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Complete Genome Sequence of Rhodococcus qingshengii VT6, a
Promising Degrader of Persistent Pollutants and Putative

Biosurfactant-Producing Strain
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ABSTRACT The strain Rhodococcus gingshengii VT6 is a promising degrader of persis-
tent pollutants and a putative biosurfactant producer. The genome of the strain was
sequenced completely. It consists of a 6,457,868-bp chromosome and 4 plasmids (pLP1,
501,672 bp; pLP2, 188,969 bp; pCP1, 100,387 bp; and pCP2, 132,858 bp).

hodococci are known to be common representatives of soil microflora (1). They are
known as metabolically versatile microorganisms with potential applications in bio-
remediation (2).

The Rhodococcus gingshengii strain VT6 (VKM Ac-2909D) was isolated from a forest soil
sample (54°83'20", 37°61'60"; Moscow Region, Russia Federation). The strain transforms hex-
adecane and trinitrotoluene (3) and produces surface-active compounds. Surface tension
(ST) was measured by the du Notly method (4) using the tensiometer K6 (Kruss, Germany)
at the temperature of 25°C. Cultivation of the strain in liquid Evans (5) medium (reference
solution, ST 77 mN-m~") with hexadecane 2% (vol/vol) at 25°C for 5 days resulted in the
reduction of ST to 36 mN-m~", which may indicate the synthesis of surfactants.

For long-term storage, the strain was kept in glycerol (40%) at —70°C. For short-term
maintenance, the strain was cultured on LB (6) agar plates at 27°C.

Genomic DNA was isolated from a fresh biomass of Rhodococcus VT6 grown on LB
agar using a DNeasy kit (catalog [cat.] no 69506; Qiagen). The 16S rRNA gene sequenc-
ing was performed as described in reference 3. The analysis of the sequencing results
showed that the strain is related to Rhodococcus erythropolis or R. gingshengii. The clos-
est relative of the VT6 strain is R. gingshengii TG-1 (GenBank accession no. CP077417.1).

Sequencing was performed in Federal Research Center “Pushchino Scientific Center for
Biological Research, RAS” using a MinlON sequencer with the flow cell R9.4.1 (Oxford
Nanopore Technologies). A library was prepared with a ligation kit (SQK-LSK109). Guppy
3.2.4 was used for base calling, which yielded a total of 1,306.8 Mb distributed in 130,800
reads with a Q of >10 (Ny, is 17,156 bp).

The same DNA sample was sequenced with an lllumina NovaSeq6000 instrument
using an S2 reagent kit (cat. no. 20012861) in BioSpark (Troitsk, Russia). A paired-end
library was prepared with the HyperPlus kit (Kapa Biosystems). We obtained 37,607,400
paired-end reads of <101 bp. Quality control was performed using FastQC (7) and
NanoPack (8). The lllumina and Nanopore reads were used for hybrid assembly with
SPAdes 3.15.0 (9). The Nanopore reads were assembled into 5 contigs using Flye 2.9
(10). Next, SPAdes contigs were combined into replicons using Snapgene 6.0 with Flye
data as the reference. The lllumina reads were used to correct Nanopore errors using
Bowtie 2 2.4.4 (11) and Pilon 1.24 (12). Default parameters were used for all software
unless otherwise specified.
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The R. gingshengii VT6 genome consists of a 6,457,868-bp chromosome (GC con-
tent, 62.41%) and 4 plasmids. The plasmids pLP1 (501,672 bp; GC content, 61.50%) and
pLP2 (188,969 bp; GC content, 61.47%) are linear, pCP1 (100,387 bp; GC content,
61.88%) and pCP2 (132,858 bp; GC content, 63.24%) are circular. All plasmids also were
visualized using pulsed-field electrophoresis. Chromosome and plasmid circularization
were specified by end overlapping and using Tablet 1.21.02.08 (13). The ends of linear
plasmids were verified by amplification (see supplemental data online at FigShare [10
.6084/m9.figshare.18758252]) and subsequent sequencing.
To identify the strain to species, we used average nucleotide identity (ANI) value
(https://www.ezbiocloud.net/tools/ani [14]) and digital DNA-DNA hybridization (DDH)
(https://ggdc.dsmz.de/ggdc.php [15]). The ANI value and DDH with the type strain R.
erythropolis NBRC15567 are 95.38% and 75.60%, respectively, and with the type strain
R. gingshengii JCM15477 are 98.45% and 77.30%, respectively. So, we identify the strain
VT6 as R. gingshengii.
The genome of strain VT6 was annotated using NCBI PGAP 4.6 (16) and Prokka
1.14.6 (17). The strain bears a number of catabolic genes for alkane degradation. We
found a set of trehalose biosynthesis genes. Trehalose is one of the main components
of glycolipid biosurfactants. The VT6 strain is a potential producer of biosurfactants.

Data availability. This genome project has been deposited at GenBank under
BioSample SAMN23500510, BioProject PRJNA784759, GenBank accession numbers
CP088906 to CP088910, and SRA accession numbers SRX13270910 for lllumina and
SRX13270985 for Oxford Nanopore data.
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