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We consider the discrete Dirichlet boundary value problem for a discrete elliptic pseu
dodifferential equation in the quadrant and study its solvability in discrete counterparts 
of the Sobolev-Slobodetskii space. The study is based on a special factorization of the 
elliptic symbol. We compare the solutions to the discrete Dirichlet problem and its con
tinuous counterpart. Bibliography: 10 titles.

In this paper, based on the ideas and methods of [1, 2] (cf. also [3]-[7]), we compare discrete and 
continuous elliptic boundary value problems in the quadrant for the simplest pseudodiflFerential 
operators. We emphasize that, in the case of a quadrant, there are principal differences from 
the case of a half-space, and new analytic tools are required.

1 Preliminaries

We recall the main notions and results which will be used throughout the paper (we refer 
to [5] for details). Let be an integer lattice in the plane. We denote by О =  {ж € : ж =
(ж1 ,а;2),Ж1 > О, Ж2 >  0} the first quarter-plane, fid — h7? r\Q, h > 0, and consider functions 
of discrete variables Ud{x), x — (x i,x 2) G hZ^. We denote by =  [—тг,тт]‘̂ ,Н — h~  ̂ and
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=  h ^((е * ’̂ 1̂ — 1)  ̂+  (е _  1 )2^̂ S{hZ^) is the discrete analog of the Schwarz space of 
infinitely differentiable functions rapidly decreasing at infinity.

The space Я®(/lZ^) consists of discrete generaUzed functions and is the closure of the space 
S{hl?) in the norm

f  Г
iK ii. =  ( J  { 1 + \ е \ у \ щ ( ( ) М  , (1.1)

where Ud{ )̂ denotes the discrete Fourier transform

(F d u M ) =  =  E  e e
xehi?

We denote by the space of discrete generalized functions in H^{hl?) supported in
Qd- The if®(f2d)-norm is induced by the ^ '̂®(/гZ )̂-norm. The space consists of discrete
generalized functions fd G S'{hM?) with support in which admit an extension to the whole 
space H^{hl?). The Я^(^^)-погт is given by

where the infimum is taken over all possible extensions of £.
The Fourier-image of the space is denoted by
Let Ad{C) be a measurable periodic function defined on with the main period square 

By the discrete pseudodifferential operator Ad with symbol in the discrete quadrant fid
we understand the operator

{AdUd)(x) = I ( 1 .2 )
y^hl? ^2

The operator Ad is elliptic if

Here, we consider the symbols satisfying the condition

Cl(l +  |Ĉ |)“ /  ̂ <  ^  C2(l +  (1.3)

with positive constants ci and C2 independent of h. The number a  G M is called the order of 
the discrete pseudodifferential operator Ad-

We axe interested in the solvability of the discrete equation

(AdUd)(x) =  Vd{x), X G Cld, (1.4)

in the space Я®(0^) under the assumption that Vd G
We need special domains in the two-dimensional complex space C .̂ A domain of the form 

Ti(^^) =  +Ш  is called a tubular domain over the quadrant We will operate with analytic 
functions f { x  +  ir) in the domain Th{^) =  +  ifi.

We define a periodic analog of the Bochner kernel (cf. [7])

Bh(z) =  E  r e n ,
xefid



and the corresponding integral operator

{BhUd){0 = ^  J  + гт- v)^v)dr].
CT2

To describe the solvabihty conditions for the discrete equation (1.4), we need a special 
representation of the symbol of a discrete operator.

Definition 1.1. By the periodic wave factorization of the elliptic symbol Ad{0  ^ we 
mean its representation

AdiO =  AdAOAd,=iO,
where and can be analytically extended to the tubular domains Th{^) and

respectively and

c i(i  +  l ? l ) »  «  +  iT)| <  A(\ +  |p|)t,

C2(l +  |?|)“?*  <  -  ir)| <  4 (1  +  |?|)“ f

where ci, c'̂ , C2, 4  are positive constants independent of h\

^  -  1)2  +  {e-^h{b+iT2) _  1)2)  ̂  ̂^  g ^ ^  g ^

The number ae € M is called the index of periodic wave factorization.

We will assume that we have a periodic wave factorization of the symbol Ad{^) with index
ae.

The theorem on the general form of solutions to Equation (1.4) is proved by methods of [5].

Theorem 1.1. 7/ йе — s =  n +  5, n G N, |5| < 1/2, then the general solution to the discrete 
equation (1.4) has the form

  /  n-l \

V fe=0 /
where QniO arbitrary polynomial of degree n in variables (k =  /г(е“ ®̂ *̂= — 1), A: =  1,2,
satisfying the condition (1.3) fora. =  n, cjfc( î), dfe(̂ 2); A: =  0,1, • • • ,n —1 , are arbitrary functions
in H^'^{hT), Sk =  s — ( E + k  +  1/2, ivd is an extension of Vd € HQ~ ° ‘ { D d )  to the whole space
H^~°‘{h l?). Furthermore, the following a priori estimate holds:

(  \
||«d||s ^ const ||wd||+_„ +  +  Msfc) I,

V fe=o /
where [-js*. is the Н^'^{НЪ)-погт and the constant const is independent of h.

2 The Discrete Dirichlet Problem

We consider the Dirichlet boundary condition. In this section, we assume that ae — s =  1 +  5, 
|5| < 1/2, Vd =  0. By Theorem 1.1, the general solution to Equation (1.4) has the form

Ud{.€) =  ^d,^(0 (co(Ci) +  do(6 )), (2 .1 )



where co,do G if® are arbitrary functions. To determine uniquely these functions,
we add the discrete Dirichlet condition on the angle sides

= 9 d { x i ) .  (2 .2 )

Thus, (1.4), (2.2) is the discrete Dirichlet problem.
We set

tm Й7Г

I  I  ̂ ^i(0d6^bo(ei)
—hn —Нж

and, under the assumption that « 0(^2), 0̂( 1̂ ) 7  ̂0 for all 2̂ 0,

ы ь )  =  7d(6)So4 6 ) ,  G d (6 )= m i)b o 4 ^ i) ,

Ы 0  =  ' ( 6 ) ,  k2iO =  ^^^(O bo'( 6 ) .

Using the new notation, w^write the following system of two linear integral equations for two 
unknown functions co(^i), do(6 )̂

Htt

j  ki{0^iCi)d4i +  ^0(6 ) =  Fdib),
—  Й7Г

(2.3)
Нтг

cb(̂ i) + J  k2{0doib)db =
—hiT

Theorem  2.1. Assume that fd,9d G Я®“ ^/^(М+), s >  1/2, Vd =  0, inf|ao(6)l Ф 0? 
inf |6o(Ci)| Ф 0. Then the discrete Dirichlet problem (1.4), (2.2) is equivalent to the system
(2.3) of linear integral equations.

P roof. Applying the discrete Fourier transform to the discrete conditions (2.2), we obtain 
the Fourier-images

Й7Г

j  'U‘d{^i,b)dCi =  fd ib ),
—hn

Htt
(2.4)

J Ud{^i,b)dC2 =  9d{^i)-
—Htt

Substituting (2.4) into (2.1), we get
ЙТГ Й7Г h n

J  UdiOd̂ i = J  d̂,̂ (02o(Ci)ĉ Ci + 0̂(6) J
— H tt  — H tt  — Й тг

Й7Г Й7Г Н ж

У Ud(̂ )d̂ 2 = co(6) J  Â ^̂ {̂ )d42+ J  Â ^̂ {̂ )do{b)d̂ 2
—Htt —Htt —Htt

TaJcing into account the above notation, we arrive at the system (2.3). □



We consider the continuous case. We describe a similar scheme for the continuous analog of
the discrete Dirichlet problem (1.4), (2.2). It is reduced to the system of integral equations by
the same method with the help of the Fourier transform.

If we consider the pseudodifferential equation

{Au){x) =  0, ж G (2.5)

where the symbol A{^) satisfies the condition

c i(l  +  | ^ r < H 0 | < C 2 ( l  +  |e|)“  (2.6)
and admits the wave factorization with respect to D

A {o  =  A ^ m = i o

with index ae such that ae — s =  1  +  5, |5| < 1 / 2 , then the general solution to the equation can 
be written as

4 0  =  A^HO{Co{Ci) +  D o{b))

where Co(^i), -Do(C2) G are found from the system of integral equations (if it is
uniquely solvable)

O O

I  Ki{^)Co{Ci)d^i +  D o{b) =  H b ) ,
—  O O

(2.7)

С о й )  +  /  K2iODo((2)di2 =  G g i),

with boundary conditions
U\1 X 1 = 0  = /(^2), = 5(̂ 1) (2-8)

and the condition that inf |Ло( 2̂)| Ф 0, inf |^o( î)| ф 0,
OO 00

I  ^  M b ) ,  I  A^H Odb ^  m i ) ,

F ib )  =  f {b ) A o 4 b ) ,  G (a ) =  9 ib )B o \ b ) ,

K liO  =  Л^НОАоНЬ), K2iO =  A^HOBoHCi).
Theorem  2.2 ([1]). Assume that s >  1/2 and the symbol A(^) satisfying the condition

(2.6) admit the wave factorization with respect to Q with index (E such that eE — s =  1 +  5, 
|5| < 1/2. / / inf |Ло(̂ 2)| Ф 0 and inf |So( î)| ф 0, then the Dirichlet problem (2.5), (2.8) with
/ , 5  G  Я ' * - 1 / 2 ( м ^ ) is equivalent to the system of integral equations (2.7) with unknown functions 
Co, Do G Н^°{Ж) and right-hand sides F ,G  E Я®°(М).

Rem ark 2.1. Equation (2.5) with nonzero right-hand side and symbol Л(^) =  (̂  ̂+  ^2 +  
fe2) i /2, k e C ,  appears in the theory of electromagnetic wave diffraction by a flat screen [8] and 
also in the problem of pressing a wedge-shaped stamp into an elastic half-space [9].

The Dirichlet problem (2.5), (2.8) for the Laplacian was studied by the second author in [1], 
where conditions for the unique solvability were obtained for the system of integral equations
(2.7), but no constructions of the solution were proposed there. Hence it becomes necessary to 
develop the discrete theory and constructions which could be used as approximation elements.



3 Comparison of Discrete and Continuous Solutions

Here and below, we consider the case ae — s =  1 +  5, s >  1/2, |5| < 1/2. In this situation, 
80 — 1  ^  s — 1 / 2 .

The main difficulty in comparison of solutions to the systems (2.3) and (2.7) is that the 
solutions belong to different function spaces and the integral operators of these systems act in 
different spaces. Therefore, we divide the comparison process into two steps. We first consider 
the truncated integral operator of the system (2.7) on Ш  and compare it with the original 
operator. Then we compare the truncated operator with the discrete operator of the system
(2.3). We use the general results concerning projection methods (cf. [10]).

We introduce the space H*(M) of two-component vector-valued functions /  =  ( / i , / 2) , / j  e 
H%R), j  =  1 , 2 , ||/||s =  ||/i||s +  II/2IU and matrix operators

K i I  
I  K2

ki h  
h  h

acting in the spaces H® ^+^/2(M) and H® ®+^/^(CT) respectively.
We recall that so =  s — ae +  1/2. Using the Cauchy-Schwarz inequality, it is easy to verify 

the following assertion.
Lemma 3.1. For <e> I the operator К  : H®°(M) is boundedly acts in the space

H^o(M).

3.1. Estimate for the norm  o f  the integral operator o f  the system (2.7). We denote 
by Xh ■ -)■ H^{hT) the projection on the segment Ш. The projection on Ш  in the space
H®(R) will be denoted by Eh, so that for /  =  ( / 1 , / 2) € H®

^hf (X /i/l) X/1/ 2)■

In all estimates below, we assume that h is sufficiently small, 0 <  /г <  1, 

Lemma 3.2. For <e > 1

W^hK — Kuh 1 1 (K)_,.H»o (R) ^  const /г® .

P roof. It is easy to see that

^ X h K i-K ,X h  0EhK -  KEh =
0 Xh K 2  -  K^Xh,

We have

{ { X h K i - K ^ X h ) f ) { i 2 )  =

I —h-K +OCX
j  + 1  U i ( a , 6 ) / ( a ) d a ,

—oo hw 
+hn

— tVK



In the first case, we estimate only one of the integrals since the other is estimated in the 
same way:

+00 +00 +00

j  ^ I iK i (o i i / (a ) id 6 ^ c o n s t y ’ (i +  ie i)-* i/(e i)id 6
h-K

^ const

^ const

h-K hiv
+00 4 1/2 / +00

Нж HittvK 
+00

\ 1/2

\ hn
1 I lU llso)

where the Cauchy-Schwarz inequality was used. We have
+00

У  (1 +  ~  (1 +  161 +  Ятг)-2(*+^°)+1
tm

since —2(ae +  sq) +  1 =  —2(s +  1/2) +  1 =  —2s < 0. Thus,
+00

' ^  const ||/|U„ ( 1  +  161 +J  Kiiomi)d^i
tvK

Squaring the last inequality, multiplying by (1 +  |6 |)̂ *°> .̂nd integrating over ЯТ, we get

Ш

+ C X )

/ ( l  +  l6l)^®“ /  ^ i ( 0 / ( 6 K i
ет Й7Г

const ||/||2^ j { l  +  1̂ 2! +  П7г)-2(®+®'>)+^(1 +  161)^^°c^6 
Ш

const ||/|e„(l +  h)-^‘ J {1 +  |6|)*»<if2 <  const ||/||J,(1 +  h)-^+^

since 1 +  1̂ 2 ! +  ^ 1 +  Я, —2(ae +  sq) +  1 =  —2s < 0. Then
+00

/ (1 + 1 6 1 )"* ” I  K i ( o m ) d ( i
hT Нтг

In the second case, (|̂ 2| > т̂г), we have
+hir +hir

d6  ^  const II/1 1 ^ ^  /̂2).

j  i ^ i ( 6 ,6 ) / ( 6 ) d 6  ^ const J  (l +  |e|)-*|/(6)|d6
—h-K —Нж

( Нж ч 1/ 2  X Нж

у  (l +  |{|)-"»(l +  |ft|)-^*"d£ij I У  |/ « i)P ( l +  l&l)^"<i«i

—Нж —Нж

1/2



Here, we again used the Cauchy-Schwarz inequality. Taking into account that inequahty 1+|C| ^ 
1  +  1̂ 1 1) we derive the estimate

Й7Г 1 6 1

I  (1 + iei)-'*(i + ^ 2 J  ( 1 ^ const(i + \ь\г‘̂̂
— hw  0

since —2(so +  ae) =  —2(s +  1/2) =  —2s — 1. Thus, we have

+Htt

—hn

Multiplying both sides of the last inequality by (1 +  |̂2|)®°) squaring the result, and integrating 
over R \ ^T, we get

+00

/  (1 +  l&l)"*" /  ifiC O /K O dfi
M\T hn

+ C X )

2

d̂ 2

€  const ||/||2„ I  (1 +  ^ const
tvK

The last integral can be easily calculated (sq -  s =  -ae +  1/2). Similar estimates are valid for 
the operator K 2. □

It is easy to prove the following assertion.

Corollary 3.1. Let the assumptions of Lemma 3.2 hold. If the operator К  possesses the 
bounded inverse, then the operator K~^ satisfies the estimate

W^hK ^—K  ^ const/г.®

To prove the following assertion, we need to choose elements of the periodic wave factorization 
generating a special periodic symbol.

We construct the symbol of the discrete operator as follows. If there is the wave
factorization of the symbol A{^), A{^) =  • ^ = (0 > then we take the restrictions of A^{^)
and ^=(C) on hT“̂ and periodically extend them to the whole space The obtained elements 
are denoted by Ad,^{^), For these elements we construct the periodic symbol Ad{^)
which admits a periodic wave factorization with respect to

AdiO ^  ■ AdMO

with the same index ae. Below, comparing the discrete and continuous solutions, we consider 
the discrete pseudodifferential equation with this symbol.

Lemma 3.3. For <e > 1

-  h m  ^  const(i +  \^\)-^h^-\ e e ^ 2 .



P roof. Indeed, by the choice of

IJflK ) -  *:iK)l =  |Л^‘ (£)4 Ч & ) -  <  const(l +  | ? | ) - ’ | I „ ( & )  -  a„K2)|.

Let us estimate |^o(^2) — aofe)!- We have

hw

1^0(6) -  ao(6)l =
—fm 

+00

^ const у  (1 +  ^ const(l +  1̂ 2 ! +  ^ const
fVK

for sufficiently small h. Hence inf |So( î)| ^  0 implies inf |6o(̂ i)| 7  ̂ 0 for sufficiently small h. 
Collecting the obtained estimates, we complete the proof of the lemma. □

We introduce the operator EhKEh. By Lemma 3.1, for sufficiently small h the invertibility 
of EhKEh in is a consequence of the invertibility of К  in (cf. [10]).
Furthermore, for sufficiently small h

11 {^hKr^h)  ̂I Igso (пт)^н^о (Ш) ^ const.

Lemma 3.4. For as > 1 the comparison of the norms of the operators EhKEh and к is given 
by the estimate

W^hKr^h — ^11н»о(йТ)^н=о(ет) ^  const/i*® .

The proof mainly repeats that of Lemma 3.2, and we omit it.

3.2. D iscrete and continuous solutions. We compare the discrete and continuous so
lutions. Since Theorems 2.1 and 2.2 establish the equivalence between the boundary value 
problems (1.4), (2.2) and (2.5), (2.8) for the systems of integral equations (2.3) and (2.7) respec
tively, we assume that the original (continuous) boundary value problem is uniquely solvable 
for any right-hand side v G and any boundary functions f ,g  E i?®“ ^/^(M+). In other
words, the bounded inverse operator K~^ exists, i.e., the system (2.7) of integral equations has 
a unique solution for any {F, G)^.

Taking into account the choice of the discrete operator Â i made in Subsection 3.1, we 
construct the boundary functions fd and да in a similar way. Namely, we restrict the Fourier 
transforms f  and g on hT, extend periodically to the whole line M, and then apply the inverse 
discrete Fourier transform. Thus, we obtain the corresponding discrete boundary value problem
(1.4), (2.2) with Vd =  0. We compare the obtained problem with the problem (2.5), (2.8).

Theorem  3.1. Let all the assumptions of Theorem 2.2 hold, and let ce>  1. The comparison 
of solutions to the problems (1.4), (2.2) with va =  0 and (2.5), (2.8) for sufficiently small h is 
given by the estimate

11“  -  Ud\\Ĥ {hT̂ ) ^  c o n s t I / I  |s_i/2 +  II5 IIS-1 / 2) 

where const is independent of h.



P roof. We first compare the Fourier-images of solutions to the systems (2.3) and (2.7). We 
have the continuous

2(0 = ^^40(^o(6) + 5o(6))
and discrete ^

“d(0 = ^d,̂ (0(co(6) + <̂ o(6))
solutions. We denote by and Ф vectors with components {Fd, Gd)^ and {F, G)^ and by С 
and с vectors with components {Cq,D o)'̂  and (co,do)^ respectively. Then

C ^ K ~ 4 ,  c ^ k ~ 4 d .

We denote by Ci, C2 and ci, C2 the jth  coordinates of the vectors С  and c, j  =  1,2. Then

{Xh^iO -  ^diO =  X /i^^40((^o(C i) -  co(Ci)) +  (5 o (6 )  -  do(6))

=  X .^ ^ 4 0 ( (^ “ '5 ) i(e i)  -  +  (^ - 'Ф )2 (6 )  -  (к -^ ^ М Ь ))-

This means that it suffices to estimate the norm ||Е;/г̂ Г“ ^Ф — Л:“ Ф̂£г||н®о(ет)- We write

E h K ~ 4  -  к-'^Фа =  {БнК~Ч  -  К-^БнФ) +  {К~'^ЕнФ -  k -^ d ) .

То estimate the first term, we use Corollary 3.1. We have

\\ЕнК~'̂ Ф -  К~'̂ ЕнФ\\зо ^ c o n s t I s o  ^ const/i*“ /̂̂ (||/||so +  H l̂lso)-

We represent the second term as the sum

К-^ЕнФ -  k - 4 d  =  {К-^ЕнФ -  к-^ЕнФ) +  {к-^ЕнФ -  к~Ча)

and estimate each term separately.
We consider k~^EhФ — k~̂ Фd■ Since the norm of k~  ̂ is bounded by a constant independent 

of h, we find

\\к~̂ ЕнФ -  fc“ 4d||so ^ const ||Н/*Ф -  Фd\\so ^  const(||x/i-F -  -Fd||so +  WxhG -  Gd||sJ.

It remains to estimate, for example, \\xhF — Fd\\so- We have

h-K

ilx iF -F ,,| g . =  I  | /(б )Л "Ч б ) -  л (е 2 )-о ‘ (е2)1"(1 +  I6i)"“”'if2
—Нж

Й7Г

^ c o n s t J  |7(6)l^(l + I6I)^®“<̂ 6 ^ c o n s t 1 1 / I I  2ц
—hn

taking into account that fd and /  are identical on hT and using the estimate from Lemma 3.3.
The remaining term is estimated by the following inequality which can be easily verified: 

K~^ — k~  ̂ =  K~^{k — K)k~^. We recall that the invertibility of the operator к follows from
the invertibility of the operator K . Comparing on Ш

К-^ЕнФ -  к-^ЕнФ =  Ен{К-^ -  к-^)ЕнФ =  ЕнК~\к -  К)к-^ЕнФ



and taking into account Lemma 3.4, we obtain the estimate

\\К~'̂ ЕиФ -  А:“ ^Е:^Ф||5о ^  const/г,*“ ^||Ф||s(, ^  const/i®“ ^(||/||so +  \\g\\so)-

Collecting the obtained estimates, we obtain the assertion of Theorem 3.1. Here, we took into 
account the properties of pseudodifferential operators [5] owing to which we can pass to the 
il^-norm. □
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