ЧУВСТВИТЕЛЬНОСТЬ CLAVIBACTER MICHIGANENSIS К JANTHINOBACTERIUM LIVIDUM ПРИ СОВМЕСТНОМ КУЛЬТИВИРОВАНИИ

Ляховченко Н.С., Ефимова В.А., Соляникова И.П.

Федеральное государственное автономное образовательное учреждение высшего образования «Белгородский государственный национальный университет», Россия, г. Белгород, lyakhovchenko@bsu.edu.ru

Clavibacter michiganensis который вызывает заболевания множества сельскохозяйственных культурных растений в том числе и увядания томатов. Бактерия является карантинным организмом как в Европе, так и в Российской Федерации [1]. Сведения о молекулярно-генетическом обеспечении реализации патогенной функции клавибактера представляют собой большую значимость в процедуре разработки средств защиты растений.

Поражая растение, клавибактер сталкивается с системой защитных механизмов. Так, известно, что инфекция запускает каскад молекулярно-генетических процессов, что приводит к образованию активных форм кислорода, изменение рН среды, активация митоген-активируемых протеинкиназ и индукцию генов, отвечающих за патогенез [2]. Тем не менее, доля растений, которые не способны противодействовать клавибактеру и увядает. Поэтому становится необходимым использование средств защиты растений.

Согласно обозначенным тенденциям в стратегической программе (ТП «Биотех-2030»), сфера защиты растений стремится к биологизации [3]. Исходя из чего, становится актуальным расширение ассортимента штаммов потенциальных компонентов биопрепаратов. Так, целью исследования стала оценка чувствительности *Clavibacter michiganensis* ВКМ Ас-1402 к *Janthinobacterium lividum* ВКМ -3705D при совместном культивировании.

Характер взаимодействия между популяциями исследуемых культур оценивали по изменению численности колониеобразующих единиц (*КОЕ/мл*), константе скорости роста, деления, времени удвоения оптической плотности и удельному приросту, при совместном культивировании в жидкой питательной среде (1% пептон микробиологический). Оценку генеральных параметров Достоверность различия усредненных значений рассчитывали статистически разностным методом [4].

В ходе исследования выявлено, что на 12 час инкубации, численность колониеобразующих единиц в чистой культуре C. michiganensis BKM Ac-1402 статистически значимо выше, чем для варианта в присутствии J. lividum BKM B-3705D на 3,8%, а расчетный критерий достоверности Стьюдента оказался выше табличного при p < 0.05 ($t_{(3.2-3.4)} = 5.41 > t_{st} = 4.303$). При этом, численность J. lividum BKM B-3705D, на тот же час, инкубируемой совместно с C. michiganensis BKM Ac-1402 оказалась существенно выше, чем в чистой культуре на 7.7% ($t_{(3.1-3.3)} = 49.6 < t_{st} = 31.6$).

При совместном культивировании выявлено, что штаммы *С. michiganensis* ВКМ Ac-1402 и *J. lividum* ВКМ B-3705D охарактеризовались одинаковыми кинетическими параметрами (константы скорости роста и деления, а также время генерации) в смеси, кроме удельного прироста. Прирост *С. michiganensis* ВКМ Ac-1402 в присутствии *J. lividum* ВКМ В-3705D оказался ниже, чем для чистой культуры на 36,4%. В свою очередь, для *J. lividum* ВКМ B-3705D значение этого параметра в смеси оказалось на 37,5% выше, чем для чистой.

При совместном культивировании снизились константы скорости роста и деления у штамма *С. michiganensis* ВКМ Ас-1402, относительно чистой культуры, на 23% и 21% соответственно. Время генерации увеличилось на 28.6%.

Таким образом, можно предположить, что штамм *J. lividum* BKM B-3705D проявил бактериостатический эффект в отношении *C. michiganensis* BKM Ac-1402, а клавибактер стимулировал рост янтинобактерии, относительно чистых культур, что требует дальнейшего изучения для выявления механизмов взаимодействия между штаммами.

Литература

- 1. Kleitman, F., Barash, I., Burger, A. et al. Characterization of a *Clavibacter michiganensis* subsp. *michiganensis* population in Israel. Eur J Plant Pathol 121, 463–475 (2008). https://doi.org/10.1007/s10658-007-9264-z;
- 2. Vasudevan Balaji, Maya Mayrose, Ofra Sherf, Jasmine Jacob-Hirsch, Rudolf Eichenlaub, Naim Iraki, Shulamit Manulis-Sasson, Gideon Rechavi, Isaac Barash, Guido Sessa, Tomato Transcriptional Changes in Response to *Clavibacter michiganensis* subsp. *michiganensis* Reveal a Role for Ethylene in Disease Development, Plant Physiology, Volume 146, Issue 4, April 2008, Pages 1797–1809, https://doi.org/10.1104/pp.107.115188;
- 3. Ляховченко Н.С., Сенченков В.Ю., Никишин И.А., Соляникова И.П. Перспективы расширения ассортимента бактериальных штаммов-компонентов средств защиты растений биологического происхождения. Вестник биотехнологии и физико-химической биологии им. Ю.А. Овчинникова 2022; 18(4):103–106;
- 4. Основы научных исследований в агрономии / В.Ф. Моисейченко, М.Ф. Трифонова, А.Х. Заверюха, В.Е. Ещенко. М.: Колос, 1996. 336 с: ил. (Учебники и учеб. пособия для студентов высш. учеб. заведений).

STUDY OF THE PRIMARY MORPHOLOGICAL AND CYTOCHEMICAL CHARACTERS OF AUTOTROPHIC MICROORGANISMS ISOLATED FROM GYPSIFEROUS WASTE

Monakova V.M., Miagkov D.A., Solyanikova I.P., Senchenkov V.Y., Maryasova E.A.

Federal State Autonomous Educational Institution of Higher Education «Belgorod State National Research University», Russia, Belgorod, e-mail: 1471182@bsu.edu.ru

Nowadays, industrial plants of all kinds produce a huge amount of gypsumcontaining waste which is not always recyclable. Often they are accumulated in open