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We study the Cauchy problem for a degenerate differential equation of beam vibrations.

Using the generalized Erdélyi–Kober operator, possessing the property of a transmutation

operator, we reduce the original problem to a problem for a nondegenerate equation. An

explicit formula for the solution is constructed. Bibliography: 18 titles.
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1 Introduction

In this paper, we consider the degenerate fourth order equation

utt + tpuxxxx + λ2tpu = 0, (1.1)

where λ, p ∈ R, and p � 0. In the case p = 0, Equation (1.1) occurs in problems about vibrations

of rods and beams, as well as the stability theory for rotation of shafts and vibration of ships.
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In the domain Ω = {(x, t) : x ∈ R, t ∈ R, t > 0}, we consider the Cauchy problem: Find a

solution u(x, t) ∈ M to Equation (1.1) satisfying the initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ R, (1.2)

where ϕ(x) and ψ(x) are given smooth functions, M is the class of functions that are continuously

differentiable in t and twice continuously differentiable in x in the closure Ω = {(x, t) : x ∈ R, t ∈
R, t � 0} of Ω and also twice continuously differentiable in t and four times in x in Ω.

In the problem (1.1), (1.2), we make the change of variables y = [2/(p + 2)]t(p+2)/2. Then

Equation (1.1) with the initial conditions (1.2) take the form

Aβ
λ(u) ≡ uyy +

2β

y
uy +

∂4u

∂x4
+ λ2u = 0, (1.3)

u(x, 0) = ϕ(x), lim
y→+0

y2βuy(x, y) = ψ0(x), x ∈ R, (1.4)

where ψ0(x) = (1− 2β)2βψ(x), 2β = p/(p+ 2), and 0 < 2β < 1 at p > 0.

We first construct a solution to Equation (1.3) satisfying the semi-homogeneous initial con-

ditions

u(x, 0) = ϕ(x), uy(x, 0) = 0, x ∈ R. (1.5)

To construct a solution to the Cauchy problem (1.3), (1.5), we use the generalized Erdélyi–Kober

operator of fractional order [1]. We recall some properties of this operator.

2 Generalized Erdélyi–Kober Operator

Various modifications and generalizations of the Erdélyi–Kober operators were considered,

for example, in [1]–[3]. In particular, the following generalized Erdélyi–Kober operators with

Bessel functions in kernels were introduced in [2]:

Jλ(η, α)f(x) = 2αλ1−αx−2α−2η

x∫

0

t2η+1(x2 − t2)(α−1)/2Jα−1(λ
√

x2 − t2)f(t)dt, (2.1)

where α, η, λ ∈ R, α > 0, η � −(1/2), and Jν(z) is the Bessel function of the first kind of order

ν. The operator (2.1) coincides with the usual Erdélyi–Kober operator [1] as λ → 0

Iη,αf(x) =
2x−2(η+α)

Γ(α)

x∫

0

(x2 − t2)α−1t2η+1f(t)dt, (2.2)

where Γ(α) is the Euler Gamma function [4].

The inverse of the operator (2.1) with 0 < α < 1 has the form [1]

J−1
λ (η, α)f(x) =

x−2η−1

Γ(1− α)

d

dx

x∫

0

I−α

(
λ
√
x2 − s2

)

(x2 − s2)α
s2(η+α)+1f(s)ds, (2.3)

where Iν(z) = Jν(iz) = Γ(ν+1)(z/2)−νIν(z), Iν(z) is the Bessel function of imaginary variable.

Since Iν(0) = 1, for λ = 0 from (2.3) we obtain the inverse of the operator (2.2)

I−1
η,αg(x) =

x−2η−1

Γ(1− α)

d

dx

x∫

0

(x2 − s2)−αs2(η+α)+1g(s)ds (2.4)
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In a more general situation, the notion of transmutation is introduced. For given two op-

erators (A,B) we say that a nonzero operator T is a transmutation operator if it possesses the

following transmutational (or intertwining) property

T A = B T. (2.5)

Usually, T is an integral operator.

Some properties of the operator (2.1) were generalized in [5, 6], where the following theorem

was also proved.

Let l ∈ N ∪{0}, [Bx
η ]

0 = E, where E is the identity operator, and let [Bx
η ]

l = [Bx
η ]

l−1[Bx
η ] be

the lth power of the Bessel operator

Bx
η = x−2η−1 d

dx
x2η+1 d

dx
=

d2

dx2
+

2η + 1

x

d

dx
.

Theorem 2.1. Assume that α > 0, η � −(1/2), f(x) ∈ C2l(0, b), b > 0, the functions

x2η+1[Bx
η ]

kf(x) are integrable at zero and

lim
x→0

x2η+1 d

dx
[Bx

η ]
kf(x) = 0, k = 0, l − 1.

Then

[Bx
η+α + λ2]lJλ(η, α)f(x) = Jλ(η, α)[B

x
η ]

lf(x).

In particular, for λ = 0

[Bx
η+α]

lIη,αf(x) = Iη,α[B
x
η ]

lf(x).

Owing to Theorem 2.1, it is possible to treat the operator (2.1) as a transmutation operator;

more exactly, a shift parameter operator. This fact is useful for solving the Cauchy problem

(1.3), (1.5). We note that the Erdélyi–Kober operator was used [6]–[10] to solve the Cauchy

problem for partial differential equations of hyperbolic and parabolic type.

3 Application of the Erdélyi–Kober Operator

We assume that a solution to the problem (1.3), (1.5) exists. We look for it in the form of

the generalized Erdélyi–Kober operator (2.1):

u(x, y) = J
(y)
λ (−(1/2), β)V (x, y) (3.1)

where V (x, y) is an unknown twice continuously differentiable function.

Substituting (3.1) into (1.3) and (1.5), using Theorem 2.1 with l = 1, α = β, η = −1/2 and

the inverse operator (2.3) with for α = β, η = −1/2, we obtain the following problem: Find a

solution V (x, y) to the equation
∂2V

∂y2
+

∂4V

∂x4
= 0 (3.2)

satisfying the initial conditions

V (x, 0) = k0ϕ(x), Vy(x, 0) = 0, x ∈ R, (3.3)
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where k0 = Γ(β + 1/2)/
√
π.

Theorem 3.1 ([11]). A function V (x, y) ∈ M is a solution to the problem (3.2), (3.3) if

and only if the function

U(x, y) = V (x, y) + i

y∫

0

Vxx(x, τ)dτ (3.4)

is a solution to the equation

Uy − iUxx = 0, (x, y) ∈ Ω, (3.5)

satisfying the initial condition

U(x, 0) = k0ϕ(x), x ∈ R, (3.6)

where i is the imaginary unit.

Corollary 3.1. Let U(x, y) ∈ M be a solution to the problem (3.5), (3.6), where ϕ(x) is a

real-valued function. Then V (x, y) = ReU(x, y) is a solution to the problem (3.2), (3.3), where

ReU denotes the real part of U(x, y).

To solve the problem (3.2), (3.3), we apply Corollary 3.1. Then Equation (3.5) becomes the

one-dimensional Schrödinger equation

∂U

∂y
− i

∂2U

∂x2
= 0.

The solution to the problem (3.5), (3.6) in this case takes the form [12]

U(x, y) =

+∞∫

−∞
ϕ(ξ)G(x, ξ, y)dξ,

where

G(x, ξ, y) =
1

2
√
πy

exp
[
i
((x− ξ)2

4y
− π

4

)]
.

By Corollary 3.1, the solution to the problem (3.2), (3.3) takes the form

V (x, y) = k0

+∞∫

−∞
ϕ(ξ)G1(x, y, ξ)dξ, (3.7)

where

G1(x, y, ξ) =
1

2
√
πy

cos
[(ξ − x)2

4y
− π

4

]
.

Substituting (3.7) into (3.1) and changing the integration order, we get

u(x, y) =
k0y

1−2β

√
2πΓ(β)

+∞∫

−∞
ϕ(ξ)G2(x, y, ξ)dξ, (3.8)
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where

G2(x, y, ξ) =

y∫

0

(y2 − η2)
β−1

J(λ
√

y2 − η2)G1(x, ξ, η)dη. (3.9)

Substituting G1(x, ξ, η) into (3.9), replacing the integration variable, using the series expansion

of the Bessel–Clifford (or normalized Bessel) function, and applying formula (2.5.8.3) in [13], we

find

u(x, y) =
k0√
2π

+∞∫

−∞
ϕ(x+ 2ξ

√
y)G3(y, ξ;β, λ)dξ, (3.10)

where

G3(y, ξ;β, λ) =
Γ(1/4)

Γ(β + (1/4))
K1

(
β +

1

4
;
3

4
,
1

2
; −ξ4

4
, −1

4
λ2y2

)

+
Γ(−1/4)

Γ(β − (1/4))
ξ2K1

(
β − 1

4
;
5

4
,
3

2
; −ξ4

4
, −1

4
λ2y2

)
, (3.11)

where

K1(a, b, c; x, y) =
∞∑

m=0

ym

(a)mm!
1F2(1− a−m; b, c; x)

and 1F2(a; b, c; z) is the generalized hypergeometric function [4].

We note that for β = 0 and λ �= 0 Equation (1.3) takes the form

A0
λ(u) ≡

∂2u

∂y2
+

∂4u

∂x4
+ λ2u = 0 (3.12)

and the solution to the problem (1.3), (1.5) has the form (3.10) with k0 = Γ(1/2)/
√
π = 1,

G3(y, ξ; 0, λ) = K1

(1
4
;
3

4
,
1

2
; −ξ4

4
,−1

4
λ2y2

)
+ ξ2K1

(
−1

4
;
5

4
,
3

2
; −ξ4

4
, −1

4
λ2y2

)
.

Assume that β �= 0 and λ = 0. Then Equation (1.3) takes the form

Aβ
0 (u) ≡ uyy +

2β

y
uy +

∂4u

∂x4
= 0 (3.13)

and the solution to the problem (1.3), (1.5) has the form (3.10) with k0 = Γ(β + 1/2)/
√
π,

G3(y, ξ;β, 0) =
Γ(1/4)

Γ(β + (1/4))
1F2

(3
4
− β;

3

4
,
1

2
;−ξ4

4

)

+
Γ(−1/4)

Γ(β − (1/4))
ξ21F2

(5
4
− β;

5

4
,
3

2
; −ξ4

4

)
.

Assume that β = 0 and λ = 0, Then Equation (1.3) takes the form

A0
0(u) ≡

∂2u

∂y2
+

∂4u

∂x4
= 0 (3.14)
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and the solution to the problem (1.3), (1.5) has the form (3.10) with k0 = Γ(1/2)/
√
π = 1,

G3(y, ξ; 0, 0) = 1F2

(3
4
;
3

4
,
1

2
; −ξ4

4

)
+ ξ21F2

(5
4
;
5

4
,
3

2
; −ξ4

4

)
. (3.15)

By the formula

0F1(b; −z) = Γ(b)z
1−b
2 Jb−1(2

√
z),

where

J−1/2

(
z
)
=

√
2

πz
cos z, J1/2

(
z
)
=

√
2

πz
sin z,

we have

1F2

(3
4
;
3

4
,
1

2
; −ξ4

4

)
= 0F1

(1
2
; −ξ4

4

)
= Γ

(1
2

) ξ√
2
J−1/2(ξ

2) = cos(ξ2),

1F2

(5
4
;
5

4
,
3

2
; −ξ4

4

)
= 0F1

(3
2
; −ξ4

4

)
= Γ

(3
2

)√2

ξ
J1/2(ξ

2) =
sin(ξ2)

ξ2
.

Substituting the last equalities into (3.15), we find

G3(y, ξ; 0, 0) = cos(ξ2) + sin(ξ2) =
√
2 cos

(
ξ2 − π

4

)
.

The last expression coincides with the results of [14] obtained by other methods.

Now, we study the problem of finding a solution to Equation (1.3) satisfying the conditions

u(x, 0) = 0, lim
y→+0

y2βuy(x, y) = ψ0(x), x ∈ R. (3.16)

We apply the following property of this equation.

Proposition 3.1. If u(x, y; 1 − β) is a solution to the equation A1−β
λ (u) = 0 satisfying the

conditions (1.5), then the function w(x, y;β) = y1−2βu(x, y; 1− β) is a solution to the equation

Aβ
λ(w) = 0 satisfying the conditions

w(x, 0) = 0, lim
y→+0

y2βwy(x, y) = (1− 2β)ϕ(x), x ∈ R.

Proposition 3.1 is proved by a direct computation. Taking into account Proposition 3.1 and

replacing (1−2β)ϕ(x) by ψ0(x) on the basis of the solution to the equation Aβ
λ(u) = 0 satisfying

(1.5), we can construct a solution to the equation Aβ
λ(w) = 0 satisfying the conditions (3.16)

w(x, y) = k1y
1−2β

+∞∫

−∞
ψ0(x+ 2ξ

√
y)G3(y, ξ; 1− β, λ)dξ, (3.17)

where k1 = Γ(1/2− β)/(2
√
π),

G3(y, ξ; 1− β, λ) =
Γ(1/4)

Γ((5/4− β))
K1

(5
4
− β;

3

4
,
1

2
; −ξ4

4
, −1

4
λ2y2

)

+
Γ(−1/4)

Γ((3/4)− β)
ξ2K1

(3
4
− β;

5

4
,
3

2
; −ξ4

4
, −1

4
λ2y2

)
.
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Similarly, for β = 0 and λ �= 0 Equation (1.3) takes the form (3.12) and the solution to the

problem (1.3), (3.16) has the form

w(x, y) =
y

2

+∞∫

−∞
ψ0(x+ 2ξ

√
y)G3(y, ξ; 1, λ)dξ,

where

G3(y, ξ; 1, λ) = 4K1

(5
4
;
3

4
,
1

2
; −ξ4

4
, −1

4
λ2y2

)

− 4ξ2K1

(3
4
;
5

4
,
3

2
; −ξ4

4
, −1

4
λ2y2

)
.

For β �= 0 and λ = 0 Equation (1.3) takes the form (3.13) and the solution to the problem

(1.3), (3.16) has the form (3.17) with k1 = Γ(1/2− β)/(2
√
π),

G3(y, ξ; 1− β, 0) =
Γ(1/4)

Γ((5/4)− β)
1F2

(
β − 1

4
;
3

4
,
1

2
; −ξ4

4

)

+
Γ(−1/4)

Γ((3/4)− β)
ξ21F2

(1
4
+ β;

5

4
,
3

2
; −ξ4

4

)
.

For β = 0 and λ = 0 Equation (1.3) takes the form (3.13) and the solution to the problem

(1.3), (3.16) has the form (3.17) with k1 = Γ(1/2)/2
√
π = 1/2,

G3(y, ξ; 1, 0) = 4 1F2

(
−1

4
;
3

4
,
1

2
; −ξ4

4

)
− 4ξ21F2

(1
4
;
5

4
,
3

2
; −ξ4

4

)
. (3.18)

By the formulas

1F2

(
−1

4
;
3

4
,
1

2
; −x2

)
= cos(2x) + 2

√
πxS(2x),

1F2

(1
4
;
5

4
,
3

2
; −x2

)
=

√
π

x
C(2x)− sin(2x)

2x
,

we have

1F2

(
−1

4
;
3

4
,
1

2
; −ξ4

4

)
= cos(ξ2) + 2ξ

√
π

2
S(ξ2),

1F2

(1
4
;
5

4
,
3

2
; −ξ4

4

)
=

√
2π

1

ξ
C(ξ2)−

sin
(
ξ2
)

ξ2

where

S(z) =

z∫

0

sin t√
t
dt, C(z) =

z∫

0

cos t√
t
dt

are the Fresnel sine and cosine integrals.

Substituting the last equalities into (3.18), we find

G3(y, ξ; 1, 0) = 4 1F2

(
−1

4
;
3

4
,
1

2
; −ξ4

4

)
− 4ξ21F2

(1
4
;
5

4
,
3

2
; −ξ4

4

)
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= 4
[
cos(ξ2) + 2ξ

√
π

2
S(ξ2)

]
− 4ξ2

[√
2π

1

ξ
C(ξ2)− sin(ξ2)

ξ2

]

= 4[cos(ξ2) + sin(ξ2)] + 4
√
2πξ[S(ξ2)− C(ξ2)].

The latter coincides with the results of [14] obtained by a different method.
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to solving Cauchy problems for differential equations with singular coefficients,” Fract. Calc.
Appl. Anal. 18, No. 4, 845–861 (2015).

9. Sh. T. Karimov, “On one method for the solution of an analog of the Cauchy problem for
a polycaloric equation with singular Bessel operator,” Ukr. Math. J. 69, No. 10, 1593–1606
(2018).

10. Sh. T. Karimov and Sh. A. Oripov, “Solution of the Cauchy problem for a hyperbolic
equation of the fourth order with the Bessel operator by the method of transmutation
operators,” Bol. Soc. Mat. Mex., III. Ser. 29, No. 2, Paper No. 28 (2023).

11. Sh. T. Karimov, “The Cauchy problem for the degenerated partial differential equation of
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