C) can be represented as the following sums:

fn+1

(
Xn+1;B;C

)
=

∑

{B(z);z∈C}∈D(B,C)

fn+1

(
Xn+1;B | {B(z), z ∈ C}),

fn+1

(
Xn+1;B | {B(z), z ∈ C}) =

∑

G∈Ḡ
[
In; B|{B(z),z∈C}

]
h
(
Xn+1;G

)
.

Since the functional fn[·] is linear, we have

fn
[
fn+1(Xn+1;B;C)

]
=

∑

{B(z); z∈C}∈D(B,C)

fn

[
fn+1

(
Xn+1;B | {B(z), z ∈ C})

]
. (5.11)

7. Finally, we recall (see Lemma 2.6) that each class Ḡ[In;B | {B(z), z ∈ C}], n ≥ 2, is equivalent
to the Cartesian product

Ḡ[In;B | {B(z), z ∈ C}] = F [B;n+ 1]⊗
(
⊗

z∈C
Ḡ[B(z); z]

)
,

where Fn[B;n + 1] is the class of graphs without cut vertices over the set of vertices B ∪ {n + 1},
Ḡ[B(z); z], z ∈ C is a collection of nonempty classes such that Ḡz[B(z); z] contains all connected graphs
with the set of vertices B(z) ∪ {z} and a marked vertex z ∈ C. Then

fn
[
fn+1

(
Xn+1;B | {B(z), z ∈ C})

]

=
∑

GB∈Fn[B;n+1]

⎛

⎝
∏

z∈C

∑

G(z)∈Ḡz [B(z);z]

⎞

⎠ fn

[
h
(
Xn+1;

∨

z∈C

{
GB ∨G(z)

})]
. (5.12)

Since
h
(
Xn+1;

∨

z∈C

{
GB ∨G(z)

})
= h

(
X(B);GB

) ∏

z∈C
h
(
X(B(z));G(z)

)

(cf. (5.7)) and (5.8) is multiplicative, we obtain the following expression:

fn

[
h
(
Xn+1;

∨

z∈C

{
GB ∨G(z)

})]
= f|B|

[
h(X(B);GB)

] ∏

z∈C
f|B(z)|

[
h(X(B(z));G(z))

]
.

Then, using (5.12), we have

fn

[
fn+1

(
Xn+1;B | {B(z), z ∈ C})

]
= f|B|

[
g|B|+1

] ·
∏

z∈C
f|B(z)|

[
f̄|B(z)|+1

]
, (5.13)
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where we have used the functions gn+1(Xn+1) introduced in (5.3) and the functions

f̄B(z)|+1

(
X|B|+1

)
=

∑

G(z)∈Ḡz [B(z);z]

h
(
X|B|+1;G(z)

)
, z ∈ C.

If C = ∅ and GB = G, then the left-hand side of the formula (5.12) is equal to fn
[
fn+1(Xn+1)

]
.

8. From the formulas (5.10), (5.11), and (5.13) we obtain:

fn
[
f
(1)
n+1(Xn+1)

]
=

∑

B⊂In:|B|≥1

∑

C⊂B

fn+1(Xn+1;B;C)

=
∑

B⊂In:|B|≥1

∑

C⊂B

∑

{B(z);z∈C}∈D(B,C)

fn

[
fn+1

(
Xn+1;B | {B(z), z ∈ C})

]

=
∑

B⊂In:|B|≥1

∑

C⊂B

∑

{B(z);z∈C}∈D(B,C)

f|B|[g|B|+1] ·
∏

z∈C
f|B(z)|

[
f̄|B(z)|+1

]

=

n∑

m=1

(
n

m

) ∑

C⊂Im

∑

{B(z);z∈C}∈D(Im,C)

fm[gm+1] ·
∏

z∈C
f|B(z)|

[
f̄|B(z)|+1

]

=
n∑

m=1

(
n

m

) m∑

l=1

(
m

l

) ∑

{B(zj);j∈Il}∈D(Im,Il)

fm[gm+1] ·
l∏

j=1

f|B(zj)|
[
f̄|B(zj)|+1

]

=
n∑

m=1

(
n

m

)
fm[gm+1]

m∑

l=1

(
m

l

) ∑

〈k1,...,kl〉:
k1+···+kl=n−m,
kj≥1, j=1,...,l

(n−m)!

k1! . . . kl!
·

l∏

j=1

fkj
[
f̄kj+1

]
; (5.14)

here f0
[
f̄|B(z)|+1

]
= 1 for B(z) = ∅.

9. Since the power series used below converge, due to (5.9) we obtain

S
[
z; f̄
]
=

∞∑

n=0

zn

n!
fn
[
f̄n+1

]
= 1 +

∞∑

n=1

zn

n!

n∑

s=1

1

s!

∑

lj≥1, j=1,...,s:
l1+···+ls=n

n!

l1! . . . ls!

s∏

j=1

flj

[
f̄
(1)
lj+1

(
Xlj , xn+1

)]

= 1 +

∞∑

s=1

1

s!

∞∑

s=n

∑

lj≥1, j=1,...,s:
l1+···+ls=n

s∏

j=1

zlj

lj!
flj

[
f̄
(1)
lj+1

(
Xlj , xn+1

)]

= 1 +

∞∑

s=1

1

s!

s∏

j=1

∞∑

lj=1

zlj

lj !
flj

[
f̄
(1)
lj+1

(
Xlj , xn+1

)]
= exp

[ ∞∑

n=1

zn

n!
fn

[
f̄
(1)
n+1(Xn+1)

]]
.

Now we transform the sum in the exponent after substituting the value (5.14) of the functional

fn
[
f̄
(1)
n+1(Xn+1)

]
:

∞∑

n=1

zn

n!
fn

[
f̄
(1)
n+1(Xn+1)

]
=

∞∑

n=1

zn

n!

n∑

m=1

n!

m!
fm[gm+1]

m∑

l=1

(
m

l

) ∑

〈k1,...,kl〉:
k1+···+kl=n−m,
kj≥1, j=1,...,l

l∏

j=1

1

kj !
fkj
[
f̄kj+1

]

=
∞∑

m=1

zm

m!
fm[gm+1]

m∑

l=1

(
m

l

) ∞∑

n=m

∑

〈k1,...,kl〉:
k1+···+kl=n−m,
kj≥1, j=1,...,l

l∏

j=1

zkj

kj !
fkj
[
f̄kj+1

]
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=

∞∑

m=1

zm

m!
fm[gm+1]

m∑

l=1

(
m

l

) ∑

〈k1,...,kl〉:
kj≥1, j=1,...,l

l∏

j=1

zkj

kj !
fkj
[
f̄kj+1

]

=

∞∑

m=1

zm

m!
fm[gm+1]

m∑

l=1

(
m

l

) l∏

j=1

∞∑

kj=1

zkj

kj !
fkj
[
f̄kj+1

]

=

∞∑

m=1

zm

m!
fm[gm+1]

( ∞∑

k=0

zk

k!
fk
[
f̄k+1

]
)m

=

∞∑

m=1

zm

m!
fm[gm+1]

(
S
[
z; f̄
])m

.

Then

S
[
z; f̄
]
= exp

(
S
[
zS[z; f̄]; g

]− 1
)
.

The theorem is proved. �

6. Conclusion. In conclusion, we indicate some applications of the algebraic technique described
in this paper. In equilibrium statistical mechanics of classical systems (see [10]), for expanding the
equation of state P (z, T ) into a power series in the so-called activity z, the quantity ln Ξ arises, where
Ξ is the partition function of the system defined by the formula

Ξ =

∞∑

n=0

zn

n!

∫

Ωn

exp

⎛

⎝−
∑

{j,k}⊂In

U(xj − xk)/T

⎞

⎠
n∏

k=1

dxk = f[z; f],

where dx is the Lebesgue measure in R
3, which is invariant under the translation group, and U(x) is

the coupling potential at the point x ∈ R
3. The components of the sequence f of symmetric functions

are generated by the function w(x, y) = exp(−U(x−y)/T ). The expression for P (z, T ) is given by the
formula (2.2) in which the coefficients of the so-called group decomposition are defined by the functions
of the sequence f̄. In these terms, the density ρ of the number of particles for systems considered is
defined by the formula

ρ =
∞∑

n=0

zn+1

n!

∫

Ωn

f̄n+1(Xn+1)
n∏

k=1

dxk = S[z; f̄].

Then the formula (5.4) becomes the equation ρ = exp
(
S
[
zρ; g

] − 1
)
for ρ whose coefficients (called

the irreducible integrals) are defined by the components of the sequence g.
Finally, we indicate a simple application of the formula (5.4) in the problem of enumerating graphs

without cut vertices (see [12]).

Theorem 6.1. Assume that in the sequences 〈Nn; n ∈ N〉 and 〈Mn; n ∈ N〉, the components Nn

are the numbers of connected graphs with n ∈ N vertices (where N1 = 1) and Mm are the numbers of
connected graphs without cut vertices with m ∈ N vertices (M1 ≡ 1). Then the numbers Mn+1, Nm,
m = 1, . . . , n+ 1, and Mm, m = 1, . . . , n, satisfy the following recurrence formula:

Nn+1 = n!

n∑

s=1

1

s!

∑

〈k1,...,ks〉, kj∈N:
k1+···+ks=n

s∏

j=1

⎛

⎜⎜⎝

kj∑

m=1

Mm+1

m!

∑

〈l1,...,lm〉, li∈N+:
l1+···+lm=kj−m

m∏

i=1

Nli+1

li!

⎞

⎟⎟⎠ . (6.1)

Proof. It suffices to set fm[gm+1] = Mm+1 and fn[f̄n+1] = Nn+1 in the formulas (5.9) and (5.14). �

Corollary 6.1 (see [9]). The generating functions

F (z) =

∞∑

n=0

zn

n!
Nn+1, G(z) =

∞∑

n=0

zn

n!
Mn+1 (6.2)
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are related by the following functional equation:

F (z) = exp
[
G
(
zF (z)

) − 1
]
. (6.3)

Proof. Corollary 6.1 follows from (5.4) if we set fm[gm+1] = Mm+1 and fn[f̄n+1] = Nn+1. �

Remark 6.1. The series (6.2) diverge at each nonzero point of the z-plane, i.e., they must be treated
as asymptotic power series. Despite the divergence, they can be used for sequential calculating the
numbers Mm, m ∈ N, based on the generating function F (z) of the numbers Nn and using the
derivatives of order n = 1, . . . ,m (this possibility is justified in [12]). For example,

F (0; 1) = 1, F ′(0; 1) = 1, F ′′(0; 1) = N3 = 4, F ′′′(0; 1) = N4 = 38, F IV (0; 1) = N5 = 728,

and we obtain the following values:

G(0, 1) = 1, G′(0, 1) = M2 = 1, G′′(0; 1) = M3 = 1, G′′′(0; 1) = M4 = 10, GIV (0; 1) = M5 = 238.
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