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Abstract. We present the results related to the solution of the problem of the best recovery of the
solution to the Cauchy problem for the heat equation with the B-elliptic Laplace–Bessel operator in
spatial variables from an exactly or approximately known finite set of temperature profiles.
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1. Introduction

It is well known that the temperature distribution in R
N is described by the equation

∂u

∂t
= Δu+ f(x, t),

where Δ = ∂2/∂x21 + . . . ∂2/∂x2n is the Laplace operator in R
N .

The authors of [13] state the following problem. Let temperature distributions u(·, t1), . . . , u(·, tp) be
known at moments of time 0 ≤ t1 < · · · < tp that are given approximately. More precisely, functions
yj(·) ∈ L2(R

N ) are such that ‖u(·, tj) − yj(·)‖L2(RN ) ≤ εj , where εj > 0, j = 1, . . . , p. For each set of

such functions, we want to obtain a function in L2(R
N ) that best approximates the real temperature

distribution in R
N at a fixed time τ in some sense. In [14], the problem of restoring the temperature

of a pipe from inaccurate measurements, closely related to the one described above, is considered.
We study a similar problem for a singular heat equation with the Bessel operator [2, 6–12, 16–18, 22,

24]. Features of the above type arise in models of mathematical physics in cases where characteristics
of media (e.g., diffusion characteristics or thermal conductivity characteristics) have degenerate power-
type inhomogeneities. In addition, such equations lead to situations where isotropic diffusion processes
with axial or spherical symmetry are studied.

It should be noted that the problem under consideration is closely related to the problem of restoring
powers of the Laplace operator from an incomplete spectrum considered in [15, 23]. These results were
transferred to the case of the Laplace–Bessel operator in [19, 21].

2. Prerequisites

Let R
N
+ = {x = (x′, x′′), x′=(x1, . . . , xn), x

′′=(xn+1, . . . , xN ), x1>0, . . . , xn>0}, γ = (γ1, . . . , γn),

νκ = (γκ − 1)/2, (x′)γ =
n∏

κ=1
xγκκ , γκ > 0, κ = 1, . . . , n. Let Ω+ denote the domain adjacent to

hyperplanes x1 = 0, . . . , xn = 0. The boundary of the domain Ω+ consists of two parts: Γ+, located
in the part of the space R

+
N , and Γ0, belonging to hyperplanes x1 = 0, . . . , xn = 0.
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Let Lγ
p(Ω+) denote the linear space of functions such that

‖f‖Lγ
p(Ω+) =

⎛

⎝
∫

Ω+

|f(x)|p (x′)γ dx

⎞

⎠

1/p

< +∞.

Let Ω ⊂ R
N be the union of sets Ω+ and Ω− obtained from Ω+ symmetrically with respect to the

space x′ = 0.
Let Ω+

ε be an internal subdomain of Ω+ adjacent to the boundary Γ0, all points of which are at
a distance of more than ε from the part of the boundary Γ+ of domain Ω+. Then the domain Ω+

ε is
called a symmetrically internal (s-internal) subdomain of Ω+.

Let Lγ
p,loc(Ω

+) denote the linear space of functions such that
∫

Ω+
ε

|f(x)|p (x′)γ dx < +∞

for any s-internal subdomain Ω+
ε of Ω+.

Let Dev(Ω
+) (Eev(Ω+)) denote the set of all restrictions of even functions with respect to variables x′

from space D(Ω) (space E(Ω)) onto the set Ω+. Topology in the space Dev(Ω
+) (in the space Eev(Ω+))

is induced by the topology of the space D(Ω) (of the space E(Ω)). By definition, Dev = Dev(R
N
+ ). Let

Sev denote the linear space of functions ϕ(x) ∈ C∞
ev (R

N
+ ) decreasing as |x| → ∞ together with their

derivatives faster than any power of |x|−1. Topology in Sev is introduced in the same way as in the
space S (see [4, 10]). The space dual to Dev(Ω

+) (Eev(Ω+), Sev) with its weak topology is denoted as
D′

ev(Ω
+) (E ′

ev(Ω
+), S ′

ev). The following relations hold: Dev ⊂ Sev ⊂ S ′
ev ⊂ D′

ev.
The action of the functional (distribution) f on the test (main) function ϕ in all three cases is

denoted as

〈f(x), ϕ(x)〉γ = 〈f(x), ϕ(x)〉 . (2.1)

The index γ is sometimes omitted if this does not cause confusion.
We identify each function f(x) ∈ Lγ

1,loc(Ω
+) with a functional f ∈ D′

ev(Ω
+) using the formula

〈f(x), ϕ(x)〉 =
∫

Ω+

f(x)ϕ(x) (x′)γ dx, (2.2)

and we call such functionals regular. All other functionals from the space D′
ev(Ω

+) are called singular.
However, although Eq. (2.2) cannot be extended to singular functionals similarly to [3], besides from
notation (2.1), it is possible for all functionals (including singular ones) to use notation (2.2).

An important example of a singular functional in D′
ev(Ω

+) is the weight δ-function δγ(x) defined
by the equality

〈δγ(x), ϕ〉γ = ϕ(0).

The mixed generalized shift is defined by the formula

T yf(x) =
n∏

i=1

T yi
xi
f(x′, x′′ − y′′),

where each of the generalized shifts T yi
xi is defined by the formula (see [11])

(T yi
xi
f)(x) =

Γ(γi+1
2 )√

π Γ
(γi
2

)

π∫

0

f

(

x1, . . . , xi−1,
√

x2i + y2i − 2xiyi cosα, xi+1, . . . , xN

)

sinγi−1 α dα, (2.3)

i = 1, . . . , n, and the product
n∏

k=1

T yk
xk is understood as a product (superposition) of operators.
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The generalized convolution of functions f, g ∈ Lγ
p(R

+
N ) is defined by the formula

(f ∗ g)γ(x) =
∫

R+
N

f(y)T y
x g(x)(y

′)γdy. (2.4)

If f ∈ D′
ev, g ∈ E ′

ev, then the generalized convolution (f ∗ g)γ of such distributions is defined by the
equality

〈(f ∗ g)γ(x), ϕ(x)〉γ = 〈f(y), 〈g(x), T y
xϕ(x)〉γ〉γ , ϕ(x) ∈ Dev. (2.5)

The j-Bessel function of order ν is defined by the formula

jν(z) =
2νΓ(ν + 1)

zν
Jν(z) = Γ(ν + 1)

∞∑

m=0

(−1)mz2m

22mm!Γ(m+ ν + 1)
,

where Γ(·) is the Euler gamma function, and

Jν(z) =

∞∑

m=0

(−1)mz2m+ν

22m+ν m!Γ(m+ ν + 1)
,

is the Bessel function of the first kind of order ν.
Direct FB,γ = FB = Fγ and inverse F−1

B,γ = F−1
B = F−1

γ mixed Fourier–Bessel transforms are
defined by the formulas

FB,γ [ϕ(x
′, x′′)](ξ) =

∫

R+
N

ϕ(x)

n∏

k=1

jνk(ξkxk)e
−ix′′·ξ′′(x′)γ dx

= (2π)N−n22|ν|
n∏

k=1

Γ2(νk + 1)F−1
B,γ [ψ(x

′,−x′′)](ξ), (2.6)

where

x′ · ξ′ = x1ξ1 + . . . + xnξn, x′′ · ξ′′ = xn+1ξn+1 + . . .+ xNξN , |ν| = ν1 + . . .+ νn.

The Parseval–Plancherel formula is valid for the Fourier–Bessel transform (see [7]):

‖ϕ‖Lγ
2
= (2π)N−n22|ν|

n∏

k=1

Γ2(νk + 1)‖ϕ̂‖Lγ
2
, ϕ̂ = FB [ϕ].

The Fourier–Bessel transform is defined and invertible for functions of Sev(R
N
+ ) (see [7]).

Below we use the notation

Π = (2π)N−n22|ν|
n∏

k=1

Γ2(νk + 1). (2.7)

The B-elliptic operator ΔB (the term and notation introduced by Kipriyanov in [8]), also called the
Laplace–Bessel operator, is defined by the formula

ΔBu =
n∑

k=1

(
∂2u

∂x2k
+

γk
xk

∂u

∂xk

)

+
N∑

k=n+1

∂2u

∂x2k
=

n∑

k=1

Bxk
u+

N∑

k=n+1

∂2u

∂x2k
, (2.8)

where Bxx = Bxx,γk is the Bessel operator acting on the variable xk by the formula

Bxk
u = Bxk,γku =

∂2u

∂x2k
+

γk
xk

∂u

∂xk
= x−γk

k

∂

∂xk

(

xγkk
∂u

∂xk

)

. (2.9)
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We also note useful relations that include the Fourier–Bessel transform and the generalized shift
operator (also see [7]).

FB [T y
xϕ(x)] (ξ) =

n∏

k=1

jνk(ξkyk)e
−iy′′ ξ̇′′FB [ϕ(x)](ξ), (2.10)

T y
xFB [ψ(ξ)] (x) = FB

[
n∏

k=1

jνk(ξkyk)e
iy′′ ξ̇′′ψ(ξ)

]

(x). (2.11)

T y
x δγ(x) = δγ(y), (2.12)

FB [ΔBu(·)] (ξ) = −|ξ|2FB [u(·)] (ξ). (2.13)

3. Problem Statement

Consider the Cauchy problem for the equation

∂u

∂t
= ΔBu, x ∈ R

N
+ , t > 0, (3.1)

with the initial condition

u(x, 0) = u0(x), x ∈ R
N
+ . (3.2)

We assume that u0(·) ∈ Lγ
2(R

N
+ ). The only solution to this problem for the case N = n = 1 was

obtained in [24]. It is expressed by the following formula, which generalizes the well-known Poisson
formula:

u(x, t) = Pt u0(·)(x, t) = 1

2txν

∫

R+

ην+1 u0(η) Iν

(ηx

2t

)
exp

(

−η2 + x2

4t

)

dη, (3.3)

where

Iν (z) =

∞∑

m=1

z2m+ν

22m+νm!Γ(m+ ν + 1)

is the modified Bessel function of the first kind of order ν, Γ(·) is the Euler gamma function. For
N ≥ n ≥ 1, the explicit representation of the unique solution to problem (3.1)-(3.2) has the form

u(x, t) = Pt u0(·)(x, t)

=
1

2Nπ(N−n)/2t(N+n)/2xν

∫

R
N
+

exp

(

−|x− η|2 − 2x′′ · η′′
4t

) n∏

κ=1

(
ηνκ+1
κ Iνκ

(ηκxκ
2t

))
u0(η) dη. (3.4)

Formula (3.4) can be obtained by applying the Fourier–Bessel transform. However, there is no point in
presenting the method for obtaining this formula here since a more general formula for the differential-
difference equation was obtained in [18].

Consider the following problem. Let the functions yj(·) ∈ Lγ
2(R

N
+ ) be known at moments 0 ≤ t1 <

· · · < tp and

‖u(·, tj)− yj(·)‖Lγ
2 (R

N
+ ) ≤ εj , j = 1, . . . , p,

where εj > 0, j = 1, . . . , p. It is required to assign a function from Lγ
2(R+) to each such set of functions.

The assigned function has to best approximate the true temperature distribution in R
N
+ at a fixed

time τ in some sense. For the case N = n = 1 this problem is considered in [20]. In this paper, we set
N ≥ n ≥ 1.

Following [13], any mapping m : Lγ
2(R

N
+ )× · · · ×Lγ

2(R
N
+ ) −→ Lγ

2(R
N
+ ) is called the recovery method

(of temperature in R
N
+ at time τ according to the data). The value

e(τ, ε,m) = sup
U

‖u(·, τ) −m(y(·))(·)‖Lγ
2 (R

N
+ ),
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where y(·) = (y1(·), . . . , yp(·)), ε = (ε1, . . . , εp),

U = {(u0(·), y(·)) : u0(·) ∈ Lγ
2(R

N
+ ), y(·) ∈ (Lγ

2(R
N
+ ))p, ‖u(·, tj)− yj(·)‖Lγ

2 (R
N
+ ) ≤ εj , j = 1, . . . , p},

is called the error of this method. The value

E(τ, ε) = inf
m:(Lγ

2 (R
N
+ ))p−→Lγ

2 (R
N
+ )

e(τ, ε,m)

is called the optimal recovery error. The method m̂, for which

E(τ, ε) = e(τ, ε, m̂),

is called the optimal recovery method.

4. Problem Solution

Let Pt : L
γ
2(R) −→ Lγ

2(R
N
+ ) be the operator defined by formula (3.4):

Ptu0(·)(x, t) = 1

2Nπ(N−n)/2t(N+n)/2xν

∫

R
N
+

u0(η) exp

(

−|x− η|2 − 2x′′ · η′′
4t

) n∏

κ=1

(
ηνκ+1
κ Iνκ

(ηκxκ
2t

))
dη,

t > 0 be a fixed value, P0 be the identity operator.
Let τ ≥ 0. Consider the following problem:

‖Pτu0(·)‖Lγ
2 (R

N
+ ) −→ max, (4.1)

‖Ptju0(·)‖Lγ
2 (R

N
+ ) ≤ εj , j = 1, . . . , p, u0(·) ∈ Lγ

2(R
N
+ ). (4.2)

A function that satisfies condition (4.2) is called an admissible function for problem (4.1)-(4.2).
Let S denote the upper bound of ‖Pτu0(·)‖Lγ

2 (R
N
+ ) with condition (4.2).

Lemma 4.1.

E(τ, ε) ≥ S.

Proof. Let u0(·) be an admissible function for problem (4.1)-(4.2). Then −u0(·) is an admissible
function for problem (4.1)-(4.2). For any method m : (Lγ

2(R
N
+ ))p −→ Lγ

2(R
N
+ ) we have:

2‖Pτu0(·)‖Lγ
2 (R

N
+ ) = ‖Pτu0(·)−m(0)(·) +m(0)(·) − Pτ (−u0(·))‖Lγ

2 (R
N
+ )

≤ ‖Pτu0(·)−m(0)(·)‖Lγ
2 (R

N
+ ) + ‖m(0)(·) − Pτ (−u0(·))‖Lγ

2 (R
N
+ )

≤ 2 sup
u0(·)∈Lγ

2 (R
N
+ )

‖Ptju0(·)‖Lγ
2
(R)

≤εj , j=1,...,p

‖Pτu0(·) −m(0)(·)‖Lγ
2 (R

N
+ ) ≤ 2 sup

U
‖Pτu0(·)−m(y(·))(·)‖Lγ

2 (R
N
+ ).

On the left-hand side of the resulting inequality we pass to the supremum of admissible functions, and
on the right-hand side we pass to the infimum over all methods. This step completes the proof of the
lemma.

Using formula 6.633 (4) from [5], one could easily verify the validity of the equality

Fγ [Ptu0(·)](ξ) = exp(−|ξ|2t)Fγu0(ξ).

Therefore, according to the Parseval–Plancherel theorem for the Fourier–Bessel transform, the square
of the value of problem (4.1)-(4.2) is equal to the value of the following problem

:
1

Π

∫

R
N
+

ξγe−2|ξ|2τ |Fγu0(ξ)|2 dξ −→ max, u0(·) ∈ Lγ
2(R

N
+ ), (4.3)
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1

Π

∫

R
N
+

ξγe−2|ξ|2tj |Fγu0(ξ)|2 dξ ≤ ε2j , j = 1, . . . , p. (4.4)

Let us move from problem (4.3)-(4.4) to an extended problem (according to the terminology in [13]).
In order to do so, replace Π−1 |Fγu0(ξ)|2ξ2ν+1 dξ by a positive measure dμ(ξ). As a result, we obtain
the following problem:

∫

RN
+

e−2|ξ|2τ dμ(ξ) −→ max, (4.5)

∫

R
N
+

e−2|ξ|2tjdμ(ξ) ≤ ε2j , j = 1, . . . , p. (4.6)

Any measure that satisfies conditions (4.6) is called admissible for problem (4.5)-(4.6). An admissible
measure dμ̂(ξ) such that ∫

R
N
+

e−2|ξ|2τ dμ̂(ξ) = max

∫

R
N
+

e−2|ξ|2τ dμ(ξ), (4.7)

where the maximum is taken over all admissible measures, is called a solution to problem (4.5)-(4.6).
The Lagrange function for this problem has the form

L(dμ(·), λ) = λ0

∫

R
N
+

e−2|ξ|2τ dμ(ξ) +
p∑

j=1

λj

⎛

⎜
⎝

∫

R
N
+

e−2|ξ|2tjdμ(ξ)− ε2j

⎞

⎟
⎠ ,

where λ = (λ0, λ1, . . . , λp) is a set of Lagrange multipliers. Extended problem (4.5)-(4.6) is solved
in [13]. For the sake of completeness, we rewrite this solution slightly changing the specific values to
suit our needs. On the two-dimensional plane (t, y) construct the set

M = co

{(

tj, log

(
1

εj

))

j = 1, . . . , p

}

+ {(t, 0) : t ≥ 0} ,

where c oA denotes the convex hull of the set A. We introduce the function θ(t) on the ray [0,+∞)
by the formula

θ(t) = max{y : (t, y) ∈ M},
assuming that θ(t) = −∞ if (t, y) /∈ M for all y. The graph of the function θ(t) on the ray [t1,+∞) is
an upward-directed convex (concave) polygonal chain. Let t1 = ts1 < ts2 < · · · < ts� be its vertices.
Obviously, {ts1 < ts2 < · · · < ts�} ⊆ {t1 < t2 < · · · < tp}.

There are three cases to consider.
(a) Let τ ≥ t1 and there be an inflection point of the function θ(t) to the right of τ . Suppose that

τ ∈ [tsj , tsj+1). Let dμ̂(ξ) = xγT ξ0
ξ δγ , where parameters A and ξ0 are determined from the conditions

∫

R
N
+

e−2|ξ|2τ dμ̂(ξ) = Ae−2|ξ0|2tk = ε2k, k = sj, sj+1. (4.8)

From condition (4.8) we obtain:

A = ε
2tsj+1/(tsj+1−tsj )
sj ε

−2tsj /(tsj+1−tsj )
sj+1 ,

|ξ0|2 =
log εsj/εsj+1

tsj+1 − tsj
=

log(1/εsj+1)− log(1/εsj )

tsj+1 − tsj
.
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Let λ̂0 = −1, λ̂k = 0, k �= sj, sj+1. In order to find the values λsj , λsj+1 , some preparations are
needed. Let

f(v) = λ0 +

p∑

j=1

λje
−2v(tj−τ).

Suppose that f(|ξ0|2) = f ′(|ξ0|2) = 0. Then we obtain a system of linear equations for λsj , λsj+1 :

λsje
−2|ξ0|2(tsj−τ) + λsj+1e

−2|ξ0|2(tsj+1−τ) = 1,

λsj(tsj − τ)e−2|ξ0|2(tsj−τ) + λsj+1(tsj+1 − τ)e−2|ξ0|2(tsj+1−τ) = 0,

whence we obtain

λsj =
tsj+1 − τ

tsj+1 − tsj

(
εsj+1

εsj

)2(τ−tsj )/(tsj+1−tsj )

,

λsj+1 =
τ − tsj

tsj+1 − tsj

(
εsj
εsj+1

)2(tsj+1
−τ)/(tsj+1

−tsj )

.

For a measure dμ̂(ξ) we have

min
dμ(·)≥0

L(dμ(·), λ̂) = L(dμ̂(·), λ̂), (4.9)

λ̂j

⎛

⎜
⎝

∫

R
N
+

e−2|ξ|2τ dμ̂(ξ)− ε2j

⎞

⎟
⎠ = 0, j = 1, . . . , p. (4.10)

Hence, for any admissible measure dμ(ξ)

λ̂0

∫

RN
+

e−2|ξ|2τ dμ ≥ λ̂0

∫

RN
+

e−2|ξ|2τ dμ+ λ̂j

⎛

⎜
⎝

∫

RN
+

e−2|ξ|2τ dμ(ξ)− ε2j

⎞

⎟
⎠

≥ λ̂0

∫

R
N
+

e−2|ξ|2τ dμ̂ + λ̂j

⎛

⎜
⎝

∫

R
N
+

e−2|ξ|2τ dμ̂(ξ)− ε2j

⎞

⎟
⎠ = λ̂0

∫

R
N
+

e−2|ξ|2τ dμ̂.

Dividing by λ̂0 < 0, we get
∫

RN
+

e−2|ξ|2τ dμ ≤ λ̂0

∫

RN
+

e−2|ξ|2τ dμ̂. (4.11)

Let

ρ(t) =
log(1/εsj+1)− log(1/εsj )

tsj+1 − tsj
(t− tsj) + log(1/εsj ).

The line y = ρ(t) passes through points (tsj , log(1/εsj )) and (tsj+1 , log(1/εsj+1)) and lies at least below

the graph of the function y = θ(t). For the obtained values A and |ξ0|2 we have:
∫

R
N
+

e−2|ξ|2ti dμ̂(ξ) = Ae−2|ξ0|2ti = ε
2(tsj+1−ti)/(tsj+1−tsj )
sj ε

2(ti−tsj )/(tsj+1−tsj )
sj+1

= e−2ρ(ti) ≤ e−2 log(1/εi) = ε2i , i = 1, . . . , p.
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This means that dμ̂(ξ) is an admissible measure for the extended problem (4.5)-(4.6) and is its solution.
If we substitute dμ̂(ξ) into the functional defined in (4.5), we get the value of problem (4.5)-(4.6), which
is also a solution to problem (4.3)-(4.4):

∫

R
N
+

e−2|ξ|2τ dμ̂(ξ) = Ae−2|ξ0|2τ = ε
2(tsj+1

−τ)/(tsj+1
−tsj )

sj ε
2(τ−tsj )/(tsj+1

−tsj )
sj+1 = e−2ρ(τ) = e−2θ(τ).

This means that the value of problem (4.1)-(4.2) is equal to S = e−θ(τ).
(b) Let τ ≥ ts�. If the graph of the function y = θ(t) is a straight line, then ts� = t1. In this case,

we set λ̂0 = −1, λ̂s� = 1, λ̂sj = 0, where j �= �, dμ̂(ξ) = xγεs�δγ(ξ). Obviously, condition (4.10) is

satisfied. In addition, for all ξ ∈ R
N
+ , the inequality

f(|ξ|2) = −1 + e−2|ξ|2(ts�−τ) ≥ 0

holds and the equality f(0) = 0 is valid. Therefore, condition (4.9) is valid as well. The equality
θ(t) ≡ log(1/εs�) is an identity on the ray [ts� ,+∞). Therefore, log(1/εj) ≤ log(1/εs�),j = 1, . . . , p.
Hence, ∫

R
N
+

e−2|ξ|2tj dμ̂(ξ) = ε2s� = e−2 log(1/εs� ).

Therefore, the measure dμ̂(ξ) is admissible for problem (4.5)-(4.6) and is its solution. The value of
this problem is obtained as follows:

∫

R
N
+

e−2|ξ|2τ dμ̂(ξ) = ε2s� = e−2 log(1/εs� ) = e−2θ(t).

This again means that the solution to problem (4.1)-(4.2) is equal to S = e−θ(τ).
(c) Let τ < t1. For arbitrary y0 > 0 there exists a straight line defined by the equation y = at+ b,

a > 0, dividing the point (τ,−y0) and the set M. Moreover,

−aτ − y0 ≥ b ≥ −atj + log(1/εsj ), j = 1, . . . , p.

Let A = e−2b. Choose ξ0 ∈ R
N
+ such that |ξ0|2 = a. Then

Ae−2|ξ0|2tj ≤ ε2j , j = 1, . . . , p.

This means that the measure dμ̂(ξ) = xγT ξ0
ξ δγ(ξ) is admissible for problem (4.5)-(4.6) and Ae−2|ξ0|2τ ≥

e2y0 . Due to arbitrariness of y0 > 0 the value of problem (4.5)-(4.6), as well as the solution to prob-
lem (4.1)-(4.2), is equal to +∞.

In all three cases, for all τ ≥ 0, the optimal recovery error is estimated from below asE(τ, ε) ≥ e−θ(τ).

Let τ ≥ t1 and λ̂1, . . . , λ̂p be the Lagrange multipliers from cases (a), (b) for such values of τ.

Lemma 4.2. Let the problem

p∑

j=1

λ̂j‖Ptju0(·) − yj(·)‖2Lγ
2 (R

N
+ ) −→ min, u0(·) ∈ Lγ

2(R
N
+ ), (4.12)

have the solution û0(·) = û0(·, y(·)) for a set of functions y(·) = (y1(·), . . . , yp(·)) ∈ (Lγ
2(R

N
+ ))p. Then

for all σ1, . . . , σp the value of the problem

‖Pτu0(·)− Pτ û0(·)‖2Lγ
2 (R

N
+ )

−→ max, u0(·) ∈ Lγ
2(R

N
+ ), (4.13)

‖Ptju0(·) − yj(·)‖Lγ
2 (R

N
+ ) ≤ σj j = 1, . . . , p, (4.14)
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does not exceed the value of the problem

‖Pτu0(·)‖2Lγ
2 (R

N
+ )

−→ max, u0(·) ∈ Lγ
2(R

N
+ ), (4.15)

p∑

j=1

λ̂j‖Ptju0(·)‖2Lγ
2 (R

N
+ )

≤
p∑

j=1

λ̂jσ
2
j . (4.16)

Proof. The zero Fréchet differential of a convex smooth objective functional from (4.12) at the point
û0(·), i.e., the equality

2

p∑

j=1

λ̂j

∫

RN
+

xγ(Ptj û0(x)− yj(x))Ptju0(x)dx = 0, (4.17)

is a necessary and sufficient condition for achieving the minimum of this functional on the function
û0(·). Taking this equality into account, one could easily obtain

p∑

j=1

λ̂j‖Ptju0(·)− yj(·)‖2Lγ
2 (R

N
+ )

=

p∑

j=1

λ̂j‖Ptju0(·)− Ptj û0(·)‖2Lγ
2 (R

N
+ )

+

p∑

j=1

λ̂j‖Ptj û0(·)− yj(·)‖2Lγ
2 (R

N
+ )
.

Let the function u0(·) be admissible for problem (4.13)-(4.14). Then
p∑

j=1

λ̂j‖Ptj û0(·)− yj(·)‖2Lγ
2 (R

N
+ )

=

p∑

j=1

λ̂j‖Ptju0(·)− yj(·)‖2Lγ
2 (R

N
+ )

−
p∑

j=1

λ̂j‖Ptj û0(·)− yj(·)‖2Lγ
2 (R

N
+ )

≤
p∑

j=1

λ̂j‖Ptju0(·)− yj(·)‖2Lγ
2 (R

N
+ )

≤
p∑

j=1

λ̂jσj.

This means that the function u0(·) − û0(·) is admissible for problem (4.15)-(4.16). The value of
functional (4.13) on the function u0(·) is equal to the value of functional (4.15).

Lemma 4.3. Values of problems (4.1)-(4.2) and (4.15)-(4.16) coincide for σj = εj , j = 1, . . . , p.

Proof. Using the Parseval–Plancherel equality, we move from problem (4.15)-(4.16) to the problem
∫

R
N
+

e−2|ξ|2τ dμ(ξ) −→ max, (4.18)

p∑

j=1

λ̂j

∫

R
N
+

e−2|ξ|2tjdμ(ξ) ≤
p∑

j=1

λ̂jε
2
j , (4.19)

where

dμ(ξ) =
1

22νΓ2(ν + 1)
|Fγu0(ξ)|2ξ2ν+1 dξ ≥ 0.

The Lagrange function of this problem has the form

L1(dμ(·), ν) = ν0

∫

R
N
+

e−2|ξ|2τ dμ(ξ) + ν1

⎛

⎜
⎝

p∑

j=1

λ̂j

∫

R
N
+

e−2|ξ|2tjdμ(ξ)−
p∑

j=1

λ̂jε
2
j

⎞

⎟
⎠ ,

where the set ν of Lagrange multipliers has the form ν = (ν0, ν1). From the fact that the measure
dμ̂(ξ) that is a solution to problem (4.15)-(4.16) is admissible for this problem, it follows that it is
also admissible for problem (4.18)-(4.19). Let ν0 = ν̂0 = −1, ν1 = ν̂1 = 1. Then

min
dμ(·)≥0

L1(dμ(·), ν̂) = L1(dμ̂(·), ν̂) = L(dμ̂(·), λ̂) = min
dμ(·)≥0

L(dμ(·), λ̂), (4.20)
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where ν̂ = (ν̂0, ν̂1). Taking into account (4.10), we have

ν̂1

⎛

⎜
⎝

p∑

j=1

λ̂j

∫

R
N
+

e−2|ξ|2tjdμ̂(ξ)−
p∑

j=1

λ̂jε
2
j

⎞

⎟
⎠ = 0. (4.21)

This means that dμ̂(ξ) is a solution to problem (4.18)-(4.19). Therefore, the value of this problem
is equal to the value of problem (4.18)-(4.19). It follows that the squared value of problem (4.5)-
(4.6) is equal to the solution of problem (4.15)-(4.16). Therefore, the values of problems (4.5)-(4.6)
and (4.15)-(4.16) coincide.

Let us now formulate and prove the main result.

Theorem 4.1. The equality
E(τ, ε) = e−θ(τ)

holds for all τ > 0.

(1) If 0 ≤ τ < t1, then θ(τ) = −∞.
(2) If τ = tsj , j = 1, . . . , �, then the method m̂ defined by the formula m̂(y(·))(·) = ysj(·) is optimal.
(3) If � ≥ 2, τ ∈ (tsj , tsj+1), then the method m̂ defined by the formula

m̂(y(·))(·) = (Ψsj ∗ ysj)γ(·) + (Φsj+1 ∗ ysj+1)γ(·), (4.22)

where Ψsj(·), Φsj1(·) are functions, the Fourier–Bessel images of which have the form

FγΨsj(ξ) =
(tsj+1 − τ)ε2sj+1

e−|ξ|2(τ−tsj )

(tsj+1 − τ)ε2sj+1
+ (τ − tsj)ε

2
sje

−2|ξ|2(tsj+1−tsj )
, (4.23)

FγΦsj+1(ξ) =
(τ − tsj)ε

2
sje

−|ξ|2(τ+tsj+1−2tsj )

(tsj+1 − τ)ε2sj+1
+ (τ − tsj)ε

2
sje

−2|ξ|2(tsj+1−tsj )
, (4.24)

is optimal.
(4) If τ > ts� , then the method m̂ defined by the formula m̂(y(·))(·) = Pτ−ts�ys�(·) is optimal.

Proof. Let τ ∈ [tsj , tsj+1). It was shown above that one could choose a set of Lagrange multipliers such

that only the multipliers λ̂sj and λ̂sj+1 are nonzero. Therefore, problem (4.12) takes the form

λ̂sj‖Ptsj
u0(·)− ysj(·)‖Lγ

2 (R
N
+ ) + λ̂sj+1‖Ptsj+1

u0(·)− ysj+1(·)‖Lγ
2 (R

N
+ ) −→ min,

u0(·) ∈ Lγ
2(R

N
+ ).

Let û0(·) = û0(·, y(·)) be a solution to this problem. Then condition (4.17) is satisfied. For Fourier–
Bessel images this condition can be written in the form

j+1∑

κ=j

∫

R
N
+

ξγ(e−|ξ|2tsκFγ û0(ξ)− Fγysκ(ξ))e
−|ξ|2tsκFγu0(ξ) dξ = 0. (4.25)

Let

Fγ û0(ξ) =
λ̂sje

−|ξ|2tsjFγysj + λ̂sj+1e
−|ξ|2tsj+1Fγysj+1

λ̂sje
−2|ξ|2tsj + λ̂sj+1e

−2|ξ|2tsj+1

. (4.26)

Then Eq. (4.25) holds for all u0(·) ∈ Lγ
2(R

N
+ ). Let functions Fγyj(·), j = 1, . . . , p have compact support

for the set y(·) = (y1(·), . . . , yp(·)) ∈ (Lγ
2(R

N
+ ))p. Then function (4.26) belongs to the space Lγ

2(R
N
+ ).

Then the function û0(·) = û0(·, y(·)) defined by formula (4.26) also belongs to the space Lγ
2(R

N
+ )

and is a solution to problem (4.12). Compactly supported functions are dense in Lγ
2(R

N
+ ). Therefore,

functions with compactly supported Fourier–Bessel images are dense in Lγ
2(R

N
+ ).
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Let functions ũ0(·) ∈ Lγ
2(R

N
+ ), y(·) = (y1(·), . . . , yp(·)) ∈ (Lγ

2(R
N
+ ))p satisfy inequalities

‖Ptsj
ũ0(·)− ysj(·)‖Lγ

2 (R
N
+ ) ≤ εj , j = 1, . . . , p.

Choose a sequence y(k)(·) = (y
(k)
1 (·), . . . , y(k)p (·)) ∈ (Lγ

2(R
N
+ ))p, k ∈ N, such that functions Fγy

(k)
j (·),

j = 1, . . . , p, have compact support and ‖yj(·) − y
(k)
j (·)‖Lγ

2 (R
N
+ ) ≤ 1/k, j = 1, . . . , p, k ∈ N. Choose a

number k ∈ N. There exists a solution û0(·, y(k)(·)) to problem (4.12). Due to inequalities

‖Ptj ũ0(·)− y
(k)
j (·)‖Lγ

2 (R
N
+ ) ≤ ‖Ptj ũ0(·)− yj(·)‖Lγ

2 (R
N
+ ) + ‖yj(·)− y

(k)
j (·)‖Lγ

2 (R
N
+ ) ≤ εj +1/k, j = 1, . . . , p,

the function ũ0(·) is admissible for problem (4.13)-(4.14) with σj = σj(k) = εj + 1/k. Let

a(k) =

√
√
√
√

p∑

j=1

λ̂jσ2
j (k)

/
p∑

j=1

λ̂jε2j .

By Lemma 4.2 the value of problem (4.13)–(4.14) does not exceed the value of problem (4.15)–(4.16).
Substitute u0(·) = a(k)v0(·) into problem (4.15)-(4.16). Then this problem takes the form

a(k)‖Pτ v0(·)− Pτ û0(·)‖2Lγ
2 (R

N
+ )

−→ max, u0(·) ∈ Lγ
2(R

N
+ ), (4.27)

p∑

j=1

λ̂j‖Ptjv0(·)‖2Lγ
2 (R

N
+ )

≤
p∑

j=1

λ̂jσ
2
j . (4.28)

The value of problem (4.27)-(4.28) coincides with the value of problem (4.1)-(4.2) multiplied by a(k)

and is equal to a(k)e−θ(τ). Since the function ũ0(·) is admissible for problem (4.13)-(4.14), we have:

‖Pτ ũ0(·)− Pτ û0(·, y(k)(·))‖Lγ
2 (R

N
+ ) ≤ a(k)e−θ(τ). (4.29)

Let Ψsj(·), Φsj+1(·) be functions, Fourier–Bessel images of which correspond to (4.23)–(4.24):

FγΨsj(ξ) =
(tsj+1 − τ)ε2sj+1

e−|ξ|2(τ−tsj )

(tsj+1 − τ)ε2sj+1
+ (τ − tsj)ε

2
sje

−2|ξ|2(tsj+1−tsj )
,

FγΦsj+1(ξ) =
(τ − tsj)ε

2
sje

−|ξ|2(τ+tsj+1−2tsj )

(tsj+1 − τ)ε2sj+1
+ (τ − tsj)ε

2
sje

−2|ξ|2(tsj+1−tsj )
.

Let τ ∈ (tsj , tsj+1). Fourier–Bessel images (4.23) and (4.24) of functions Ψsj(·) and Φsj+1(·) belong
to the space of even infinitely-differentiable rapidly decreasing functions. Consequently, functions
Ψsj(·) and Φsj+1(·) belong to this space. In this case, we define a recovery method using generalized
convolution according to (4.22):

m̂(y(·))(·) = (Ψsj ∗ ysj)γ(·) + (Φsj+1 ∗ ysj+1)γ(·).
Then

Fγm̂(y(k)(·))(ξ) = FγΨsj(ξ)Fγy
(k)
sj (ξ) + FγΦsj+1(ξ)Fγy

(k)
sj+1

(ξ) = e−|ξ|2τFγ ũ0(·, y(k)(·))(ξ). (4.30)

Therefore,

m̂(y(k)(·))(·) = Pτ ũ0(·, y(k)(·))(·). (4.31)

If τ = tsj , including the case τ = ts� , then

Fγm̂(y(k)(·))(ξ) = Fγy
(k)
sj (ξ) = e−|ξ|2τFγ ũ0(·, y(k)(·))(ξ) = Fγ(Pτ ũ0(·, y(k)(·)))(ξ),

and (4.31) holds as well.
Let functions ũ0(·) ∈ Lγ

2(R
N
+ ), y(·) = (y1(·), . . . , yp(·)) ∈ (Lγ

2(R
N
+ ))p satisfy inequalities

‖Ptsj
ũ0(·)− ysj(·)‖Lγ

2 (R
N
+ ) ≤ εj , j = 1, . . . , p.
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Then for all k ∈ N

‖Pτ ũ0(·)− m̂ (y(·))(·)‖Lγ
2 (R

N
+ )

≤ ‖Pτ ũ0(·)− m̂ (y(k)(·))(·)‖Lγ
2 (R

N
+ ) + ‖m̂ (y(k)(·))(·) − m̂ (y(·))(·)‖Lγ

2 (R
N
+ )

≤ ‖Pτ ũ0(·)− Pτ ũ0(·, y(k)(·))‖Lγ
2 (R

N
+ ) + ‖m̂ (y(k)(·))(·) − m̂ (y(·))(·)‖Lγ

2 (R
N
+ )

≤ a(k)e−θ(τ) + ‖m̂ (y(k)(·)− y(·))(·)‖Lγ
2 (R

N
+ ).

Passing in this inequality to the limit as k → ∞, we get

‖Pτ ũ0(·)− m̂ (y(·))(·)‖Lγ
2 (R

N
+ ) ≤ e−θ(τ).

In this inequality we pass to the supremum over all ũ0(·) ∈ Lγ
2(R

N
+ ) and y(·) = (y1(·), . . . , yp(·)) ∈

(Lγ
2(R

N
+ ))p such that ‖Ptsj

ũ0(·) − ysj(·)‖Lγ
2 (R

N
+ ) ≤ εj , j = 1, . . . , p. Then we get e(τ, ε, m̂) ≤ e−θ(τ).

Taking into account the lower estimate proved earlier, we get

e−θ(τ) ≤ E(τ, ε) ≤ e(τ, ε, m̂) ≤ e−θ(τ),

whence it follows that E(τ, ε) = e−θ(τ) and m̂ is the optimal method.

Let τ > ts�. Then λ̂s� = 1, the remaining Lagrange multipliers are equal to zero. Problem (4.12)
then takes the form

‖Pts� ũ0(·) − ys�(·)‖2Lγ
2 (R

N
+ )

=⇒ min .

Let functions Fγyj, j = 1, . . . , p, have compact support for a given set y(·) = (y1(·), . . . , yp(·)) ∈
(Lγ

2(R
N
+ ))p. Then a solution ũ0(·) = ũ0(·, y(·)) to this problem exists, and Fγ ũ0(ξ) = e|ξ|

2ts�Fγys� .
Inequality (4.29) in this case is proved as before. Now we define the method m̂ by the equality

m̂(y(·))(·) = Pτ−ts� . (4.32)

Then

Fγm̂(y(k)(·))(ξ) = e−|ξ|2(τ−ts� )Fγys�(ξ) = e−|ξ|2τFγ û0(·, y(k)(·)).
It means that

m̂(y(k)(·))(·) = Pτ û0(·, y(k)(·)).
Further reasoning is similar to the reasoning in the previous case.

5. Conclusion

In this paper, we transferred the results of [13] onto the case of a singular heat equation using
the methods developed in [1, 13–15, 23]. In [1, 14], the method for establishing a lower estimate of
the optimal recovery error was modified. It is reasonable to believe that this method can also be
transferred to the considered case of a singular heat equation.
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