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Abstract—The sub-band analysis enabling one to construct a sequence whose Fourier transform
is the best approximation of a segment of Fourier transform of the original series within a given
frequency interval was shown to be an efficient tool to specify the trends of segments of the
nonstationary time series. Relations were established defining the matrix operator to sort out
such components. A procedure for adaptive construction of the operators for trend extraction
was proposed, and conditions were determined under which a wide class of sequence segments
are their eigenfunctions (fixed points) corresponding to the unit eigenvalues.
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1. INTRODUCTION AND FORMULATION OF THE PROBLEM

Let the vector �x = (x1, . . . , xN )′, where the stroke stands for transposition, consist of real com-
ponents with values fixed at observing some parameter of the process under consideration (segment
of time series). The main objective of registering such vectors (empirical data) is constriction of
the process behavior models. The representation

xk = fk + εk, k = 1, . . . , N, (1.1)

is often used for this purpose [1–6]. There, fk is an unknown trend reflecting the process tendency,
and εk are the oscillations about the trend due to multiple uncontrollable factors.

Within the framework of such model, the trend distinguished for greater consistency of acts
than in the deviations from it usually is of main interest.

We also note that the problem of eliminating the trend [2, 4] as the main source of nonstationarity
is posed rather often in order to examine (model) the oscillations about the trend.

It is possible to note two basic current approaches to the trend construction. One of them relies
on the a priori selection as the coordination model of their explicit functional dependencies on the
number of reading (argument) whose parameters are then adjusted to the available empirical data
(learning sample) [1, 3, 5].

Another approach is based in the idea of smoothing [1, 6] allowing one to suppress the second
component in the right side of (1.1) which naturally can be called filtering. At that, some ideas
about the nature of coordination of the trend values are used as well, which allows one to divide
the data into the trend and oscillations about it.

We note that both approaches have certain advantages and disadvantages. The main problem
of the first approach lies in the need for substantiating the adequacy of the selected functional
dependence. Therefore, it is difficult to call in question the opinion formulated in [6] that the use
of explicit mathematical relationships is equivalent to forcing laws to the nature.

One or another assumption about the nature of behavior of the trends and deviations from them
is also often used at constructing the smoothing procedures. This is exemplified by the so-called
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CONSTRUCTING TRENDS OF TIME SERIES SEGMENTS 451

Spenser formulas [1] based on the assumption that the trend is a polynomial (at least locally) of
one or another order.

The least rigid assumptions about the nature of trend behavior (mostly the requirement of local
monotonicity) at construction of the smoothing procedures are used in [6], which shows it to the
best advantage.

It also deserves noting the sufficiently well known method of exponential smoothing [7] distin-
guished for using the principle of reduced influence on the resulting trend estimate of the time-
remote components of the processed vector of empirical data.

Of certain interest are the methods for determination of some trend parameters with the use,
for example, of frequency representations [8].

The optimal methods of sub-band analysis of the time series developed in [9] are used in the
present paper, which allowed one to introduce a measure of coordination of behavior of the com-
ponents of the trend vector �f = (f1, . . . , fN )′ present in all analyzed components of the vector of
empirical data which is adequate to the problem at hand. At that, the a priori assumptions about
the trend properties, except for certain degree of smoothness, are not used. This approach re-
quires adaptive processing of the empirical data enabling one to acquire the desired information
immediately from their particular segment.

2. GENERAL FORM OF THE SMOOTHING OPERATOR

It is only natural to represent the smoothing procedure as

�
�f = W (�x), (2.1)

where W is a smoothing operator continuous over the set of real multidimensional vectors RN .

It is easy to see that the smoothing operator must be linear in virtue of additivity of the model
of right side of (1.1), that is,

�
�f = W (�f) +W (�ε), (2.2)

where �ε = (ε1, . . . , εN )′.
It is namely with this condition satisfied, that separate actions on the trend and oscillations

about are possible with the aim of damping the latter in order to satisfy the inequality for the
Euclidean norms of the vectors

b = ||W (�e)|| / ||W (�f )|| < ||�ε|| / ||�f ||. (2.3)

The fractions in the right side of (2.3) represent the noise/signal ratio, and the inequality itself
is the requirement to reduce this ratio after data processing.

It is also clear that in the ideal case—such as lack of deviations—the identity

W (�f) = �f (2.4)

must be satisfied, that is, the operator used as a fixed point must have the desired trend vector
which is, generally speaking, a priori is unknown.

As the basic characteristic of the time series and, first of all, trends, the present paper uses the
Fourier transforms denoted below for the vectors �z = (z1, . . . , zN )′ by the corresponding capital
letters

Z(ω) =
N∑

k=1

zk exp(−jω(k − 1)), j = (−1)1/2. (2.5)
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In the general case, the inverse representation of the values of the time series

zi =

π∫

−π

Z(ω) exp(jω(i− 1))dω/2π

is valid.

It is assumed within the framework of the present paper that the trends are “narrow-band” in
the sense of satisfying the condition

fi ≈
∫

ω∈ΩR

F (ω) exp(jω(i − 1))dω/2π,

where ΩR in the general case denotes the union

ΩR =
⋃

r∈R
Ωr (2.6)

of the disjoint frequency intervals symmetrical about the origin

Ωr = [−Ω2r,−Ω1r)
⋃

[Ω1r,Ω2r),

and satisfied are the conditions 0 ≤ minΩ1r; maxΩ2r ≤ π; ∀r Ω1r ≤ Ω2r, with R denoting the set
of indices.

The term “narrow-band” implies that satisfied is the inequality

μR =
∑

r∈R
(Ω2r − Ω1r)/π = SR/π � 1, (2.7)

and the smaller this relation, the more coordinated can be regarded—in distinction to the white
noise—behavior of the readings of time series. Therefore, it seems natural to use the index

ΦR = 1− μR (2.8)

as the measure of coordination.

A part of the time series energy hitting the frequency interval (2.6)

PR(�z) =

∫

ω∈ΩR

|Z(ω)|2dω/2π (2.9)

is important for the following constructions.

Importantly, the representation [9]

PR(�z) = �z ′AR�z (2.10)

is valid for this characteristic immediately in the area of the originals, where AR = {aRik},
i, k = 1, . . . , N is a symmetrical nonnegative definite matrix which is a sum like

AR =
∑

r∈R
Ar, (2.11)

where Ar = {arik}, i, k = 1, . . . , N are the sub-band matrices with the elements

arik = (sin(Ω2r(i− k))− sin(Ω1r(i− k)))/π(i − k), arii = (Ω2r − Ω1r)/π.
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Therefore (see [10]), there exists an orthogonal N ×N matrix of eigenvectors GR = (�qR1 . . .�qRN )
for which the equality

GR′
GR = GRGR′

= diag(1, . . . , 1), (2.12)

and the corresponding diagonal matrix of nonnegative eigenvalues

LR = diag(λR
1 , . . . , λ

R
N ), (2.13)

arranged in descending order together with the eigenvectors

λR
1 ≥ λR

2 ≥ . . . ≥ λRr
N ≥ 0, (2.14)

so that satisfied is the matrix equality

GRLR = ARG
R. (2.15)

Thereby, representation (2.10) can be formed as

PR(�z) =
N∑

k

λR
k (β

R
k )

2, (2.16)

where

�βR = (βR
1 , . . . , β

R
N )′ = GR′

�z. (2.17)

We introduce the notion of the sub-band distance between two vectors

dR(�x,�z) = PR(�x− �z) =

∫

ω∈ΩR

|X(ω)− Z(ω)|2dω/2π. (2.18)

By analogy to (2.16), one can readily represent (2.18) in the time domain

dR(�x,�z) =
N∑

k=1

λR
k (α

R
k − βR

k )
2, (2.19)

�αR = (αR
1 , . . . , α

R
N )′ = GR′

�x. (2.20)

Since the orthonormal basis of the eigenvectors of the symmetrical matrices is complete in the
space RN (see [10]), valid are the relations (Fourier series)

�x = GR�αR, �z = GR�βR, (2.21)

X(ω) =
N∑

k=1

αR
k Q

R
k (ω), (2.22)

and as was shown in [9], the Fourier transforms of the eigenvectors QR
k (ω) are orthogonal not only

over the entire domain (−π, π), but also within the selected frequency interval (property of dual
orthogonality), that is, the equalities (i, k = 1, . . . , N),

∫

ω∈ΩR

QR
k (ω)Q

R
i (−ω)dω/2π = 0, i �= k, (2.23)
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take place, and

PR(�q
R
k ) =

∫

ω∈ΩR

|QR
k (ω)|2dω/2π = λR

k ≤ 1, i = k. (2.24)

Thus, the eigenvalues are equal to the part of energy of the corresponding eigenvectors hitting
the selected united frequency interval, and valid is the relation

PR(�x) =
N∑

k=1

λR
k (α

R
k )

2, (2.25)

defining the part of energy of the original time series hitting the same interval.

If one assumes that

�θR = (αR
1 , . . . , α

R
JR)

′, JR < N, (2.26)

then for the original vector the orthogonal decomposition

�x = �yR + �uR, (2.27)

where

�uR =
N∑

k=JR+1

αR
k �q

R
k , (2.28)

�yR = GJR�θR = GJRGJR′
�x, (2.29)

GJR = (�qR1 , . . . ,�q
R
Jk
), (2.30)

is easily established from (2.21).

At that, with regard for assumption (2.14) one can easily determine from (2.19) a relations for
the sub-band distance between the original vector and the vector (2.29):

dR(�x,�y
R) =

N∑

k=JR+1

λR
k (α

R
k )

2 ≤ λR
JR+1

N∑

k=JrR+1

(αR
k )

2. (2.31)

It is clear that the identity

�yR = GJRGJR′
�yR (2.32)

is satisfied in view of orthonormality of the columns of matrix (2.30).

Therefore, the vector �yR is a fixed point of the matrix operator

WR = GJRGJR′
, (2.33)

that is, a condition like (2.4) is satisfied, and the matrix operator is linear. Therefore, it is suggested
to use the vectors like (2.29) as the estimates of the time series trends.

It seems natural to call (2.29) the operator of sub-band smoothing (OSS) because its construction
makes use of the eigenvectors of matrices like (2.11).

It is also easy to establish on the basis of (2.27), (2.28), and (2.12) the ratio of similitude (cosine
of the angle between the vectors) between the considered vectors, the parentheses embracing the
scalar product of the vectors:

ρ(�x,�yR) = (�x,�yR)/(||�x||/||�yR||) = ||�θR||/||�αR||. (2.34)
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We note that positiveness of the right side of (2.34) is an important property in terms of
approximating the trend by vectors like (2.29). We also note that the parameter (2.31) defines the
error of approximation of the segment of the Fourier transform of the initial series by a segment of
the Fourier transform of the trend estimate. According to the theory of generalized Fourier series,
the approximations with coefficients like (2.26) are the best for the given number of series terms.

The next step lies in selecting the frequency intervals containing an overwhelming part of the
trend energy and estimating the least number of the eigenvectors of matrix like (2.11) used for its
approximation (value of the parameter JR).

3. ADAPTIVE CONSTRUCTION OF OSS

We note that representation (2.29) defines the set of trends satisfying the ideal condition (2.4).
The real trends satisfy it only approximately, the degree of approximation being defined by the
selection of the united frequency interval (2.6) and the number of the used eigenvectors of the
aggregate matrix (2.11).

Since it is assumed that the desired trend is narrower than the analyzed time series, it is required
to define the rule for selecting a suitable united frequency interval.

In what follows, K + 1 denotes the total number of the frequency intervals into which the fre-
quency axis [−π, π), Δ = π/(2K + 1), ωr = 2rΔ, r = 1, . . . ,K is decomposed, and the boundaries
of the original frequency intervals obey the relations

Ω10 = 0, Ω20 = Δ, Ω1r = ωr −Δ, Ω2r = ωr +Δ, r = 1, . . . ,K, (3.1)

that is, the frequency intervals are disjoint and overlap the entire frequency axis.

At that, the representations of the elements of sub-band matrices from (2.11) come to the form

a0ik = sin(Δ(i− k))/π(i − k), a0ii = 1/(2K + 1), i, k = 1, . . . , N, (3.2)

arik = 2a0ik cos(ωr(i− k)), r = 1, . . . ,K. (3.3)

Let now the analyzed vector �x (1.1) consist only of noncorrelated random components (no trend)
with zero expectations (symbol E), that is, the conditions

E[xk] = 0, E[x2k] = σ2, E[xixk] = 0, i �= k (3.4)

be satisfied.

Then, bearing in mind notation (2.7) and (2.11), one can readily find a relation for the expec-
tation of the characteristic (2.10)

E[PR(�x)] = Nσ2μR. (3.5)

In compliance with Parseval equality [11], it is natural to use

B = ||�x||2μR (3.6)

as the estimate of this characteristic.

On the basis of definition (2.5), relation (2.9) is representable as two addends

PR(�x) =

∫ ⎧⎨

⎩

(
N∑

k=1

xk cos(ω(k − 1))

)2

+

(
N∑

k=1

xk sin(ω(k − 1))

)2
⎫
⎬

⎭ dω/2π. (3.7)
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In (3.7), it is meant integration within a frequency interval like (2.6).

Assume that

CK =

∫

z

∫

v

N∑

k=1

N∑

i=1

xkxi cos(z(k − 1)) sin(v(i− 1))dzdv/4π2 . (3.8)

If the conditions (3.4) are satisfied, one can easily establish the equality for the expectation of
this characteristic

E[CK ] = σ2(D+
R +D−

R)/2, (3.9)

where

D±
R =

∫

z∈ΩR

∫

v∈ΩR

sin(N(z±v)/2) sin((N −1)(z±v)/2)/ sin((z±v)/2)dzdv/4π2 . (3.10)

Obviously, here the two-dimensional domain of integration if central symmetrical about the
origin, and in it the subintegral functions are odd. Therefore, the integrals (3.10) are equal to zero.
Consequently, the equality E[CK ] = 0 holds.

Thus, if the hypothesis that the components of the examined vector have a Gaussian distribution
of probabilities, then characteristic (3.7) has a distribution like χ2

2 (squared chi with two degrees
of freedom).

However, we note that the assumption of the Gaussian distribution of the probabilities of devi-
ations from the hypothesized trend is regarded as generally unrealistic. Therefore, it is advisable
to use such characteristics of time series that are readily calculated and characterize rather well its
behavior.

Obviously, for any k ∈ {0, . . . ,K} (one of the frequency intervals) there exists the equality

Pk(�x) = �x ′Ak�x. (3.11)

In view of (3.2) and (3.3) (see also the definitions of the elements of sub-band matrices in (2.11)),
one can easily establish the equalities

K∑

r=0

Ar = I = diag(1, . . . , 1), (3.12)

K∑

r=0

Pr(�x) = ||�x||2. (3.13)

We notice that the latter equality is one of the forms of the Parceval equality [11]. If we introduce
the notion of frequency density of time series energy

U = ||�x||2/2π,
then it is possible to define the middle part of energy getting in one of the frequency intervals with
boundaries (3.1):

hk = ||�x||2(Ω2k − Ω1k)/π, k = 0, . . . ,K, (3.14)

as well as in the combined interval like (2.6) (see also (2.7)):

hR =
∑

r∈R
hr = ||�x||2μR. (3.15)
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If in a frequency interval the value of the characteristic (3.11) exceeds (3.14), this can be an
indication of the presence of trend energy. Therefore, to determine the frequency interval where
the trend energy is concentrated, it is proposed to verify for execution the inequality

Pk(�x) ≥ hk(�x), k = 0, . . . ,K. (3.16)

Consequently, the set of indices of an interval like (2.6) is defined by the condition

∀r ∈ R ⇒ Pr(�x) ≥ hr(�x). (3.17)

We refer to such interval united according to (2.6) the information interval.

Consider now the problem of selecting duration of the analyzed segment. Let for definiteness
the values of the time series be constant,

xk = x, k = 1, . . . , N, (3.18)

that is, the trend values are maximally consistent in a sense.

Then, the definition like (2.5) enables one to establish the relation

|X(ω)|2 = x2 sin2(Nω/2)/ sin2(ω/2), −π < ω < π. (3.19)

The so-called main lobe of this energy spectrum (between the first zeros situated symmetrically
about the zero frequency) containing contains the overpowering part of energy, lies within the
frequency interval

−2π/N ≤ ω ≤ 2π/N. (3.20)

Comparison with condition (2.7) gives rise to an inequality to be satisfied for estimating the
narrow-band trend:

N 
 2. (3.21)

It is suggested to select the number of frequency intervals from the condition 2π/N = π/(2K+1)
providing

K = [(N − 2)/4], (3.22)

where the brackets denote the integer part.

Then, the inequality

N(Ω02 − Ω01)/π ≥ 2 is satisfied according to (3.1). (3.23)

The following result generalizes the numerous experiments carried out by the present author to
compute the eigenvalues of the matrices like (2.11): if (3.22) takes place and the inequalities

μR < 0.5, N ≥ 8/(1 − 2μR) (3.24)

are satisfied, then for the matrices like (2.11) there exists a minimal index IM < N such that the
equalities

λR
IM+k = 0, k = 1, . . . , N − IM (3.25)

are satisfied with high precision.
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Consequently, for the choice of

JR = IM, (3.26)

relation (2.31) provides

dR(�x,�y
R) ≈ 0. (3.27)

Stated differently, within the information frequency interval the segments of the Fourier trans-
form of the original time series and the trend estimate obtained on the basis of (2.29) coincide
actually precisely.

At the same time one must bear in mind that at making decision about the value of JR one
needs not to be guided by the requirement (3.27). In particular, If condition (3.4) is satisfied, then
it makes no sense to determine the trend. Therefore, if inequality (3.16) gives rise to μR ≈ 0.5, one
has make decision about the lack of trend.

Let now in representation (1.1) the deviations from the trend be zero and its spectrum finite,
so that valid is the representation

fi =

∫

ω∈ΩR

H(ω) exp(jω(i − 1))dω/2π, (3.28)

where H is some continuous complex frequency function with even real and odd imaginary compo-
nents.

Then, by substituting representation (3.28) in a definition like (2.5) and performing some simple
operations, for the Fourier transform of a trend segment we can determine the convolution integral

F (ω) =

∫

z∈ΩR

H(z) exp(−j(N − 1)(ω − z)/2) sin(N(ω − z)/2)/ sin((ω − z)/2)dz.

This relation demonstrates the effect of expanding the domain of definition of the Fourier trans-
form of the time series segment owing to the finiteness of its duration. In the first approximation,
the variable

ΔΩ = 4/N(1 − μR) (3.29)

can be used as a relative estimate of this expansion with respect to the frequency intervals outside
the information interval π(1− μR)).

At construction of trend representation (2.29), this effect is taken into consideration by using the
eigenvectors corresponding to the small eigenvalues because for them the approximate equalities

αR
k = (�qRk ,

�f) ≈
∫

z /∈ΩR

QR
k (z)F (−z)dz/2π ∀λR

k � 1 (3.30)

take place according to the Parceval formula [11] and the property of the spectra of eigenvec-
tors (2.24).

Consequently, projections of the trend on these eigenvectors mostly carry information about its
Fourier transform outside the information frequency interval. At that, use of the rule of selection
of the kind (3.16) leads to the fact that the squared projections (3.30) also are much smaller than
the energy of the considered time series. It seems only natural to use the energy considerations for
solving selection of the permissible eigenvectors.
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In view of this property of the eigenvectors of (2.24), relation (2.25) can be rearranged in

PR(�x) =
∑

r∈R
(aRr )

2PR(�q
R
r ) (3.31)

enabling one to estimate the contributions to this characteristic of the fractions of energies of the
eigenvectors with regard for the property of normalization (2.12).

The fractions of the energy of the initial time series in the information frequency interval and
outside of it obey

ϕR(x̄) = PR(�x)/||�x||2 =
∑

r∈R
PR(�q

R
r )(α

R
r )

2/||�x||2, (3.32)

γR = PR̄(�x)/||�x||2 = 1− ϕR. (3.33)

Here and in what follows, the symbol R̄ stands for the set of indices of the frequency intervals
complementing the set R to the initial quantity K + 1 so that

ΩR̄ =
⋃

r /∈R
Ωr. (3.34)

The following inequalities can be easily obtained from (3.15) and rule (3.16):

μR ≤ ϕR, (3.35)

(1− ϕR)/(1− μR) ≤ 1. (3.36)

Since the sum of matrix eigenvalues is equal to its trace [10], from definitions (2.7) and (2.11)
we get the equalities

N∑

k=1

λR
k = NμR, (3.37)

λR
sr =

N∑

k=1

λR
k /N = μR. (3.38)

Therefore, the average eigenvalue is equal to the fraction of the frequency band occupied by the
by the information frequency interval. Bearing in mind property (2.24) which is similar to (3.38),
an equality can be also put down for the mean value of the energy fractions of the eigenvectors
hitting the information frequency interval:

PR
sr =

N∑

k=1

PR(�q
R
k )/N = μR. (3.39)

According to (3.12), the equality is satisfied for total matrices

AR̄ = I −AR. (3.40)

It is clear that the collections of eigenvectors of the matrices AR̄ and AR coincide, and the
following equalities hold for the corresponding eigenvalues:

λR̄
k = 1− λR

k , k = 1, . . . , N. (3.41)
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Therefore, the part of energy of the time series reaching the noninformation frequency inter-
val (3.34) is given by

PR̄(�x) =
∑

r∈R
(1− λR

r )(α
R
r )

2. (3.42)

Define the densities of the fractions of energies of the eigenvectors in the information frequency
interval by

∫

z∈ΩR

|QR
r |2dz/SR = PR(�q

R
r )/μR. (3.43)

On the other hand, in the absence of deviations from the trend the left part of inequality (3.36)
represents the density of its energy fraction outside the information frequency interval so that with
regard for it possible expansion (3.29) the characteristic

τR = 4(1− ϕR)/(1 − μR)
2/N (3.44)

can be regarded as the mean density of this energy fraction in the considered neighborhood of
the information frequency interval. It seems natural to demand that the right side of (3.43) be
greater than the right side of (3.44), which gives rise to the inequality to be satisfied by the selected
eigenvectors:

PR(�q
R
r ) ≥ 4μR(1− ϕR)/(1 − μR)

2/N. (3.45)

With the use of (2.24), this inequality can be rearranged in the eigenvalues and conveniently
used for selection of the eigenvectors

λR
r ≥ 4μR(1− ϕR)/(1 − μR)

2/N ∀r = 1, . . . , JR. (3.46)

Here, the parameter JR is equal to the maximal index of the eigenvalues satisfying this inequality.

We notice that it follows from inequality (3.36) and equalities (3.38) that the set of eigenvalues
satisfying (3.46) is nonempty because there always exists an eigenvalue greater than the mean of
some their quantity. Stated differently, some, if not all, number of the eigenvectors will be selected
to represent the trend estimate as (2.29).

4. COMPUTER-AIDED EXPERIMENTS

To illustrate the use of the proposed adaptive OSS for extraction of trends, we give the result
of some computer-aided experiments.

It is of interest to estimate through model examples the dependence of the parameter b in (2.3)
on the initial noise/signal ratio

shs = ||�ε|| / ||�f ||, (4.1)

inclusive accuracy of satisfying condition (2.4).

The results obtained in one of the experiments are compiled in Table 1. Here, a mix of cosines
was used as the model trend

fk = cos(8πk/N + φ1) + cos(15πk/N + φ2), k = 1, . . . , N, (4.2)

where φ1, φ2 ∈ (−π, π) are the random phases distributed uniformly over the aforementioned inter-
val and N is the duration of the processed segment of the time series.

It is easy to understand that in model (4.2) a variation in N implies a variation in the sampling
frequency because it defines the number of points of indication on the corresponding periods of the
cosines.
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Dependence (smooth curve) of the estimated trend, initial empirical data (broken line), and the differences of
these curves (lower broken line with zero level) on the number of the reading (abscissa).

The additive distortions and random phases were reproduced by pseudo-random Gaussian num-
bers. The values of b were calculated from the results of extracting the trend at each act of modeling
the time series segment on the basis of a trend like (4.2) and averaged over the number of distortion
acts M = 100. Table 1 compiles the average values of the parameter b.

It is easy to understand the accuracy of trend restoration grows with the discretization frequency
(approximately according to the law of proportionality N−1/2).

We also note that the numbers in the first column of Table 1 characterize the degree of satisfying
condition (2.4), that is, the effect of processing in the lack of trend distortions.

To illustrate the effect of duration of the processed segment on the accuracy of trend estimation,
instead of model (4.2) the sampling frequency was fixed and the duration was varied so that the
model is given by

fk = cos(8πk/64 + φ1) + cos(15πk/64 + φ2), k = 1, . . . , N.

The experimental method and notation were the same as above. The results of its application
are compiled in Table 2. We note that the first experiment (Table 1) can also be used to compare
the results under different durations.

The tables are indicative of the fact that both with increase in the sampling frequency and in the
duration of the processed segment under the same sampling frequency the resulting noise/signal
ratio (2.3) decreases relative to the initial ratio.

Table 1. Impact of the discretization frequency on the accuracy of trend restoration

shs 0 0.1 0.2 0.3 0.4 0.5

N = 64 b 0.0020 0.052 0.105 0.159 0.204 0.264
N = 128 b 0.0010 0.039 0.076 0.116 0.154 0.202
N = 512 b 0.0001 0.024 0.047 0.070 0.087 0.117

Table 2. Impact of segment duration on the accuracy of trend restoration

shs 0 0.1 0.2 0.3 0.4 0.5

N = 128 b 0.0020 0.043 0.086 0.132 0.175 0.224
N = 512 b 0.0002 0.029 0.058 0.086 0.119 0.144
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The next group of computer-aided experiments concerns processing of the actual time series
obtained by finding the logarithm of the width of annual rings of the sawn down trees. The figure
depicts a typical example of such processing. We notice that the mean value of difference between
the initial data and trend estimate is 0.00004, that is, practically zero. Similar values were obtained
by processing other dendroseries.

5. CONCLUSIONS

The present paper developed a method to extract in the segments of the time series the trends
with energies concentrated in a small part of the frequency domain (narrow band). A measure
of differences of the Fourier transforms of the time series within the given frequency intervals was
proposed. It was shown that with the use of the apparatus of the so-called special sub-band matrices
this measure can be determined directly in the time domain. The eigenvectors of these matrices
make up an orthonormal basis adequate to the variational problem of the best approximation
within the given frequency interval of the segment of Fourier transform of the initial time series by
a segment of the transform of the narrow-band time series which is taken as the trend estimate.

An adaptive procedure for calculation of the trend estimates was proposed. Computer-aided
experiments illustrating sufficiently high efficiency of the proposed method of trend extraction were
carried out.
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