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Abstract
In this paper we establish a mean value property for the functions which is satisfied to Laplace–Bessel equa-
tion. Our results involve the generalized divergence theorem and the second Green’s identities relating the 
bulk with the boundary of a region on which differential Bessel operators act. Also we design a fractional 
weighted mean operator, study its boundedness, obtain maximal inequality for the weighted spherical mean 
and get its boundedness. The connection between the boundedness of the spherical maximal operator and 
the properties of solutions of the Euler–Poisson–Darboux equation with Bessel operators is given as an 
application.
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Introduction

B-harmonic analysis provides a mathematical theory to deal with problems connected with the singular Bessel differential 
operator of the form

We will use notation △� = (△� )x =
n∑

k=1

(B�k
)xk

 . For △� the term Laplace–Bessel operator is used. A function 

u = u(x) = u(x1,… , xn) defined in a domain Ω ⊂ ℝ
n
+
 is said to be B–harmonic if u ∈ C2(Ω) , �u

�xj

∣xj=0= 0 for all j = 1,… , n 
and satisfies the Laplace–Bessel equation Δ�u = 0 at every point of the domain Ω.
The theory of B–harmonic functions has attracted much interest in the literature during some past decades. Functional spaces 
adapted to work with Laplace–Bessel operator were studied in [8, 9, 13]. The Bessel potentials generated by the Bessel differ-
ential operators were studied and the boundedness in weighted Lebesgue space of such potential was proved in [10, 11]. In [12], 
the Bessel potentials were characterized of in terms of the B-Lizorkin–Triebel spaces. Weighted inequalities with a general 
weight for the Littlewood–Paley type functions associated with Laplace-Bessel differential operator were established in [1, 2].
The theory of B-harmonic functions should include generalizations of the classical tools for solving problems with the Laplace-
Bessel operator. In this paper we establish a mean value property for the functions which satisfies Laplace-Bessel equation.
The paper is organized as follows. In “Definitions’’ section, we give some definitions in the Bessel setting. The “Generalized 
divergence theorem and the second Green’s formula for the Laplace–Bessel operator’’ section is to develop a field theory 
for the case when the Laplace-Bessel operator is used instead of the Laplace operator. Our results involve the generalized 
divergence theorem and the second Green’s identities relating the bulk with the boundary of a region on which differential 
Bessel operators act. In the “Weighted spherical mean and mean‑value theorem for B‑harmonic functions’’ section we obtain 
a mean-value theorem for B-harmonic functions. This theorem states that the value of a B-harmonic function at a point is 
equal to its weighted spherical mean over part of a sphere centered at that point. In the “Fractional weighted mean and Hankel 
transform of its kernel’’ section, we design a fractional weighted mean operator and study its boundedness. In the “Maximal 
inequality for the weighted spherical mean’’ section, we obtain maximal inequality for the weighted spherical mean and get 
its boundedness. In the “An application’’ section, the connection between the boundedness of the spherical maximal opera-
tor and the properties of solutions of the Euler–Poisson–Darboux equation with Bessel operators is given as an application.

Definitions

Suppose that ℝn is the n-dimensional Euclidean space,

� = (�1,… , �n) is a multi-index consisting of positive fixed real numbers �i , i = 1,… , n, and ∣ � ∣= �1 +…+ �n.
The part of the sphere of radius r with center at the origin belonging to ℝn

+
 we will denote S+

r
(n):

For the weighed integral by the S+
1
(n) we have formula [21], formula 107, p. 49

B�j
=

1

x
�j

j

�

�xj

x
�j

j

�

�xj

=
�2

�x2
j

+
�j

xj

�

�xj

, j = 1,… , n.

ℝ
n
+
= {x = (x1,… , xn) ∈ ℝ

n, x1>0,… , xn>0},

ℝ
n
+
= {x = (x1,… , xn) ∈ ℝ

n, x1≥0,… , xn≥0},

S+
r
(n) = {x ∈ ℝ

n
+
∶∣ x ∣= r} ∪ {x ∈ ℝ

n
+
∶ xi = 0, ∣ x ∣ ≤r, i = 1,… , n}.

(1)∣ S+
1
(n) ∣�= ∫S+

1
(n)

x�dS =

n∏
i=1

Γ
�

�i+1

2

�

2n−1Γ
�

n+∣� ∣

2

� .
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Let Ω be finite or infinite open set in ℝn symmetric with respect to each hyperplane xi=0 , i=1, ..., n , Ω+=Ω ∩ℝ
n
+
 and 

Ω+ = Ω ∩ℝ
n
+
 where ℝ n

+
={x=(x1,… , xn)∈ℝ

n, x1≥0,… , xn≥0}. We deal with the class Cm(Ω+) consisting of m times 
differentiable on Ω+ functions and denote by Cm(Ω+) the subset of functions from Cm(Ω+) such that all derivatives of these 
functions with respect to xi for any i = 1,… , n are continuous up to xi=0 . Class Cm

ev
(Ω+) consists of all functions from 

Cm(Ω+) such that �
2k+1f

�x2k+1
i

∣xi=0= 0 for all non-negative integer k ≤ m−1

2
 (see [14], p. 21).

In the following, we will denote Cm
ev
(ℝn

+
) by Cm

ev
 . We set

with intersection taken for all finite m and C∞
ev
(ℝ+) = C∞

ev
.

Let 
◦

C∞
ev
(Ω+) be the space of all functions f∈C∞

ev
(Ω+) with a compact support. We will use notations 

◦

C∞
ev
(Ω+)=D+(Ω+) 

and 
◦

C∞
ev
(ℝ+) =

◦

C∞
ev

.
Let L�

p
(ℝn

+
) = L�

p
 , 1≤p<∞ , be the space of all measurable in ℝn

+
 functions even with respect to each variable xi , 

i = 1,… , n such that

where and further

For a real number 1 ≤ p < ∞ , the L�
p
–norm of f is defined by

For p = ∞ , the L�
∞–norm of f is defined by

It is known (see [14]) that L�
p
 is a Banach space.

The multi-dimensional Hankel transform of a function f∈L
�

1
(ℝn

+
) is expressed as

where

the symbol j� is used for the normalized Bessel function of the first kind j�(x)=
2�Γ(� + 1)

x�
J�(x) , where J� is Bessel func-

tion of the first kind [26].
Let f ∈ L

�

1
(ℝ+) and of bounded variation in a neighborhood of a point x of continuity of f. Then for 𝛾 > 0 the inver-

sion formula

C∞
ev
(Ω+) =

∞⋂
m=0

Cm
ev
(Ω+)

∫
ℝ

n
+

f (x)|px𝛾dx < ∞,

x� =

n∏
i=1

x
�i

i
.

‖f‖L
�
p(ℝ

n
+)
= ‖f‖p,� =

�
∫
ℝ

n
+

f (x)�px�dx

�1∕p

.

‖f‖L
�
∞(ℝn

+)
= ‖f‖∞,� = ess sup

x∈ℝn
+

f(x).

(2)�� (f )(�) = f̂ (�) = ∫
ℝ

n
+

f (x) �� (x; �)x�dx,

�𝛾 (x; 𝜉) =

n∏
i=1

j 𝛾i−1

2

(xi𝜉i), 𝛾1 > 0,… , 𝛾n > 0,

746



holds.
The multi-dimensional Hankel transform can be written using the one-dimensional Hankel transforms:

where x = (x1,… , xn) , � = (�1,… , �n) , i = 1,… , n,

Similar to the Fourier transform, the Hankel transform reduces the Bessel differentiation operation to multiplication by 
the corresponding arguments (see [14])

where (B�i
)xi

=
�2

�x2
i

+
�i

xi

�

�xi

 is a Bessel operator and i = 1,… , n.

In [14], p. 20, the next theorem is presented.

Theorem 1  If x
�

2 � ∈ L2[0,∞) , then Hankel transform x
�

2 F�� ∈ L2[0,∞) and Parseval’s formula

is valid.

Using Theorem 1, we get Parseval’s formula for the multi-dimensional Hankel transform. If f ∈ L
�

2
(ℝn

+
) , then �� f ∈ L

�

2
(ℝn

+
) 

and

or

The multi-dimensional generalized translation is defined by the equality 

where each of one-dimensional generalized translation �i T
yi

xi
 acts for i=1, ..., n according to (see [15])

�−1
�
(̂f (�))(x) = f (x) =

2n−∣� ∣

n∏
j=1

Γ2
� �j+1

2

� ∫
ℝ

n
+

�� (x, � )̂f (�)�� d�

�� (f )(�) = F�1
...F�n

(f )(�1,… , �n),

F�i
(f )(�) = ∫

∞

0

f (x) j �i−1

2

(xi�i)x
�i

i
dxi.

(3)F�i
((B�i

)xi
f )(�) = − ∣ �i ∣

2 F�i
(f )(�),

∫
∞

0

∣ F�(�)(�) ∣
2 ��d� = 2�−1Γ2

(
� + 1

2

)
∫

∞

0

∣ �(x) ∣2 x�dx

∫
ℝ

n
+

∣ �� (f )(�) ∣
2 ��d� = 2∣� ∣−n

n∏
j=1

Γ2

(
�j + 1

2

)
∫
ℝ

n
+

∣ f (x) ∣2 x�dx

(4)‖f‖2,� = Cn,�‖�� (f )‖2,� , Cn,� =
2n−∣� ∣

∏
n

j=1

Γ2

�
�j+1

2

�
.

(5)(��y
x
f )(x) = ��y

x
f (x) = ( �1 Ty1

x1
... �n Tyn

xn
f )(x),

( �i Tyi

xi
f )(x) =

Γ
�

�i+1

2

�

√
�Γ

�
�i

2

�

×∫
�

0

f (x1,… , xi−1,

√
x2

i
+ �2

i
− 2xiyi cos�i, xi+1,… , xn) sin�i−1 �i d�i.
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Next we will use notation

Generalized convolution generated by a multi-dimensional generalized translation ��y
x is given by

Multi-dimensional Poisson operator ��
x
 , acts to the integrable function f by the formula

Multi-dimensional Hankel transform (2) applied to generalized convolution (6) gives

Integral ∫
S+

1
(n)

�� (r�, �)�� dS is calculated by the formula (see [21])

Generalized divergence theorem and the second Green’s formula for the Laplace–Bessel 
operator

The theory of B-harmonic functions should include generalizations of the classical tools for solving problems with the 
Laplace-Bessel operator. The aim of this section is to develop a field theory for the case when the Laplace-Bessel operator 
is used instead of the Laplace operator. To do this we need the following definitions.
Let

be the first weighted operator nabla,

be the second weighted operator nabla, then (∇�
�
⋅ ∇��

�
) = Δ� , where Δ� =

n∑
j=1

B�j
 is Laplace-Bessel operator, 

B�j
=

1

x
�j

j

�

�xj

x
�j

j

�

�xj

=
�2

�x2
j

+
�j

xj

�

�xj

, j = 1,… , n is a Bessel operator.

If 
→

� =
→

� (x) = (F1(x),… , Fn(x)) is a vector field, then

C(�) = �−
n

2

n∏
i=1

Γ
(

�i+1

2

)

Γ
(

�i

2

) .

(6)(f ∗ g)� (x) = ∫
ℝ

n
+

f (y)(��y
x
g)(x)y� dy.

(7)��
x
f (x)=C(�)∫

�

0

...∫
�

0

f (x1 cos �1, ..., xn cos �n)

n∏
i=1

sin�i−1 �i d�i.

(8)�� [(f ∗ g)� ](�) = �� [f ](�)�� [g](�).

(9)∫S+
1
(n)

�� (r�, �)�� dS =

n∏
i=1

Γ
�

�i+1

2

�

2n−1Γ
�

n+∣� ∣

2

� j n+∣�∣

2
−1
(r ∣ � ∣).

∇�
�
=

(
1

x
�1

1

�

�x1

,… ,
1

x
�n

n

�

�xn

)

∇��
�
=

(
x
�1

1

�

�x1

,… , x�n

n

�

�xn

)

div�
�

→

� = (∇�
�
⋅
→

� ) =
1

x
�1

1

�F1

�x1

+ ... +
1

x
�n

i

�Fn

�xn
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is the first weighted divergence,

is the second weighted divergence.
In this case the generalized divergence theorem states that the weighted surface integral of a vector field over a 
closed surface is equal to the weighted volume integral of the first weighted divergence over the region inside 
the surface.

Theorem 2  Let G+ be a domain in ℝ n
+
 such that each line perpendicular to the plane xi = 0 , i = 1,… , n , either does not 

intersect G+ or has one common segment with G+ (possibly degenerating into a point) of the form

where �i , �i are smooth for i = 1,… , n.

If 
→

� = (g1(x), ..., gn(x)) is a vector field continuously dif ferentiable in G+ and 
→

� = (F1(x), ..., Fn(x)) , 
F1(x)=x

�1

1
g1(x), ..., Fn(x)=x

�n

n gn(x) , then

where � = �1 cos �1 + ... + �n cos �n is an outer surface normal vector for S+ , �i is an angle between vector � and an axe 
xj , �1,… , �n is an orthonormal basis in ℝn.

Proof  Let i be the fixed natural number between 1 and n inclusively. The part of surface S+ defined by equation xi = �i(x
�) 

we denote by S+
u
 and the part of the surface S+ defined by equation xi = �i(x

�) we denote by S+
d
 , then

We have

Let us consider

where Q is a projection of G+ to xi = 0 . Integrating by xi we obtain

div��
�

→

� = (∇��
�
⋅
→

� ) = x
�1

1

�F1

�x1

+ ... + x�n

n

�Fn

�xn

�i(x
�) ≤ xi ≤ �i(x

�), x�=(x1, ..., xi−1, xi+1, ..., xn), i = 1,… , n,

(10)∫G+

(∇�
�
⋅ ⋅

→

� ) x�dx = ∫S+

(
→

� ⋅
→

�
)

x� dS ,

(
→

�, ei) =

⎧
⎪⎪⎨⎪⎪⎩

−
1�

1+
�

��i

�x1

�2

+…+(
��i

�xi−1
)2+

�
��i

�xi+1

�2

+…+
�

��i

�xn

�2
, x ∈ S+

d

1�
1+

�
��i

�x1

�2

+…+
�

��i

�xi−1

�2

+
�

��i

�xi+1

�2

+…+
�

��i

�xn

�2
, x ∈ S+

u
.

∫G+

(∇�
�
⋅
→

� ) x�dx =

n∑
i=1

∫G+

1

x
�i

i

�Fi

�xi

x�dx.

∫G+

1

x
�i

i

�Fi

�xi

x�dx

= ∫Q

x
�1

1
… x

�i−1

i−1
x
�i+1

i+1
… x�n

n
dx1 … dxi−1dxi+1 … dxn ∫

�i(x
�)

�i(x
�)

�Fi

�xi

dxi,

∫G+

1

x
�i

i

�Fi

�xi

x�dx
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Let (x�)� � = x
�1

1
… x

�i−1

i−1
x
�i+1

i+1
… x

�n

n  , dx� = dx1...dxi−1dxi+1 … dxn , then

Then

which completes the proof.

Remark 1. Suppose that the domain G+ ∈ ℝ
n
+
 is a union of domains G+

1
,… , G+

m
 without common interior points. Let 

each domain G+
j
 in ℝ n

+
 be such that each line perpendicular to the plane xi = 0 , i = 1,… , n , either does not intersect 

G+
j
 or has only one common segment with G+

j
 (possibly degenerating into a point) of the form

where �i , �i are smooth for i=1, ..., n and 
→

�=(F1(x),… , Fn(x)) , F1(x)=x
�1

1
g1(x), ...,  Fn(x)=x

�n

n gn(x) , 
→

� = (g1(x),… , gn(x)) 
is a vector field continuously differentiable in G+ , then the following formula holds:

where S+ ∈ ℝ
n
+
 piecewise smooth surface boundary of G+ , 

→

� is a normal vector of the surface S+.

Theorem 3  Let G+ satisfy the conditions of Remark 1. If � and � are twice continuously differentiable functions defined 
on G+ , such that ��

�xi

∣xi=0= 0,
��

�xi

∣xi=0= 0, for i = 1,… , n , then the second Green’s formula for the Laplace–Bessel 
operator of the form

= ∫Q

Fi(x) ∣
xi=�i(x

�)

xi=�i(x
�)

x
�1

1
… x

�i−1

i−1
x
�i+1

i+1
...x�n

n
dx1...dxi−1dxi+1 … dxn.

∫G+

1

x
�i

i

�Fi

�xi

x�dx = ∫Q

Fi(x1,… , xi−1, �i(x
�), xi+1,… , xn)(x

�)�
�

dx�

− ∫Q

Fi(x1,… , xi−1, �i(x
�), xi+1,… , xn)(x

�)�
�

dx�

= ∫Q

Fi(x1,… , xi−1, �i(x
�), xi+1,… , xn)(

→

�, ei)

×

√
1 +

(
��i

�x1

)2

+…+

(
��i

�xi−1

)2

+

(
��i

�xi+1

)2

+…+

(
��i

�xn

)2

(x�)�
�

dx�

+ ∫Q

Fi(x1,… , xi−1, �i(x
�), xi+1,… , xn)(

→

�, ei)

×

√
1 +

(
��i

�x1

)2

+…+

(
��i

�xi−1

)2

+

(
��i

�xi+1

)2

+…+

(
��i

�xn

)2

(x�)�
�

dx�

= ∫S+
u

Fi(x)(
→

�, ei)(x
�)�

�

dSu + ∫S+
d

Fi(x)(
→

�, ei)(x
�)�

�

dSd

= ∫S+
u

gi(x)(
→

�, ei)x
�dSu + ∫S+

d

gi(x)(
→

�, ei)x
�dSd

= ∫S+
gi(x) cos �i x�dS.

∫G+

(∇�
�
⋅
→

� ) x�dx =

n∑
i=1

∫S+
gi(x) cos �i x�dS = ∫S+

(
→

� ⋅
→

�) x� dS,

�
j

i
(x�) ≤ xi ≤ �

j

i
(x�), x�=(x1,… , xi−1, xi+1,… , xn), i = 1,… , n,

(11)∫G+

(∇�
�
⋅
→

� ) x�dx = ∫S+
(
→

� ⋅
→

�) x� dS ,
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is valid.

Proof  Let

then 
→

�  satisfies conditions of Remark 1. Setting

we obtain that 
→

� is continuously differentiable vector field defined in G+ and

Now we can easily get (12) by applying (11).

Weighted spherical mean and mean‑value theorem for B‑harmonic functions

In this section we obtain mean-value theorem for B-harmonic functions. This theorem states that the value of a B-har-
monic function at a point is equal to its weighted spherical mean over part of a sphere centered at that point. Weighted 
spherical mean in this case is constructed with the help of multi-dimensional generalized translation (5).
Weighted spherical mean (see [6, 16, 17, 21]) of function u(x), x ∈ ℝ

n
+
 for n ≥ 2 is

(12)∫G+

(�Δ�� − �Δ��) x�dx = ∫S+

(
�
��

�
→

�
− �

��

�
→

�

)
x� dS

→

� = �∇��
�
� − �∇��

�
�

= � ⋅ x
�1

1

��

�x1

− � ⋅ x
�1

1

��

�x1

,… ,� ⋅ x�n

n

��

�xn

− � ⋅ x�n

n

��

�xn

= x
�1

1

(
�
��

�x1

− �
��

�x1

)
,… , x�n

n

(
�
��

�xn

− �
��

�xn

)
,

→

� =

(
�
��

�x1

− �
��

�x1

,… ,�
��

�xn

− �
��

�xn

)
,

(∇�
�
⋅
→

� ) = (∇�
�
⋅ (�∇��

�
� − �∇��

�
�))

=

n∑
i=1

(
1

x
�i

i

�

�xi

(
� ⋅ x

�i

i

��

�xi

)
−

1

x
�i

i

�

�xi

(
� ⋅ x

�i

i

��

�xi

))

=

n∑
i=1

(
1

x
�i

i

��

�xi

⋅ x
�i

i

��

�xi

+ � ⋅
1

x
�i

i

�

�xi

x
�i

i

��

�xi

−

−
1

x
�i

i

��

�xi

⋅ x
�i

i

��

�xi

− � ⋅
1

x
�i

i

�

�xi

x
�i

i

��

�xi

)

=

n∑
i=1

(
�B�i

� − �B�i
�
)
= �Δ�� − �Δ�� ,

(
→

� ⋅
→

�) =

(
�
��

�x1

cos �1 + ... + �
��

�xn

cos �n

)

−

(
�
��

�x1

cos �1 + ... + �
��

�xn

cos �n

)

= �
��

�
→

�
− �

��

�
→

�
.
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where ��=
n∏

i=1

�
�i

i
, S+

1
(n)={�∶ ∣ � ∣ =1, �∈ℝn

+
} is a part of a sphere in ℝn

+
 , and ∣ S+

1
(n) ∣� is given by

For n = 1 let (M�
t f )(x) = �Tt

x
f (x).

We define the corresponding weighted maximal function �� by

Theorem 4  If n > 1 , n+ ∣ 𝛾 ∣> 2 and u = u(x) is B-harmonic in a domain Ω and if the part of a sphere S+
r0,x

(n) is contained 
in Ω , then, for 0 < r ≤ r0

Proof  Since operator �i T
yi

xi
 of function u ∈ C2

ev
 is a transmutation operator with the following intertwining property

then if u is B-harmonic in a domain Ω , then ��y
xu is harmonic in some Ω1 . That is, B-harmonicity is preserved under gener-

alized translations. Therefore, we can consider only the case when x = 0 . Let E be a subdomain of Ω satisfying the condi-
tions of Remark 1 such that �E consists of smooth pieces and 𝜕E ⊂ Ω . Applying formula (12) from Theorem 3 we obtain

where �
�
→

�
 is differentiation in the direction of the outward directed normal to �E and dS is the element of surface area on 

 �E.
Let x ∈ ℝ

+
n
 , n > 1 and

then for ∣ x ∣> 𝜀 ∀𝜀 > 0 we have △�v(x) = 0, so v is B-harmonic in any domain not containing the origin.
Suppose S+

�,0
(n) and S+

r,0
(n) are the surfaces of the parts of spheres centered in origin of radii � and r correspondingly 

and Ω∗ is the shell domain between S+
�,0
(n) and S+

r,0
(n) . Applying formula (12) to the functions u and v we obtain

On the coordinate planes xi = 0 , i = 1,… , n the the surface integrals in the right side of (17) are equal to zero. In the parts 
of the spheres S+

�,0
(n) and S+

r,0
(n) the function v(x) is constant so by (16) we get

Therefore, from (17) for n+ ∣ 𝛾 ∣> 2 we obtain

(13)(M
�
t u)(x) = (M

�
t )x[u(x)] =

1

∣ S+
1
(n) ∣� ∫S+

1
(n)

��t�
x

u(x)��dS,

(14)∣ S+
1
(n) ∣�= ∫S+

1
(n)

x�dS =

n∏
i=1

Γ
�

�i+1

2

�

2n−1Γ
�

n+∣� ∣

2

� .

(15)�𝛾u(x) = sup
t>0

∣ M
𝛾
t u(x) ∣ .

u(x) = (M�
r
u)(x).

�i Tyi

xi
(B�i

)xi
u(x) = (B�i

)yi

�i Tyi

xi
u(x),

(16)∫�E

�u

�
→

�
x�dS = ∫E

Δ�u(x)x�dx = 0,

→

𝑣(x) =

{
ln |x|, n + |𝛾| = 2;

|x|2−n−|𝛾|, n + |𝛾| > 2,

(17)0 = ∫Ω∗

(uΔ�v − vΔ�u) x�dx = ∫�Ω∗

(
u
�v

�
→

�
− v

�u

�
→

�

)
x� dS.

∫�Ω∗

v
�u

�
→

�
x� dS = 0.
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Consequently,

and

This proves the theorem.

Theorem 5  Let u∈L
�

1
(ℝn

+
) , then

Proof  Using the formulas 3.172, p. 156 and 3.190, p. 162 from [21] we get

∫�Ω∗

u
�v

�
→

�
x� dS

= (2 − n− ∣ � ∣)

(
∫S+

r,0
(n)

u(x) ∣ x ∣1−n−∣� ∣ x� dS − ∫S+
�,0
(n)

u(x) ∣ x ∣1−n−∣� ∣ x� dS

)
= 0.

r1−n−∣� ∣ ∫S+
r,0
(n)

u(x) x� dS = �1−n−∣� ∣ ∫S+
�,0
(n)

u(x) x� dS

(M�
r
u)(0) =

1

∣ S+
1
(n) ∣� ∫S+

1
(n)

u(r�)��dS
r�=x
=

1

∣ S+
1
(n) ∣� rn+∣� ∣−1 ∫S+

r,0
(n)

u(x) x� dS

=
1

∣ S+
1
(n) ∣� �

n+∣� ∣−1 ∫S+
�,0
(n)

u(x) x� dS → u(0), � → 0.

(18)�� [M
�
t u](x) = j n+∣�∣

2
−1
(t ∣ x ∣) �� [u](x).

�� (M
�
t u)(x) = ∫

ℝ
n
+

(M
�
t u)(�) �� (x;�)��d�

=
1

∣ S+
1
(n) ∣� ∫ℝ

n
+

(
∫S+

1
(n)

��t�
�

u(�)��dS

)
�� (x;�)��d�

=
1

∣ S+
1
(n) ∣� ∫S+

1
(n)

(
∫
ℝ

n
+

��t�
�

u(�) �� (x;�)��d�

)
��dS

=
1

∣ S+
1
(n) ∣� ∫S+

1
(n)

(
∫
ℝ

n
+

u(�) ��t�
�
�� (x;�)��d�

)
��dS

= ∫
ℝ

n
+

(M
�
t �� (x;�))(�)u(�)��d�

= j n+∣�∣

2
−1
(t ∣ x ∣)∫

ℝ
n
+

�� (x;�)(�)u(�)��d�
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Fractional weighted mean and Hankel transform of its kernel

Let 𝛼 > 0 and

For all � ∈ ℂ and we will consider weighted generalized function m�(x) defined by the formula

where {∣ x ∣< 1}+ = {x∈ℝn
+
∶ ∣ x ∣< 1}.

Let t > 0 and

We consider fractional weighted ball mean defined as a generalized convolution

It is easy to see that

So the formula for the connection between M�,�
t

 and M�
t  is

The standard approach to the problems connected with ball and spherical means involves the consideration of appropriate 
maximal functions. We define the maximal function ��,� by

= j n+∣�∣

2
−1
(t ∣ x ∣) �� [u](x).

m𝛼(x) =

{
(1−∣x∣2)𝛼−1

Γ(𝛼)
if ∣ x ∣< 1;

0 if ∣ x ∣≥ 1.

(19)
(
m𝛼(x),𝜑

)
𝛾
=

1

Γ(𝛼) ∫{∣x∣<1}+
(1− ∣ x ∣2)𝛼−1𝜑(x)x𝛾dx, 𝜑 ∈ Sev,

�
n,� ,�
t (x) =

m�(x∕t)

tn+∣� ∣
.

M
�,�
t

u(x) = (u ∗ �
n,� ,�
t )� (x).

M
�,�
t

u(x)

= ∫
ℝ

n
+

��y
x
u(x)�

n,� ,�
t (y)y�dy

=
1

tn+∣� ∣ ∫
ℝ

n
+

��y
x
u(x)m�(y∕t)y�dy

y∕t=z
= ∫

ℝ
n
+

��tz
x

u(x)m�(z)z
�dz =

1

Γ(�) ∫B+
1
(n)

��tz
x

u(x) (1 − |z|2)�−1z�dz

= ∫
1

0

(1 − �2)�−1�n+∣� ∣−1d�∫S+
1
(n)

��t�z
x

u(x)z�dS.

(20)M
�,�
t

u(x) =∣ S+
1
(n) ∣� ∫

1

0

(1 − �2)�−1�n+∣� ∣−1(M
�

t�
u)(x)d�.

�𝛼,𝛾u(x) = sup
t>0

∣ M
𝛼,𝛾
t

u(x) ∣ .
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Theorem 6  The following formula holds for � ∈ ℂ

Proof  Let first Re 𝛼 > 0 . We perform the integration in ��

(
m�(x)

)
(�) by using spherical coordinates and applying the 

formula (9):

Using the formula 2.12.4.6 from [18] of the form

we obtain

for Re 𝛼 > 0 and

which coincides with (21). So we get (21) for Re 𝛼 > 0 . For other values of � such that � ≠ 0,−1,−2,−3, ... equality (21) 
is valid by analytic continuation by �.

Residues of 
(1−∣x∣2)�−1

+,�

Γ(�)
 at � = −m , m ∈ ℕ ∪ {0} have forms (see [21])

then for � = −m we get

(21)��

�
m�(x)

�
(�) = An,� ,� j n+∣�∣

2
+�−1

(∣ � ∣), An,� ,� =

n∏
i=1

Γ
�

�i+1

2

�

2nΓ
�

n+∣� ∣

2
+ �

� .

��

(
m�(x)

)
(�) =

1

Γ(�) ∫B+
1
(n)

�� (x, �)(1− ∣ x ∣2)�−1x� dx

x=r�,r=∣x∣
=

1

Γ(�) ∫
1

0

(1 − r2)�−1rn+∣� ∣−1dr ∫S+
1
(n)

�� (r�, �)�� dS

=
1

Γ(�)

n∏
i=1

Γ
�

�i+1

2

�

2n−1Γ
�

n+∣� ∣

2

� ∫
1

0

(1 − r2)�−1j n+∣�∣

2
−1
(r ∣ � ∣)rn+∣� ∣−1dr

=∣ � ∣1−
n+∣�∣

2
1

Γ(�)
2

∣� ∣−n

2

n∏
i=1

Γ

(
�i + 1

2

)
∫

1

0

(1 − r2)�−1J n+∣�∣

2
−1
(r ∣ � ∣)r

n+∣�∣

2 dr.

(22)∫
w

0

r�+1(w2 − r2)�−1J�(�r)dr =
2�−1w�+�Γ(�)

��
J�+�(�w),

w > 0, Re 𝛽 > 0, Re 𝜈 > −1,

∫
1

0

(1 − r2)�−1J n+∣�∣

2
−1
(r ∣ � ∣)r

n+∣�∣

2 dr =
2

�−1

Γ(�)

∣ � ∣�
J n+∣�∣

2
+�−1

(∣ � ∣)

��

�
m�(x)

�
(�) =

Γ(�)
n∏

i=1

Γ
�

�i+1

2

�

2nΓ
�

n+∣� ∣

2
+ �

� j n+∣�∣

2
+�−1

(∣ � ∣),

lim
�→−m

(1− ∣ x ∣2)�−1

Γ(�)
= �(m)

�
(1− ∣ x ∣2),
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The proof is complete.

Corollary. The following formula holds for � ∈ ℂ

Proof  For �n,� ,�
t (x) using (21) we obtain

Using asymptotic expansion of Bessel function J� for large and for small real arguments we obtain for some 𝜀 > 0 and E > 0 , 
respectively

and

where Cn,� ,� is some constant depending on n, � , � and not depending on t and �.
Therefore, for � ∈ ℂ in general we can also define the operators M�,�

t
 by

For � = 0 we get

��

(
m�(x)

)
(�)

= ∫
ℝ

n
+

�� (x, �)�(m)
�

(1− ∣ x ∣2)x� dx =

n∏
i=1

Γ
�

�i+1

2

�

2nΓ
�

n+∣� ∣

2
− m

� j n+∣�∣

2
−m−1

(∣ � ∣).

(23)��

(
�

n,� ,�
t

)
(�) = An,� ,� j n+∣�∣

2
+�−1

(∣ t� ∣).

��

(
�

n,� ,�
t

)
(�)

= ∫
ℝ

n
+

�
n,� ,�
t (x) �� (x; �)x�dx

=
1

tn+∣� ∣ ∫
ℝ

n
+

m�(x∕t) �� (x; �)x�dx

x=ty
= ∫

ℝ
n
+

m�(y) �� (ty; �)y�dy

= ��

(
m�(y)

)
(t�) = An,� ,� j n+∣�∣

2
+�−1

(∣ t� ∣).

(24)∣ �𝛾

(
�

n,𝛾 ,𝛼
t

)
(𝜉) ∣=∣ �𝛾

(
m𝛼

)
(t𝜉) ∣≤ Cn,𝛾 ,𝛼 , for t < 𝜀

(25)∣ �𝛾 (�
n,𝛾 ,𝛼
t )(𝜉) ∣=∣ �𝛾 (m𝛼)(t𝜉) ∣≤ Cn,𝛾 ,𝛼

∣ t𝜉 ∣
n+∣𝛾∣−1

2
+𝛼

, for t > E,

(26)��

(
M

�,�
t

u
)
(�) = ��

(
m�

)
(t�)�� [u](�), u ∈ Sev.
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Maximal inequality for the weighted spherical mean

In this section we are interested in the a priori maximal inequalities for 1 ≤ p ≤ ∞

where B(a, b) = ∫ 1

0
(1 − t)a tbdt , a, b > 0 is the beta function.

Let � be smooth and have a compact support such that �� [�](0) = ∫
ℝ

n
+
�(x)�� (x; 0)x�dx = ∫

ℝ
n
+
�(x)x�dx = ��

(
m�(⋅)

)
(0) , 

�t(x) =
�(x∕t)

tn+∣�∣
 . Then it is clear that �� [�t](�) = �� [�](t�). We will be dealing with a given function g�,� [u](x) on ℝn

+
 of the 

form

Theorem 7  If 𝛼 >
1−n−∣𝛾 ∣

2
 and u ∈ L

�

2
(ℝn

+
) , then

Proof  Let us consider the integral

By Parseval’s identity for the Hankel transform (4) and formula (8) we obtain

��

�
m0

�
(�) =

n∏
i=1

Γ
�

�i+1

2

�

2nΓ
�

n+∣� ∣

2

� j n+∣�∣

2
−1
(∣ � ∣).

‖M
𝛾
t u‖p,𝛾 ≤ ‖u‖p,𝛾 , t > 0

‖M𝛼,𝛾
t

u‖p,𝛾 ≤ 2𝛼 ∣ S+
1
(n) ∣𝛾 B(𝛼, n+ ∣ 𝛾 ∣) ‖u‖p,𝛾 , t > 0, 𝛼 > 0,

g�,� [u](x) =

(
∫

∞

0

∣ M
�,�
t

u(x) − (u ∗ �t)� ∣
2 dt

t

)1∕2

.

(27)‖g�,� [u]‖2,� ≤ A�,� ‖u‖2,� .

∫
ℝ

n
+

∣ g�,� [u](x) ∣
2 x�dx

= ∫
ℝ

n
+

x�dx∫
∞

0

∣ M
�,�
t

u(x) − (u ∗ �t)� ∣
2 dt

t

= ∫
ℝ

n
+

x�dx∫
∞

0

∣ (u ∗ (�
n,� ,�
t (x) − �t(x)))� ∣

2 dt

t

= ∫
∞

0

dt

t ∫
ℝ

n
+

∣ (u ∗ (�
n,� ,�
t (x) − �t(x)))� ∣

2 x�dx

= ∫
∞

0

‖‖‖(u ∗ (�
n,� ,�
t (x) − �t(x)))�

‖‖‖
2

2,�

dt

t
.

∫
ℝ

n
+

∣ g�,� [u](x) ∣
2 x�dx = Cn,� ∫

∞

0

‖‖‖�� (u ∗ (�
n,� ,�
t (x) − �t(x)))�

‖‖‖
2

2,�

dt

t
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Therefore, it suffices to show that ∫ ∞

0
∣ ��

(
m�

)
(tx) − �� (�)(tx) ∣

2 dt

t
 is bounded. We have

Functions ��

(
m�

)
(tx) , �� (�)(tx) are smooth near the origin and (24) takes place. The first integral converges since 

��

(
m�

)
(0)=�� (�)(0) and therefore, ∣ ��

(
m�

)
(tx) − �� (�)(tx) ∣ is infinitely small for t→0 . Taking into account (25) and 

the fact that � has compact support we can see that the second integral converges for 𝛼 >
1−n−∣𝛾 ∣

2
 . The proof is complete.

Theorem 8  If 𝛼 >
1−n−∣𝛾 ∣

2
 and u ∈ L

�

2
(ℝn

+
) , then

Proof  We have

Note that by Hölder’s inequality we get

Therefore,

= Cn,� ∫
ℝ

n
+

∣ �� (u)(x) ∣
2 x�dx∫

∞

0

∣ (�� (�
n,� ,�
t )(x) − �� (�t)(x)) ∣

2 dt

t

= Cn,� ∫
ℝ

n
+

∣ �� (u)(x) ∣
2 x�dx∫

∞

0

∣ ��

(
m�

)
(tx) − �� (�)(tx) ∣

2 dt

t
.

∫
∞

0

∣ ��

(
m�

)
(tx) − �� (�)(tx) ∣

2 dt

t
=

= ∫
�

0

∣ ��

(
m�

)
(tx) − �� (�)(tx) ∣

2 dt

t
+ ∫

∞

�

∣ ��

(
m�

)
(tx) − �� (�)(tx) ∣

2 dt

t
.

(28)
�����

sup
s>0

�
1

s �
s

0

∣ M
𝛼,𝛾
t

u(x) ∣2 dt

�1∕2�����2,𝛾

≤ A�
𝛼,𝛾

‖u‖2,𝛾 .

�
s

0

∣ M
�,�
t

u(x) ∣2 dt = �
s

0

∣ M
�,�
t

u(x) − (u ∗ �t)� + (u ∗ �t)� ∣
2 dt

≤ �
s

0

∣ M
�,�
t

u(x) − (u ∗ �t)� ∣
2 dt

+ 2�
s

0

∣ M
�,�
t

u(x) − (u ∗ �t)� ∣ ⋅ ∣ (u ∗ �t)� ∣ dt + �
s

0

∣ (u ∗ �t)� ∣
2 dt.

sup
s>0

1

s �
s

0

∣ M
𝛼,𝛾
t

u(x) − (u ∗ 𝜑t)𝛾 ∣ dt ≤ sup
s>0

1√
s

�
�

s

0

∣ M
𝛼,𝛾
t

u(x) − (u ∗ 𝜑t)𝛾 ∣
2 dt

�1∕2

≤
�
�

s

0

∣ M
𝛼,𝛾
t

u(x) − (u ∗ 𝜑t)𝛾 ∣
2 dt

t

�1∕2

≤ g𝛼,𝛾 [u](x).

sup
s>0

1

s �
s

0

∣ M
𝛼,𝛾
t

u(x) ∣2 dt ≤

sup
s>0

1

s ∫
s

0

∣ M
𝛼,𝛾
t

u(x) − (u ∗ 𝜑t)𝛾 ∣
2 dt

+2 sup
s>0

1

s ∫
s

0

∣ M
𝛼,𝛾
t

u(x) − (u ∗ 𝜑t)𝛾 ∣ ⋅ ∣ (u ∗ 𝜑t)𝛾 ∣ dt + sup
s>0

1

s ∫
s

0

∣ (u ∗ 𝜑t)𝛾 ∣
2 dt
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and

Since � has a compact support we get ‖ sup
t>0

∣ (u ∗ 𝜑t)𝛾‖2,𝛾 ≤ C‖u‖2,𝛾 . Thus using (27) we obtain (28).

Theorem 9  Let us take �′ such that 𝛼′ < 𝛼 . We can move from the smaller values of � to the larger values using the 
rising operator. Namely

Proof  We have

Let us calculate the inner integral. For |t| < |y| we get

and

≤ (g𝛼,𝛾 [u](x))
2 + 2g𝛼,𝛾 [u](x) sup

t>0

∣ (u ∗ 𝜑t)𝛾 ∣ + sup
t>0

∣ (u ∗ 𝜑t)𝛾 ∣
2

= (g𝛼,𝛾 [u](x) + sup
t>0

∣ (u ∗ 𝜑t)𝛾 ∣)
2

sup
s>0

(
1

s �
s

0

∣ M
𝛼,𝛾
t

u(x) ∣2 dt

)1∕2

≤∣ g𝛼,𝛾 [u](x) ∣ + sup
t>0

∣ (u ∗ 𝜑t)𝛾 ∣ .

(29)M
�,�
t

u(x) =
2

Γ(� − ��) ∫
1

0

M
��,�
ts

u(x)(1 − s2)�−�
�−1sn+∣� ∣+2��−1ds.

2

Γ(� − ��) ∫
1

0

M
�� ,�
ts

u(x)(1 − s2)�−�
�−1sn+∣� ∣+2��−1ds

=
2

Γ(� − ��) ∫
1

0

(1 − s2)�−�
�−1sn+∣� ∣+2��−1

(
1

(ts)n+∣� ∣ ∫ℝ
n
+

��y
x
u(x)m��

( y

st

)
y�dy

)
ds

=
2

Γ(� − ��)

1

tn+∣� ∣ ∫
ℝ

n
+

��y
x
u(x)

(
∫

1

0

(1 − s2)�−�
�−1s2��−1m��

( y

st

)
ds

)
y�dy

=
2

Γ(��)Γ(� − ��)

1

tn+∣� ∣ ∫
ℝ

n
+

��y
x
u(x)

(
∫

1

∣
y

t
∣

(1 − s2)�−�
�−1s2��−1

(
1− ∣

y

st
∣2
)��−1

ds

)
y�dy.

∫
1

∣
y

t
∣

(1 − s2)�−�
�−1s2��−1

(
1− ∣

y

st
∣2
)��−1

ds

=
1

|t|2��−2 ∫
1

∣
y

t
∣

(1 − s2)�−�
�−1

(
t2s2 − |y|2)��−1

sds

=
1

|t|2��−2

(t2 − |y|2)�−1|t|2(��−�)Γ(��)Γ(� − ��)

2Γ(�)

2

Γ(𝛼 − 𝛼�) ∫
1

0

M
𝛼�,𝛾
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u(x)(1 − s2)𝛼−𝛼
�−1sn+∣𝛾 ∣+2𝛼�−1ds

=
1

Γ(𝛼)

1

tn+∣𝛾 ∣+2𝛼−2 ∫
ℝ

n
+,|t|<|y|

𝛾�y
x
u(x)(t2 − |y|2)𝛼−1y𝛾dy

=
1

Γ(𝛼)

1

tn+∣𝛾 ∣ ∫
ℝ

n
+,|t|<|y|

𝛾�y
x
u(x)

(
1 −

|y|2
t2

)𝛼−1
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=
1

tn+∣𝛾 ∣ ∫
ℝ

n
+

𝛾�y
x
u(x)m𝛼(y∕t)y𝛾dy = M

𝛼,𝛾
t

u(x).
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Theorem 10  If 𝛼 > 1 −
n+∣𝛾 ∣

2
 and u ∈ L

�

2
(ℝn

+
) , then

Proof  Let 𝛼 > 𝛼� +
1

2
 , then by (29) applying Hölder’s inequality we get

For 𝛼� >
1−n−∣𝛾 ∣

2
 by (28) we obtain

Therefore, for 𝛼 > 𝛼� +
1

2
>

1−n−∣𝛾 ∣

2
+

1

2
= 1 −

n+∣𝛾 ∣

2
 we get the statement of Theorem.

The next result follows from Lemma 10.

Theorem 11  If 𝛼 > 1 −
n+∣𝛾 ∣

2
 and u ∈ L

�

2
(ℝn

+
) , then the following inequalities hold

where C�,� and C� are some constants, ��u is weighted maximal function (15).

Let us establish important properties of M�
t u.

Theorem 12  The operator M�
t  is bounded on L�

p
(ℝn

+
) for 1 ≤ p ≤ ∞ . Moreover,

Proof  For 1 ≤ p < ∞ applying the Minkowski inequality we get

(30)
����sup

t>0

∣ M
𝛼,𝛾
t

u ∣
����2,𝛾

≤ A��
𝛼,𝛾
‖u‖2,𝛾 .

∣ M
�,�
t

u(x) ∣=
2

Γ(� − ��)
∣ ∫

1

0

M
��,�
ts

u(x)(1 − s2)�−�
�−1sn+∣� ∣+2��−1ds ∣

≤ 2

Γ(� − ��)

(
�

1

0

∣ M
��,�
ts

u(x) ∣2 ds

)1∕2(
�

1

0

∣ (1 − s2)�−�
�−1sn+∣� ∣+2��−1 ∣2 ds

)1∕2

=
2

Γ(� − ��)

⎛⎜⎜⎜⎝

Γ(2� − 2�� − 1)Γ
�

2�� + n+ ∣ � ∣ −
1

2

�

2Γ
�

n+ ∣ � ∣ +2� −
3

2

�
⎞⎟⎟⎟⎠

1∕2�
1

t ∫
t

0

∣ M
��,�
s

u(x) ∣2 ds

�1∕2

.

����sup
t>0

∣ M
𝛼,𝛾
t

u(x) ∣
����2,𝛾

≤ C(n, 𝛾 , 𝛼�, 𝛼)
�����

sup
s>0

�
1

s �
s

0

∣ M
𝛼,𝛾
t

u(x) ∣2 dt

�1∕2�����2,𝛾

≤ A��
𝛼,𝛾
‖u‖2,𝛾 .

(31)‖��,�u‖2,� ≤ C�,�‖u‖2,� ,

(32)‖��u‖2,� ≤ C�‖u‖2,� ,

‖M
𝛾
t u‖p,𝛾 ≤ ‖u‖p,𝛾 , t > 0.

‖M
�
t u‖p,� =

�
∫
ℝ

n
+

∣
1

∣ S+
1
(n) ∣� ∫S+

1
(n)

��t�
x

u(x)��dS ∣p x�dx

� 1

p

≤ 1

∣ S+
1
(n) ∣� �S+

1
(n)

(
�
ℝ

n
+

∣� �t�
x

u(x) ∣p x�dx

) 1

p

��dS
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Analogously, for p = ∞

Let us establish important properties of M�,�
t

.

Theorem 13  The operator M�,�
t

 is bounded on L�
p
(ℝn

+
) for 1 ≤ p ≤ ∞ . Moreover,

Proof  For 1 ≤ p < ∞ applying the Minkowski inequality we get

 

≤ 1

∣ S+
1
(n) ∣� �S+

1
(n)

(
�
ℝ

n
+

��t�
x

(|u(x)|p)x�dx
) 1

p

��dS

≤ 1

∣ S+
1
(n) ∣� �S+

1
(n)

(
�
ℝ

n
+

|u(x)|px�dx
) 1

p

��dS

= ‖u‖p,�
1

∣ S+
1
(n) ∣� ∫S+

1
(n)

��dS = ‖u‖p,� .

‖M
�
t u‖∞,� =

1

∣ S+
1
(n) ∣�

ess sup
x∈ℝn

+

∣ ∫S+
1
(n)

��t�
x

u(x)��dS ∣

≤ 1

∣ S+
1
(n) ∣� �S+

1
(n)

‖u‖∞,� �
�dS

= ‖u‖∞,�
1

∣ S+
1
(n) ∣� ∫S+

1
(n)

��dS = ‖u‖∞,� .

‖M𝛼,𝛾
t

u‖p,𝛾 ≤ 2𝛼 ∣ S+
1
(n) ∣𝛾 B(𝛼, n+ ∣ 𝛾 ∣) ‖u‖p,𝛾 , t > 0, 𝛼 > 0.

‖M�,�
t

u‖p,� =

�
∫
ℝ

n
+

∣ ∣ S+
1
(n) ∣� ∫

1

0

(1 − �2)�−1�n+∣� ∣−1(M
�

t�
u)(x)d� ∣p x�dx

� 1

p

≤∣ S+
1
(n) ∣� �

1

0

(
�
ℝ

n
+

∣ (1 − �2)�−1�n+∣� ∣−1(M
�

t�
u)(x) ∣p x�dx

) 1

p

d�

=∣ S+
1
(n) ∣� ∫

1

0

(1 − �2)�−1�n+∣� ∣−1
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∫
ℝ

n
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u)(x) ∣p x�dx

) 1
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Analogously, for p = ∞

An application

Spherical averages often make their appearance as solutions of certain partial differential equations. In this section we 
will use in [21], “An application’’, the solution representations to the Cauchy problem for a general form of the Euler–Pois-
son–Darboux equation with Bessel operators via generalized translation and spherical mean operators. [21], “An application’’, 
also contains a short historical introduction on differential equations with Bessel operators and a rather detailed reference list 
of monographs and papers on mathematical theory and applications of this class of differential equations.
The classical Euler–Poisson–Darboux equation is defined by

The operator acting by variable t in (33) is the Bessel operator

When n = 1, Eq. (33) appears in Leonard Euler’s work (see [7, p. 227]) and later it was studied by Simeon Denis Poisson 
in [19], by Gaston Darboux in [5], and by Bernhard Riemann in [20].
For the Cauchy problem initial conditions to the solution of Eq. (33) are added:

≤ 2� ∣ S+
1
(n) ∣� ‖u‖p,� �

1

0

(1 − �)�−1�n+∣� ∣−1d�

= 2� ∣ S+
1
(n) ∣� B(�, n+ ∣ � ∣) ‖u‖p,� .

‖M�,�
t

u‖∞,� =∣ S+
1
(n) ∣� ess sup

x∈ℝn
+

∫
1

0

(1 − �2)�−1�n+∣� ∣−1(M
�

t�
u)(x)d�

≤∣ S+
1
(n) ∣� �

1

0

(1 − �2)�−1�n+∣� ∣−1 ‖M
�

t�
u‖∞,� d�

≤∣ S+
1
(n) ∣� �

1

0

(1 − �2)�−1�n+∣� ∣−1d� ‖u‖∞,�

≤ 2� ∣ S+
1
(n) ∣� �

1

0

(1 − �)�−1�n+∣� ∣−1d� ‖u‖∞,�

= 2� ∣ S+
1
(n) ∣� B(�, n+ ∣ � ∣) ‖u‖∞,� .

(33)𝜕2u

𝜕t2
+

k

t

𝜕u

𝜕t
= △xu, u = u(x, t;k), x ∈ ℝ

n, t > 0, k ∈ ℝ.

(
Bk

)
t
=

�2

�t2
+

k

t

�

�t
=

1

tk

�

�t
tk �

�t
.

(34)u(x, 0; k) = f (x),
�u(x, t; k)

�t
∣t=0= 0.
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The interest in the multi-dimensional equation (33) has increased significantly after Alexander Weinstein’s papers [27–30]. 
In [27, 28] the Cauchy problem for (33) is considered with k ∈ ℝ , the first initial condition being nonzero and the second 
initial condition equaling zero. A solution of the Cauchy problem (33)–(34) in the classical sense was obtained in [28–30] 
and in the distributional sense in [3, 4]. S. A. Tersenov in [25] solved the Cauchy problem for (33) in the general form 
where the first and the second conditions are nonzeros. Singular and degenerate hyperbolic equations of one-dimensional 
EPD-type were considered in [22–24]. Different problems for Eq. (33) with many applications to gas dynamics, hydro-
dynamics, mechanics, elasticity, plasticity, and so on were also studied, see [21, section "An application"] for references.
In this section we consider the singular with respect to all variables hyperbolic differential equation, which is a gen-
eralization of the multi-dimensional Euler-Poisson-Darboux equation (33):

with the singular elliptic operator defined by 
�
△�

�
x
=

n∑
j=1

�
B�j

�
xj

 is Laplace-Bessel operator together with initial 

conditions

Note that, Eq. (35) in the general form is called the Euler-Poisson-Darboux equation.
We start using a solution to the first Cauchy problem above,

in the compact integral form via generalized translation and spherical mean operators for all values of the parameter k, 
including also exceptional odd negative values, which have been studied in [21], Theorem 75].

Theorem 14  Let f = f (x) ∈ C2
ev

 , x ∈ ℝ
n
+
 . Then for all the cases k > n+ ∣ 𝛾 ∣ −1 the unique solution to (36)–(37) is

where M�,�
t

 is given by (20), � =
k−n−∣� ∣+1

2
 , Cn,� ,k =

2nΓ
�

k+1

2

�

Γ
�

k−n−∣�∣+1

2

� n∏
i=1

Γ
�

�i+1

2

� . The unique solution of the problem (36)–(37) for 

k = n+ ∣ � ∣ −1 is the weighted spherical mean M�
t f (x).

From Theorems 12, 13 and 14 we get the following corollary:
Corollary.  Let k ≥ n+ ∣ � ∣ −1 and 1 ≤ p ≤ ∞ , then for the weak solution u = u(x, t; k) of the problem (36)–(37) with 
the initial data in f ∈ L�

p
(ℝn

+
) , we have the following a priori estimate:

Also, lim
t→0

u(x, t; k) = f (x) a.e. x ∈ ℝ
n
+
.
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x
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