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Abstract: In this study, we focused on the eastern part of the Cochlodina laminata range. Although this
door snail is widespread in Europe, even a widespread species may lose habitats if future climate
change projections are realized. The range shift is one of the consequences of climate change. We
applied SDM methods to model the current potential range of C. laminata and the range shift after
40 and after 80 years. We used climatic parameters as predictors. The annual mean temperature
has the greatest impact on the modeling results (about 30–60% among models). The precipitation
of the warmest quarter also had a high relative importance (about 15–40% among models). For
future projections, we considered two shared socio-economic pathways (ssp245 and ssp585). We
applied three algorithms: the generalized additive model (GAM), support vector machine (SVM)
and multilayer perceptron (MLP) and ensemble prediction. Our projections showed a decrease in
habitable area in the eastern part of the range of C. laminata in 40 and in 80 years. According to the
forecast, the habitat suitable area will become more fragmented. The range shift with new suitable
areas is expected toward the east direction.

Keywords: ecological modeling; SDM; climate change; species distribution; Clausiliidae

1. Introduction

The climate change impact on distribution and range shifts has been shown for many
animal species [1,2]. Research often focuses on endangered species on the one hand
or potentially invasive species on the other [3–5]. The same trend is also observed in
molluscan studies [6–8]. This is explained by the need to develop protective measures to
conserve biodiversity and prevent damage to native ecosystems and humans [9–11]. The
loss of habitats of rare, endangered species or the spread of invasive species (sometimes
these events are associated) is the most obvious application for ecological modeling and
environmental management [3–11]. However, species that are currently widely distributed
over large areas may also be subject to range changes in the future. Such transformations
also may affect ecosystems [12,13]. This effect will be especially noticeable if the changes
affect large areas.

The object of our study is Cochlodina laminata Montagu, 1803. This snail of the family
Clausiliidae (Gastropoda: Pulmonata) is widely distributed in Europe. Clausiliidae are
often of interest for research due to their ecological features, high species diversity, and
wide geographic distribution [14–17]. Although there are many stenobiont species in this
family, C. laminata is one of the “most eurybiont” European clausilids. The species inhabits
the entire range of forest biotopes: from forest edges to floodplain and ravine forests [18].
The snail inhabits forest biotopes and lives in forest litter, decaying wood and stumps. C.
laminata is widespread in Europe, including eastern Europe [19]. According to Likharev [17],
the range of C. laminata on the East European Plain has the shape of a wedge that extends
deep into the continent. The range of the species covers the territory of several natural
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zones, and it is especially interesting that C. laminata lives in the forest-steppe and even
locally in the steppe zone [20]. In this part of its range, C. laminata inhabits both regions
with high and low diversity of malacofauna. The species is distributed in the Balkans and
Carpathians, regions with high species richness, including endemic door snails [15,21–24].
At the same time, on the territory of the Central Russian Upland, Middle Volga region,
where the malacofauna is not so rich, the species is also often found [25–29]. C. laminata also
inhabits the mountainous Crimea and is found in the Caucasus [17,30,31]. We should note
that by “Caucasus” we mean the territory within the physical–geographical boundaries of
the Caucasus, so from the north it extends southward from the lowlands of the Kuma and
Manych river basins. Perhaps due to the large territory, there is a problem of lack of species
occurrence data of the eastern part of the species range. In other words, the range of the
species in eastern Europe is not completely clear for the current time.

In this part of the species range, as well as in others, the effects of climate change are
already manifesting, and it is expected that they will intensify [32]. It can be assumed that
climate change will also affect the distribution of snails in this territory, including C. laminata.
SDM methods are often used to predict range shifts due to climate change [33–35]. Different
models of climate change and different socio-economic scenarios are used for forecasts [36,37].
Now, the most relevant is the Phase 6 of the Coupled Model Intercomparison Project (CMIP6)
climate model set [38–40]. Like the previous sets of climate models, CMIP6 shows a warming
climate and, in addition, an increase in climate extremes [41,42].

In our study, we focused specifically on the territory of eastern Europe (up to the
Urals); we were especially interested in the border areas of the range. At the first stage of
the research, we modeled the distribution of the species at the current time. We evaluate the
habitat suitability of different parts of eastern Europe for C. laminata. At the second stage,
we investigate the projected future range shift after 40 (2041–2060) and 80 years (2081–2100).
For the future modeling, we used two socio-economic climate change scenarios, including
the most pessimistic.

2. Materials and Methods
2.1. Species Data and Study Area

We used the following data sources of C. laminata occurrences: the authors’ field
collections (49 points), literature searches (96 points) [18,26,28,29,43–54]; the GBIF repos-
itory, from which iNaturalist data were previously excluded (4034 points) [55–63]; data
from the collection of the Malacology Laboratory of the State Museum of Natural His-
tory of the National Academy of Sciences of Ukraine (3 points, www.pip-mollusca.org
(accessed on 25 April 2022)); and the catalogs of the Zoological Institute of the Russian
Academy of Sciences and the Zoological Museum of Moscow State University (117 and
25 points, respectively).

Occurrence data preprocessing included deduplication and spatial thinning. For GBIF
data, the thinning distance was 20 km; for data from other sources, it was 10 km. The
choice of thinning distance is determined by the initial spatial distribution of present points:
such a distance made it possible to minimize the effect of sampling bias but at the same
time not to remove an excessive number of present points. As a result, after the thinning
procedure, 131 points from the GBIF and 210 points from the other sources were included in
the models (Figure 1; Table S1). Four hundred background points were randomly generated
as pseudo-absence points.

The study area covered the territory of eastern Europe from 66◦ N to 40◦ N and from
20◦ E to 60◦ E.

www.pip-mollusca.org
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2022) database with a 2.5 min spatial resolution [64]. We tested 19 bioclimatic variables for 
multicollinearity using the variance inflation factor (VIF) [65]. We selected eight of them 
based on the test results after excluding the highly correlated variables from the set. So, 
the following climatic parameters were included in the species distribution models: �bio1� 
(Annual Mean Temperature), �bio2� (Mean Diurnal Range), �bio4� (Temperature Seasonal-
ity), �bio8� (Mean Temperature of Wettest Quarter), �bio9� (Mean Temperature of Driest 
Quarter), �bio15� (Precipitation Seasonality), �bio18� (Precipitation of Warmest Quarter), 
and �bio19� (Precipitation of Coldest Quarter). The relative contribution of each predictor 
in the model was calculated. 

In addition to the VIF test results, the ecology of the species was also considered in 
the selection of variables. For the study area, the ecology of the species was described in 
the most detail by Likharev [17], and the breeding ecology was also described by 
Mamatkulov for the middle part of the East European Plain [18]. Since the territory is quite 
extensive, the limiting factors in the northern and southern parts may differ. In the north 
and northeast, the range boundary is largely determined by the duration of the frost-free 
period as well as by snow cover. In the south and southeast, the range boundary is more 
dependent on summer temperature and precipitation. Given the result of the multicollin-
earity test, we believe that these factors are reflected in the bioclimatic variables bio2, bio4, 

Figure 1. Cochlodina laminata occurrences.

2.2. Environmental Predictors

In our study, we used bioclimatic data from the WorldClim.org (accessed on 25 April
2022) database with a 2.5 min spatial resolution [64]. We tested 19 bioclimatic variables for
multicollinearity using the variance inflation factor (VIF) [65]. We selected eight of them
based on the test results after excluding the highly correlated variables from the set. So,
the following climatic parameters were included in the species distribution models: ‘bio1’
(Annual Mean Temperature), ‘bio2’ (Mean Diurnal Range), ‘bio4’ (Temperature Seasonality),
‘bio8’ (Mean Temperature of Wettest Quarter), ‘bio9’ (Mean Temperature of Driest Quarter),
‘bio15’ (Precipitation Seasonality), ‘bio18’ (Precipitation of Warmest Quarter), and ‘bio19’
(Precipitation of Coldest Quarter). The relative contribution of each predictor in the model
was calculated.

In addition to the VIF test results, the ecology of the species was also considered in the
selection of variables. For the study area, the ecology of the species was described in the
most detail by Likharev [17], and the breeding ecology was also described by Mamatkulov
for the middle part of the East European Plain [18]. Since the territory is quite extensive, the
limiting factors in the northern and southern parts may differ. In the north and northeast,
the range boundary is largely determined by the duration of the frost-free period as well
as by snow cover. In the south and southeast, the range boundary is more dependent on
summer temperature and precipitation. Given the result of the multicollinearity test, we
believe that these factors are reflected in the bioclimatic variables bio2, bio4, bio8, bio9, and
bio18. The annual mean temperature should also affect the distribution of the species over
such a vast territory, since if we generalize information about the ecology of the species, its
distribution is largely limited by cold continental–arctic air masses from the northeast and
continental–subtropical masses from the southeast.
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To predict the distribution of the species after 40 years (2041–2060 period) and after
80 years (2081–2100 period), we used data from CMIP6 (Coupled Model Intercomparison
Project Phase 6) future climate projections from the WorldClim.org database. For future
modeling, we chose the same climate predictors with a spatial resolution of 2.5 min that
have been used in the current distribution species modeling.

Predictions based on different climate models differ; for this reason, the common prac-
tice is using different models and generalizing the result [66–68]. For the future projection,
we used four models from the CMIP6: HadGEM3-GC31-LL (Hadley Global Environmental
Model—Earth System version 3) [69], ACCESS-ESM 1.5 (Australian Community Climate
and Earth System Simulator—Earth System Model 1.5) [70], CanESM5 (Canadian Earth
System Model version 5) [71], and BCC-CSM2-MR (medium-resolution version of Beijing
Climate Center Climate System Model) [72].

We chose these models because there are variations in model predictions in different
climatic zones, in forecasting annual maxima, and in accounting for the carbon cycle and
vegetation change [42,73–75].

For each of these climate models, we took two Shared Socio-economic Pathways (SSPs):
SSP2-4.5 and SSP5-8.5. When measuring habitat suitability, modeling different SSPs, as
well as different Representative Concentration Pathways (RCPs), helps to consider different
climate change scenarios depending on climate policies [36,37].

Our forecast is based on climatic factors, since the region of our study is a large area.
For this area, unfortunately, there are no other suitable predictors for future modeling of
sufficient spatial resolution. For small areas (as in some regions), there are, for instance,
land cover models [76–78]. Such predictors add detail and accuracy to the models. But
we suppose that in order to show the potential changes in the range of a wide spread of
terrestrial molluscs over a large area across decades, our approach can be applied.

2.3. Species Distribution Modeling

The following algorithms were used for current and future modeling: the generalized
additive model (GAM), support vector machine (SVM) and multilayer perceptron (MLP).
We used a fivefold cross-validation method with 25% test and 75% training sets of occur-
rence points. The models’ evaluation was tested using the area under the receiver operating
characteristic curve (AUC) [79–81]. We derived one ensemble prediction on the weighted
results of all models [82]. We evaluated the suitability scores of habitats from 0 to 1.

We also found threshold values for habitat suitability. For these aims, we applied a
sensitivity–specificity sum maximization approach [83]. Furthermore, the territory was
divided into areas of potential presence (1) and absence of the species (0): above the
threshold value and below it. Presence/absence type maps were made based on ensemble
models considering the threshold value. The areas of the range were calculated according
to the results of the ensemble model for the present and for the future. For calculating the
area, we vectorized the result of the ensemble prediction. We calculated the mean results
for all climate projections for each time period and SSP separately. We also calculated the
standard deviation to determine the uncertainty [67,84]. We performed these operations in
the spatstat package [85].

Modeling, analysis and the main part of the data preprocessing were carried out in
the R version 4.1.2 using packages sdm [86,87]. The spatial thinning procedure was carried
out using the spThin package in the R environment [88]. To work in the sdm package, we
also used the following packages: maptools, sp, raster, rgbif, rgeos, dismo, rgdal [89–96].
The code file is in Supplementary Table S2. The processing of raster images with predictors,
as well as the preparation of the resulting maps, calculating the area of the range was
performed in ArcGIS version 10.7.
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3. Results
3.1. Current Distribution Modeling

At the first stage, we obtained models of habitat suitability for the study area at the
current time using three algorithms with a fivefold cross-validation (Figure 2).
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The resulting prediction varied depending on the applied algorithms. The GAM and
MLP algorithms give, on the one hand, a more fragmented picture, but, on the other hand,
the area suitable for C. laminata habitation in these models is larger than in SVM. The SVM
shows a more “filled” area, including those areas where no points of occurrence were noted
due to lack of data. In particular, this applies to the territory of Belarus. In all cases, the
potential range extends to the Cis-Urals (in all models) or even reaches the Urals (in GAM
and MLP models).

An AUC score has comparable and rather high values (0.86-0.88) for all models. This
characterizes the good performance in predicting the C. laminata distribution (Figure 3).
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The ensemble forecast shows the average result for all models (Figure 4). Territories
with different degrees of suitability are shown in Figure 4A. The habitat suitability threshold
is 0.349. Based on this value, we divided the territory into suitable and unsuitable for the
species (“presence/absence”). This version of the C. laminata distribution prediction map is
shown in Figure 4B.

The ensemble model also showed that the potential range reaches the Cis-Urals in the
eastern part: the Obshchy Syrt and part of the Bugulma–Belebeev Upland.

In the southern part (in the forest-steppe and partly in the steppe zone), the potential
range includes the south of the Central Russian Upland to the southeast of the Donetsk Ridge.
Suitable habitat territory is also located in the south of the Dnieper Upland and the Black Sea
Lowland. The southernmost part of the C. laminata range includes the territories of the Black
Sea region: the mountainous part of the Crimean Peninsula, Ciscaucasia, some part of the
Caucasus, the Pontic Mountains, and the Balkans. The total area of habitable territory in the
study region is 2,814,972.024 km2 according to the ensemble model for the current time. We
emphasize that our forecast is based on climate predictors; that is, we are talking about the
climatic niche of the C. laminata. Therefore, for the current time, our model shows the wide
distribution of the snail in eastern Europe without details inside the “wedge”.
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3.2. Future Distribution Modeling

Prediction maps of the C. laminata future distribution based on all used climate models
and SSPs are presented in Figures S1 and S2. Of the four climate projections that we
used in modeling, three showed a reduction and fragmentation of the species range. The
BCC-CSM2-MR-based model turned out to be an exception: for both SSPs, the forecast
showed a future expansion of the range mainly in a northeasterly direction.

Thus, according to the projection based on the BCC-CSM2-MR, by 2060, the habitat
suitable area will increase by 64.6 and 9.1% (for SSP 245 and 585, respectively) compared to
the current one. By 2100, the range area will be 72.5% and 67.1% larger than the current
one for SSP 245 and 585, respectively.

However, other forecasts showed a significant reduction in the area of the range: to
29.2–42.4% of the current one by 2060 and to 16.6–43.6% of the current one by 2100.

The average forecast also showed a reduction in the habitat suitable area by 2060
(Figure 5) and by 2100 (Figure 6). The averaged projection showed a trend toward a
reduction in the range: a decrease by 35.1–36.6% for 2041–2060 and by 56.3–72.2% for
2081–2100. All models also showed that new territories become suitable for C. laminata in
the east part of the range. But these new suitable territories are very highly fragmented and
small. A more noticeable shift to the east was obtained for SSP 585. Prediction uncertainty
is also shown in Figures 5 and 6. Expectedly, higher projection uncertainty is observed on
the range periphery, so the range shift in its periphery is less predictable.
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3.3. Variable Importance

The annual mean temperature (Bio1) has the largest contribution in all models (Figure 7).
In addition to Bio1, precipitation of the warmest quarter (Bio18) made the largest

relative contribution to the GAM models, while temperature seasonality (Bio4) made the
largest relative contribution to the SVM models. The contribution of all other variables in
all models was relatively equal. For MLP, the value of all variables was relatively equal,
although Bio1 made the greatest contribution to these models as well. The least significant
variable for all models was the mean temperature of the driest quarter (Bio9).
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4. Discussion

The SDM result represents the potential range of the species and shows the area
suitable for its habitat [97,98]. In other words, the prediction based on SDM cannot be
taken as an unambiguous answer to the question about the boundaries of the species
range. However, the result of SDM allows us to see which areas contain the most optimal
conditions for the species habitat as well as the boundaries of the suitable habitat area. We
will mainly focus on the ensemble projection result, since it gives an average result over the
models [82].

I.M. Likharev showed in his monograph a map of the C. laminata distribution in the
eastern part of the range [17]. For the most part, our prediction for the current species
distribution in eastern Europe coincides with Likharev’s scheme. Namely, the central
part of the clinal range exactly coincides, the limitation of which Likharev determined
by a combination of temperature and humidity. However, according to our models, the
C. laminata range turns out to be wider in the southeast direction and apart in the Black
Sea region and the Caucasus. There are also some differences in the northeastern part of
the range: a small area (39◦ E, 62◦ N) is marked in the forecast as habitable for the species,
which goes beyond the boundaries outlined by Likharev. At the same time, there are also
areas that, on the contrary, in Likharev’s map are designated as part of the range, while in
our current projection, they are shown as unsuitable for habitation. The main reason for
this discrepancy is most likely the lack of species occurrence data. This applies to a part of
the Mari lowland and the north of the Volga Upland (the confluence of the Sura River into
the Volga).

If we focus on the southeastern part of the C. laminata range, which was of most interest
to us, we can distinguish the territories of the forest-steppe and mountain ecosystems that
are included in the potential range of the species. Areas suitable for the species habitat in the
southern part of the potential range are located in the Caucasus, the Pontic Mountains and
in the Crimean Mountains. According to I.I. Puzanov [30], the species inhabits the entire
zone of beech forests on the Crimean Peninsula. And according to A.A. Bajdashnikov [31],
the distribution of C. laminata in the Crimea is limited by the forests of the northern slopes.
There is very little information about the distribution of C. laminata in the Caucasus and
the Pontic Mountains except for data from the north Caucasus which we used in our
occurrence data set. However, both in the Crimea and in the Caucasus, the diversity of
clausilids species is quite high, including endemic species [17,99–101]. And if the ecological
features of different clausilids species and their local habitats are quite well known for
the Crimea [31,102–104], then additional studies are needed to accurately describe the
ecological niche of C. laminata in the ecosystems of the Caucasus.

The southern part of the eastern wedge of the C. laminata range passes through the
zone of forest-steppe and steppe. The territory of the potential range belongs to the Don
basin and from the Central Russian Upland continues to the Volga Upland, a little, not
reaching the Obshchy Syrt. If we take into account not only the ensemble forecast but also
the MLP and GAM models, then the current range runs even further east to the Urals. The
distribution of C. laminata on the Central Russian Upland is mostly confined to ravine and
upland oak forests, which is described in the work of V.A. Nikolaev for the main part of this
territory [105] and is also described for the Dvurechansky National Park [27]. In addition to
oak forests, C. laminata is found in floodplain forests, which was also noted on the territory
of the Donetsk Ridge [25]. On the Volga Upland, the species occurs in oak forests, mixed
forests, aspen forests [28,29,48,49]. Unfortunately, there are no descriptions of C. laminata
occurrences in the easternmost part of its potential range yet. However, according to our
models, areas of the Bugulma–Belebey Upland are territories are potentially suitable for
the species.

Our projections based on future climate change models showed a significant reduction
in habitat suitable area. Moreover, we can see the dynamics: the area of habitable territories
will be reduced by more than one-third after 40 years, and in the next 40 years, one-half
or a little more than one-quarter of the current territory of the snail’s range will remain
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due to the average scenario. This negative prognosis is not surprising. Possible changes in
biomes due to climate change are also consistent with such expectations. Thus, forecasts
based on CMIP6 show a change in biomes on one-fifth or one-third of the land area by 2100
according to the RCP4.5 or RCP8.5 scenario, respectively [1]. Moreover, this study showed
a northward shift of biomes with an increase in the proportion of treeless biomes in the
northern hemisphere. Such changes undoubtedly affect vegetation and biodiversity. Based
on CMIP6 climate models, deforestation in the 21st century has been shown [38]. It can
be expected that the habitat suitability for land snails that inhabit forest biotopes will be
reduced. Predictions of future changes in the distribution are modeled for different animal
species, including molluscs belonging to different ecological groups. In many cases, these
forecasts are pessimistic, although this is not an absolute trend. There are many examples of
such studies for tropical species, which is explained by the high interest in the biodiversity
of the tropical region and the threat of its decline. For example, it has been shown that
the reduction in forests in South America in the future will lead to the “savanization” of
the mammalian fauna [106]. A meta-analysis of the potential distribution of neotropical
birds has shown a reduction in habitats of 25.7% to 44.5% from current ones in a number of
species [2]. Modeling changes in the distribution of 17 genera of freshwater molluscs in
northwest and central Europe based on climate change scenarios also provides dramatic
predictions [107]. Another example of the land snail Megalobulimus sanctipauli Ihering &
Pilsbry, 1900 inhabiting the tropical forests of South America shows a range shift but only a
slight reduction [6].

In our forecasts for 2041–2060, there is a noticeable reduction in suitable areas in the
central and in the northwest part of the C. laminata range on the East European Plain. By
2100, the potential range may look not like a wedge but rather like a series of fragments
or like a band: wider in the western part and narrowing to the east. Separately habitable
areas will be located in the southern part (the Black Sea region, the Caucasus). Interestingly,
this picture is very similar to the prediction of soil surface moisture in the warm season
based on the SSP5-8.5 in the CMIP6 ensemble modeled by Cook et al. [39]. This is a forecast
of changes in climate parameters by 2100. Unfortunately, due to the low resolution for
the models, these data cannot be directly used as predictors in our projections. But we
consider this similarity interesting. Moreover, the correlated indicator, precipitation of
warmest quarter (Bio18), was included in our models. Another process is the replacement
of native tree species with alien ones. The invasive process can often progress under the
influence of climate change. According to predictions based on bioclimatic variables, many
indigenous tree species are expected to be replaced by non-indigenous species in Europe
in the next 60 years [108]. This shift may entail changes in the soil and microclimate; for
this reason, the impact of invasive plant species replacing native ones on fauna deserves
additional research.

We believe that it is quite difficult to isolate any single factor (or even several) as
the main limiting one. But in general, the combination of temperature and humidity
as well as precipitation in the warm and cold seasons determines the distribution of
many species of snails, especially clausilids [17]. Molluscs of the Clausiliidae family
have increased requirements for temperature and moisture even compared to other land
snails [17]. Clausilids have poor protection against drying out. These snails are most active
at a temperature of 17–20 ◦C and a humidity of more than 90% [109]. The limiting factor of
precipitation is especially important in the southern and southeastern parts of the range.
Here, the protective role of forests in avoiding drying out is significant for C. laminata. We
presume that the climate shift toward continentality in the study area, and the possible
reduction in forests, in our opinion, most likely explains such a reduction in habitat suitable
areas for the species.

If we consider the features of the species biology, the most vulnerable is the repro-
duction and survival of juvenile individuals [18]. C. laminata is an oviparous species, and
with a decrease in soil moisture, death at the juvenile stage increases. In the conditions of
the middle part of the East European Plain, snails of this species begin to lay eggs early
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(maybe in March), which lasts until the end of July [18]. But at the same time, in the case of
snow melting and an anomalous increase in winter temperature, the individuals did not
lay eggs. Mamatkulov suggests that the length of daylight hours and the need for exposure
to low temperatures after the breeding season, as well as precipitation, also have an effect
on oviposition. This is also shown in other species of the family. The presence of snow
cover is also important, which protects all land snails, not only clausilids, from freezing
during the cold season [20].

The question remains: will this species be able to adapt quickly enough to changing
environmental conditions? For example, it has been shown that in the laboratory, C. laminata
reproduced throughout the year [110], although the problem of the survival of egg clutches
and juveniles, with a change in soil moisture conditions, can greatly affect the reproduction
of the species. That is, the question of species adaptation is still difficult to solve, although
it is one of the key ones for understanding the perspective of the species in a particular
territory. It is also difficult to predict the change in forest area, which will certainly affect the
species distribution. However, some works investigate this area, and we see the potential
in this direction for using such forecasts in SDM [111].

5. Conclusions

The current potential range of the most widespread door snail in Europe, C. laminata,
reaches the Cis-Urals. In the southeastern part, the potentially suitable area covers not
only the Balkans, the mountainous Crimea, but also a part of the Caucasus and the Pontic
Mountains. In fact, the forest-steppe zone and some areas in the steppe zone in the
eastern part of the C. laminata range are suitable for the species habitat. The annual
mean temperature made the greatest contribution in all models, and also the precipitation
of the warmest quarter had a high contribution. All other factors had approximately
equal influence on the models. All the models we applied predict a large reduction and
fragmentation of the potential range of the species after 40 and 80 years. Despite the
general decline in suitable habitats, in some areas previously unsuitable for the species,
such habitats may appear. This also applies to the easternmost regions of the potential
range. The results of our projection can be used for conservation purposes and for more
detailed field studies of the eastern part of the C. laminata range.
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