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Abstract—A model elliptic pseudodifferential equation in a polyhedral cone is considered, and the sit-
uation when some of the parameters of the cone tend to their limiting values is investigated. In
Sobolev–Slobodetskii spaces, a solution of the equation in the cone is constructed in the case of a spe-
cial wave factorization of the elliptic symbol. It is shown that a limit solution of the boundary value
problem with an additional integral condition can exist only under additional constraints on the
boundary function.
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1. INTRODUCTION
In the theory of pseudodifferential equations in nonsmooth domains (domains with a nonsmooth

boundary), model equations in canonical nonsmooth domains (cones) play a special role: the unique
solvability of such an equation guarantees the Fredholm property of a general pseudodifferential equation
in a domain with a corresponding conic point at the boundary. This fact is called the local principle and,
to a varying degree of generality, is involved in all variants of theories of pseudodifferential equations and
related boundary value problems in nonsmooth domains.

The theory of pseudodifferential equations is widely used in numerous branches of mathematics and
physics. Specifically, such equations appear in problems of electromagnetic wave scattering (see, e.g., [1–
3]), where the factorization method is widely applied. Below, the multidimensional variant of this method
is used to derive integral representations of solutions to the considered boundary value problems.

This paper deals with some boundary value problems for model pseudodifferential equations in the
case of a cone degenerating into a lower-dimensional one, in other words, when some of the parameters
of the original cone tend to zero. The study is based on the theory of boundary value problems for elliptic
pseudodifferential equations (see [4]), on the theory of one-dimensional singular integral equations (see
[5–7]), on multidimensional complex analysis (see [8]), and on the wave factorization method developed
by the author, which has led to numerous results on the solvability of boundary value problems for elliptic
pseudodifferential equations in canonical nonsmooth domains of Euclidean space  (see [9–13]).

2. PSEUDODIFFERENTIAL EQUATIONS IN A CONE

2.1. Model Operators in a Canonical Domain

Let  be a domain in an m-dimensional space, and a function be defined on . A model pseu-
dodifferential operator  in  is an operator of the form

where the function  is called its symbol. Here, we consider the class of symbols satisfying the condition

The number  is the order of the pseudodifferential operator .
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1438 VASILYEV
A domain  is called canonical if D is a cone  that does not contain a whole straight line
in the space .

Cones are associated with important domains in multidimensional complex space and with the con-
cept of special factorization of an elliptic symbol, with the help of which the solvability of a pseudodiffer-
ential equation in a cone can be described.

Definition 1. A radial tube domain over a cone  is a subset of the multidimensional complex space
 of the form

The dual cone  is the one satisfying the condition

where  denotes the inner product of  and .
Throughout this paper, we assume that the symbol  admits a wave factorization with respect to the

cone  (see [8, 14]) with an index :

where  and  can be analytically continued to  and , respectively. Below is the precise
definition of such a factorization, since the value of the index has a large effect on the solvability of a pseu-
dodifferential equation.

Definition 2. The wave factorization of the symbol  with respect to the cone  is its representation of
the form

where the factors  satisfy the following conditions:

(i)   are defined for all , except possibly the points of ;

(ii)   admit analytic continuations to the radial tube domains , respectively,
and satisfy the estimates

The number  is called the index of the wave factorization.
The class of symbols admitting a wave factorization is fairly rich. This issue is discussed in a whole

chapter in [14], where numerous examples are given.

2.2. Construction of the Solution
We consider a polyhedral cone and the equation

(1)

in the Sobolev–Slobodetskii space , where

Consider the special case , for which results concerning the structure of the
solution to Eq. (1) were obtained in [11–13]. We introduce the following one-dimensional singular inte-
gral operators (see [5–7]):
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The following formula was derived in terms of these operators:

(2)

where

and  is an arbitrary function from the space . Thus, the kernel of the operator  is a

one-dimensional subspace of .
To single out a unique solution (a uniquely determined function ), we need an additional con-

dition. Based on the form of the general solution, it seems the most convenient to specify the restriction
 or, in other words, to specify the integral condition

(3)

which, in terms of Fourier images, has the form

(4)

where  is a given function.
Setting  in formula (2) yields

In view of condition (4), we find

(5)

Below is the result of our calculations, which is the starting point for further research (see [11, 13]).
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Theorem 1. Suppose that   and . Then the unique solution of prob-
lem (1), (3) is given by formula (2), where  is defined by (5).

The cone has two parameters , and the cases when they tend to their limiting values  or  are of
interest. The domain thus obtained is one with a cut, and the cut is a cone of dimension lower than the
space dimension. We are interested in the behavior of the solution to problem (1), (3) in these limiting
cases. It will be shown below that limit solutions can exist only under certain additional conditions on the
function .

It should be noted that, in the two-dimensional case, there is only one cone, and the limit solutions
are considered in [15]. In multidimensional cases, cones are much more in number, and, in particular, the
limit situations   and ,  are described in [13]. Note also that the case

 corresponds to a half-space and is completely treated in [4].
Below, relying on formula (2), we analyze some limit situations and determine the conditions to be

imposed on  for limit solutions to exist.
Consider equality (2). Using the changes of variables   and finding

 , we can define the function  in the new variables  with condi-
tion (4) taken into account. Rewriting formula (2) in the new variables  yields

(6)
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Next, we do some calculations:

Using condition (4), taking into account formula (5) in (6), and introducing the new notation

we obtain the following equation with parameter  for the function :
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Combining the above calculations yields the following result.
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that  where , for all sufficiently large , then the unique solution of the boundary value

problem  has a limit as  if and only if the function  in the boundary condition is
a solution of Eq. .
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Now we describe what happens in the plane. Equation (1) is written as
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The general solution of Eq. (8) in the Sobolev–Slobodetskii space  has the following form
(see [11]):

where  is an arbitrary function from .

Introducing the notation
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Sending  and introducing the new notation  and , we
can write

(12)

Taking into account condition (11) gives

(13)

where

Our considerations are summarized in the following result.

Theorem 3. If the symbol  admits a wave factorization with respect to the cone  for all sufficiently
large , then solution  to the boundary value problem  has a limit as  if and only if con-
dition  is satisfied.

3. CUTS IN A MULTIDIMENSIONAL SPACE
Relying on the material of the preceding sections, we describe several multidimensional situations.

More precisely, we show multidimensional domains with cuts that can be obtained via a similar passage
to the limit and formulate the corresponding boundary value problems.

The basic idea is as follows. Let  and  be cones in  and , respectively, that do not contain a
whole straight line. Obviously,  is a cone in  that does not contain a whole straight line in .
Then we can consider a boundary value problem similar to (1), (5) in the domain . Writing
a formula for the solution of this problem (in the presence of a wave factorization with respect to the
“large” cone), we can consider boundary value problems in domains with multidimensional cuts of vari-
ous geometry, sending the parameters of  and  to limiting values.
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