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Abstract: Ti(50-x)Zr38NbxTa8Sn4 high-entropy alloys with x = 0, 10, and 20 at.% were produced
by vacuum arc melting in a high-purity argon atmosphere. The initial microstructures consisted of
equiaxial bcc grains with sizes of 115 ± 30 µm, 250 ± 60 µm, and 280 ± 70 µm for the Ti30Nb20,
Ti40Nb10, and Ti50Nb0 alloys, respectively. The Ti30Nb20 and Ti40Nb10 alloys showed untypical
mechanical behavior with a short strain-hardening stage followed by a gradual decrease in flow
stress after reaching the yield point. Although these two alloys had some inclination toward macro-
scopic strain localization, their tensile elongation was similar to that obtained in the Ti50Nb0 alloy,
which had a more extended stage of uniform deformation. The differences were associated with
distinct microstructures observed after deformation to fracture. The formation of dislocation bands
and the activation of cross-slip at the microscale, as well as the appearance of kink bands at the
mesoscale, can result in plastic instability. In contrast, a lamellar-like microstructure with parallel
dislocation bands, such as the one observed in the Ti50Nb0 alloy, can ensure a more stable mechanical
behavior. The developed alloys (Ti30Nb20 and Ti40Nb10) have properties that make them highly
attractive for biomedical application due to a combination of very high yield strengths (1090 and
930 MPa, respectively), low Young’s moduli (~78 and ~69 GPa, respectively), reasonable ductility,
and excellent biocompatibility.

Keywords: high-entropy alloys; microstructure; EBSD analysis; mechanical properties; biomedi-
cal application

1. Introduction

Materials used for the production of biomedical implants replacing bone tissue should
possess a number of mechanical and functional properties, including low elastic modu-
lus to prevent bone resorption due to the stress shielding effect [1], high yield strength,
high fatigue strength, and good ductility that would allow them to withstand the loads of
physical activity. Biomedical materials should also meet the obvious strict requirements
for biocompatibility, have high wear resistance (and a low coefficient of friction in some
cases), and be corrosion-resistant in contact with tissue or body fluids [2,3]. The Ti6Al4V
alloy is one of the most commonly used metallic materials in biomedicine [4]. However, the
presence of some cytotoxic elements (Al and V) requires the modification of its chemical
composition by using elements that are harmless for the human body. One of the promising
solutions is related to the development of new biomedical high-entropy alloys (HEAs)
comprising biocompatible elements (Ti, Nb, Zr, Sn, etc.). HEAs are usually defined as
multicomponent alloys consisting of several (usually, at least five) basic elements, taken in
approximately equal proportions (5–35 at.%) [5]. This approach can result in the production
of new compositions with significantly improved mechanical and tribological properties,
while maintaining excellent biocompatibility [6]. Although the application of HEAs in
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biomedicine is very promising [7–11], the complex mechanical and functional properties
(high strength and ductility, low modulus of elasticity, good corrosion and wear resistance)
of these alloys should be carefully examined on a case-by-case basis. Therefore, a com-
prehensive, systematic analysis of the structure–properties relationships of these alloys
is needed.

It should be noted that the development of new HEAs with a high percentage of Ti has
intensified in recent times. In [12], a new TiZrHfNbTa alloy comprising only non-toxic and
hypoallergenic elements was studied by Yuan et al. This HEA showed a good combination
of low elastic modulus (57 GPa, nearly half of that of traditional biomedical titanium alloys
such as Ti6Al4V), advanced mechanical properties, biocompatibility, and low magnetic
susceptibility. Gurel et al. [13] studied the compositions of TiTaHfNb, TiTaHfNbZr, and
TiTaHfMoZr. All three bcc alloys also exhibited lower Young’s modulus in comparison with
conventional biomedical materials that can be used for the production of implants. The high-
entropy TiTaHfNb alloy had the highest energy-absorbing capacity and the highest ductility
of the three systems. The non-equiatomic HEAs of the Ti-Ta-Hf-Nb-Zr system were also
studied by Yang et al. [14]. For example, Ti1.5Ta0.5Hf0.5Nb0.5Zr showed extremely high
pitting corrosion resistance. The elastic modulus and hardness of Ti1.5Ta0.5Hf0.5Nb0.5Zr
were 98.57 GPa and 3.02 GPa, respectively. The wear resistance was found to be better than
that of 316 L, CoCrMo, and Ti6Al4V. With excellent wear resistance, similar wettability,
lower Young’s modulus, and significantly better corrosion resistance, the configuration of
this high-entropy alloy system (Ti1.5Ta0.5Hf0.5Nb0.5Zr) has shown promising potential in
the biomedical field, warranting further study of the biocompatibility and cytotoxicity of
this composition.

Given the incredibly vast compositional space of HEAs, it is necessary to select appro-
priate alloying elements in order to exploit the required properties with regard to designing
new alloys. In this study, three new HEAs with high contents of titanium and zirconium and
chemical compositions Ti30Zr38Nb20Ta8Sn4, Ti40Zr38Nb10Ta8Sn4, and Ti50Zr38Ta8Sn4
were introduced. Their structure and properties were examined with particular attention
to the effect of chemical composition on mechanical behavior. The addition of Nb and/or
Ta resulted in the formation of a bcc phase with lower Young’s modulus in comparison
with the hcp phase (intrinsic for Ti alloys with a low percentage of β-stabilizing elements).
Sn (as well as Zr) is often used in titanium alloys to improve strength without noticeable
changes in ductility.

2. Materials and Methods

Laboratory-size specimens (~60 g) of the Ti30Zr38Nb20Ta8Sn4, Ti40Zr38Nb10Ta8Sn4,
and Ti50Zr38Ta8Sn4 alloys (hereafter designated as Ti30Nb20, Ti40Nb10, and Ti50Nb0,
respectively) were produced by vacuum arc melting using Ti, Zr, Nb, Ta, and Sn granules
(≥99.9 wt.% purity in each case) in a high-purity argon atmosphere. Before the melting
procedure, the chamber was degassed and flushed with argon 3 times; the last vacuuming
reached 10−5–10−6 millibars. The microstructure of the obtained alloys was analyzed using
scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) analysis.
Specimens for EBSD observations were prepared through careful mechanical polishing.
EBSD was conducted with a FEI Quanta 600 FEG (Thermo Fisher Scientific, Hillsboro,
OR, USA) field-emission-gun scanning electron microscope (FEG-SEM) operated at an
accelerating voltage of 20 kV and equipped with a TSL OIM™ system (EDAX, Pleasanton,
CA, USA). The maps were obtained using a scan step size of 0.05 µm. The size of each
scanned region was 1 × 1 mm2. The grain size was estimated using at least 3 images
covering ~150 grains. Kernel average misorientation (KAM) maps were used for a more
comprehensive analysis of the microstructures. KAM is the average misorientation angle
of a given pixel in an EBSD map with respect to its neighbors. Therefore, it shows the local
orientation spread and can be used as a measure of excess dislocation density of the same
sign and local lattice distortion/curvature.
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Tensile tests were conducted using an Instron 5882 machine (Instron, Canton, USA)
at room temperature with an initial strain rate of 10−3 s−1. Dog-bone-shaped tensile
specimens with a gauge of 6 × 3 × 1.5 mm3 were used. The digital image correlation (DIC)
technique was employed to visualize the distribution of local strains produced during the
tensile tests. The in-plane Lagrangian strains were measured using a commercial Vic-3DTM

system (Correlated Solutions, Inc., Irmo, SC, USA). The resonance frequency damping
analysis (RFDA) method [15] using the IMCE measuring system (IMCE NV, Genk, Belgium)
was applied for Young’s modulus determination. The size of the measured samples was
55 × 12 × 5 mm3. Microhardness was measured using an automated Vickers hardness
testing machine (Instron, Norwood, MA, USA) with a 300 g load for 50 s.

A direct-contact cytotoxicity assay of the composites was carried out in vitro using rat
mesenchymal stem cells (MSCs). A photometry technique using a microplate photometer
Multiskan FC and an MTT reagent (cat. M5655, Sigma-Aldrich, St. Louis, MO, USA) [16]
was utilized. MSCs with metal samples were cultivated in a CO2 incubator (95% humidity,
37 ◦C temperature, 5% CO2) for 72 hours in a nutrient medium (DMEM/F12) (cat. 11320033
Thermo Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (Cytiva,
HyClone, USA) and antibiotics. A polystyrene surface without a composite disc was used
as a control sample. Cell viability was calculated using the formula Cell viability (%)
= (A) test/(A) control × 100, where (A) test is the absorption of the test sample, and (A)
control is the control sample absorption. The obtained results were statistically processed
using the Wilcoxon T-test on the Statistica 6.0 software (StatSoft, Krakow, Poland). A
qualitative assessment of cytotoxicity was performed microscopically using an inverted
optical microscope Eclipse Ti-S (Nikon, Tokyo, Japan) equipped with a digital camera.

3. Results and Discussion
3.1. Initial Microstructure

In the initial conditions, the microstructure of all three alloys consisted of bcc equiaxed
grains (Figure 1). According to the EBSD analysis, an increase in the Ti/Nb ratio resulted
in grain coarsening. The grain sizes were estimated to be 115 ± 30 µm, 250 ± 60 µm, and
280 ± 70 µm for the Ti30Nb20, Ti40Nb10, and Ti50Nb0 alloys, respectively. One of the most
plausible explanations can be related to a decrease in the diffusion rate and an increase
in the percentage of more refractory Nb. Similar effects of Nb on grain size have been
previously reported in [17].
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Figure 1. IPF maps of the initial microstructure of Ti30Nb20 (a), Ti40Nb10 (b), and Ti50Nb0 (c) alloys.

3.2. Mechanical Properties

Engineering stress-strain tensile curves of the alloys obtained at room temperature
are shown in Figure 2a; the data on the mechanical properties are collected in Table 1.
The Ti30Nb20 and Ti40Nb10 alloys demonstrated much higher (>900 MPa) values of yield
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strength compared to their Ti50Nb0 counterpart (Figure 2a, Table 1). However, unlike
the Ti50Nb0 alloy, which had typical post-yielding behavior with relatively large (~15%)
uniform elongation, the Ti30Nb20 and Ti40Nb10 alloys, after reaching the yield point,
showed a short strain-hardening stage followed by a gradual decrease in flow stress.
Nevertheless, the Ti30Nb20 and Ti40Nb10 alloys also achieved high total elongations
(δ > 20%). The analysis of the strain-hardening rate curves revealed that the Ti50Nb0
alloy had a “normal” decay of dσ/dε with strain (Figure 2b). However, the Ti30Nb20
and Ti40Nb10 alloys showed “dropped-then-recovered” dσ/dε curves (the curve of the
Ti30Nb20 alloy was slightly shifted to a greater strain compared to that of its Ti40Nb10 coun-
terpart), which could be attributed to the dynamic Hall–Petch effect (see Section 4) [18,19].
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with a nominal strain rate of 10−3 s−1 (a) and corresponding strain-hardening rate behavior as a
function of true strain (b).

Table 1. Mechanical properties and density of all the program alloys.

Alloy Young’s
Modulus, GPa

Yield Strength,
MPa δ,% Microhardness,

HV
Density,

g/cm3

Ti30Nb20 77.7 ± 0.1 1090 ± 50 24 ± 2 321 ± 5 7.24 ± 0.04

Ti40Nb10 68.8 ± 0.1 930 ± 45 29 ± 3 280 ± 6 6.26 ± 0.04

Ti50Nb0 57.5 ± 0.1 690 ± 40 25 ± 2 244 ± 5 5.99 ± 0.04

The DIC analysis (Figure 3) showed somewhat different strain localizations in the alloy
specimens during tension. The Ti30Nb20 and Ti40Nb10 alloys showed a less homogeneous
strain distribution compared to the Ti50Nb0 alloy starting from the early stage of deforma-
tion (H5%) (Figure 3a–c). Localization became more obvious at the strain corresponding
to the end of the uniform deformation (H15%) stage in the Ti50Nb0 alloy (Figure 3d–f),
and this difference between the three alloys remained until the fracture of the specimens
(Figure 3g–i).
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alloys showing the strain distribution along the gauge.

The microhardness of the alloys corresponded to the yield strength. The strongest
alloy, Ti30Nb20, showed the highest value with 321HV, while Ti50Nb0, with the lowest
yield strength, showed a value of hardness of 244 HV (Table 1). Young’s modulus values
were also related to strength: E = 77.7 GPa was found for the Ti30Nb20 alloy, while Ti50Nb0
showed a Young’s modulus of 57.5 GPa (Table 1). The Young’s modulus values obtained
for all three alloys are comparable to those of human bone and, therefore, can be considered
suitable for biomedical application [20].

3.3. Deformed Microstructure

In order to gain insights into the microstructure evolution during tensile deformation,
we performed an EBSD analysis on the fractured specimens near the fracture surfaces
(Figure 4). The deformation of the Ti30Nb10 alloy (Figure 4a) did not result in pronounced
changes to the microstructure; the variation in misorientation within grains was relatively
low. However, black dots (with CI < 0.1) near grain boundaries suggested high residual
stresses, due to which a reliable determination was not possible. Additionally, kink bands
(KBs) (usually lens-shaped) were observed in the microstructure. The thickness of the kinks
varied from ~15 to ~30 µm. The misorientation angle of the KB boundaries was close to
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40–50◦. The kernel average misorientation maps (KAM) showed notable strain localization
along the boundaries of grains and, particularly, of KBs, while the grain interiors remained
lowly deformed (Figure 4b).
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A similar microstructure with numerous KBs was observed in specimens of the
Ti40Nb10 alloy after fracture (Figure 4c). However, an increase in the Ti/Nb ratio re-



Metals 2023, 13, 353 7 of 13

sulted in the formation of a lamellar-like substructure in some grains. The KAM map also
confirmed a more uniform deformation in the Ti40Nb10 alloy (compared to that of its
Ti30Nb10 counterpart), which suggested an increase in dislocation density within grains,
although some grains were still not involved in plastic deformation (Figure 4d).

The complete substitution of Nb with Ti in the Ti50Nb0 alloy changed the character
of the microstructure’s response to plastic strain noticeably. Unlike the Ti30Nb20 and
Ti40Nb10 alloys, deformation of the Ti50Nb0 alloy resulted in the formation of a well-
developed lamellar substructure (Figure 4e). The thickness of the lamellae was 1–5 µm.
The misorientation across the lamellae was almost constant, suggesting dislocation activity
rather than twinning. KBs were rarely observed in the microstructure of Ti50Nb0 after
deformation. The KAM map also indicated a relatively uniform distribution of dislocations
in the microstructure (Figure 4e).

An additional TEM analysis confirmed a single-phase bcc structure in all three alloys
(inserts in Figure 5a–c) and revealed some differences in the character of dislocation slip
among the alloys. In the Ti50Nb0 alloy, dislocations tended to localize in parallel dislocation
bands (DBs, Figure 5c) forming the lamellar-like microstructure observed in the EBSD maps
(Figure 4e). Meanwhile, in the Ti30Nb20 and Ti40Nb10 alloys, DBs were found to be
mutually intersected due to the development of cross-slip (Figure 5a,b). Between parallel
or intersected DBs, the dislocation density was found to be noticeably reduced.
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3.4. Cytotoxicity

The viability of mesenchymal stem cells (MSCs) during cultivation with the alloy
samples was quantified as follows: 78.30%, 83.49%, and 99.53% for the Ti30Nb20, Ti40Nb10,
and Ti50Nb0 alloys, respectively. These results were in agreement with the quantitative
assessment of cytotoxicity (Figure 6). In the control group (Figure 6a), MSCs showed
a typical morphology and were represented by spindle-shaped fibroblast-like cells that
densely covered the bottom surface of a 96-well culture plate. For the Ti30Nb20 alloy, the
MSC layer was not uniform and somewhat sparse, and it was in weak contact with the
sample and apoptotic cells (Figure 6b). In contrast, the Ti40Nb10 and Ti50Nb0 alloys did
not cause noticeable changes in the morphology of the MSCs in comparison to the control
group, i.e., the cells formed a dense layer even when in contact with the alloy samples
(Figure 6c,d).
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4. Discussion

The obtained results suggest significant differences in the properties and mechanical
behavior of the Ti(50-x)Zr38NbxTa8Sn4 alloys depending on the content of Ti and Nb.
The most apparent change is related to the decrease in strength and Young’s modulus
as the Ti content increases (Table 1). The mechanical properties of HEAs are known to
be dependent on the choice and concentration of the constitutive elements (the so-called
“cocktail effect” [21], which can be noteworthy). For instance, the present study revealed a
linear relationship between the Nb content and Young’s modulus in the program alloys
(Figure 7). The vast knowledge obtained from bcc Ti alloys suggests that Nb doping
generally decreases the modulus of the materials [22–25], yet this effect strongly depends
on the Nb concentration. However, at a certain concentration range, the opposite trend
(i.e., an increase in the moduli) can be observed [26]. The same trend seems to hold true for
the program alloys.
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In terms of strength, Nb atoms can generate lattice elastic strains due to differences in
atomic size and modulus compared to the atoms of the other constitutive elements. The
resulting increase in strength (i.e., solid solution strengthening), in this case, is expected to
be proportional to C1/2

Nb according to the classic Fleisher approach [27]. The comparison
between experimental yield strength values and C1/2

Nb (Figure 7) suggests that solid
solution strengthening is the main responsible for strength variations in the program
alloys. Other sources, such as grain boundary strengthening [28,29], are likely to have a
minor effect.

Another interesting aspect found in this study is the difference in mechanical behavior
of the studied alloys after yielding. The Ti30Nb20 and Ti40Nb10 alloys showed a gradual
decrease in flow stress in the post-yielding region, which was due to strain localization
without early necking (Figure 3). In contrast, the Ti50Nb0 alloy demonstrated more uniform
deformation after the yield point, as reported previously for a number of alloys [30–33]. The
tendency toward apparent premature strain localization can be attributed to a non-uniform
spatial distribution of dislocations in the microstructure. For example, the Al-induced B2
ordering of a NbTiZr HEA resulted in the localization of plastic deformation in multiple
DBs [34]. Instead of deteriorating the mechanical properties, this localization increased the
ductility of Al-containing alloys compared to the Al-free NbTiZr HEA, in which dislocation
distribution was uniform.

In the Ti30Nb20 and Ti40Nb10 alloys, the formation of DBs and the activation of cross-
slip were also observed (Figure 5a,b). In addition to microscopic localization, noticeable
heterogeneity in strain distribution at the mesoscale (Figure 4b,d) resulted in macroscopic
plastic flow instability (Figure 3). Moreover, the formation of KBs (Figure 4), which caused
geometric softening due to stress relaxation and crystal reorientation [35], seemed to
be another factor contributing to a reduction in flow stress. The KAM maps showed a
considerable increase in dislocation density around KBs, indicating the KB boundaries
could contribute to strengthening, as seen in the upturn trend in the dσ/dε curves of the
Ti30Nb20 and Ti40Nb10 alloys (the so-called dynamic Hall–Petch effect) (Figures 2b and 4).
In contrast, the lamellar-like KB-free microstructure with parallel DBs (without visible
cross-slipping; Figure 5c) prevented early macroscopic localization in the Ti50Nb0 alloy,
resulting in relatively larger uniform elongation (Figures 2a and 3).

The observed difference can probably be attributed to the stability of the bcc phase
in these alloys. In Ti alloys, the stability of the bcc phase is typically evaluated using
the molybdenum equivalent, in which the contribution of all bcc-stabilizing elements is
calculated using the equation [36] Moeq. = 1.0 Mo + 0.67 V + 0.44 W + 0.28 Nb + 0.22 Ta
+ 2.9 Fe + 1.6 Cr − 1.0 Al. In our case, the program alloys have Moeq. = 7.36, 4.56, and
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1.76 for Ti30Nb20, Ti40Nb10, and Ti50Nb0, respectively. This approach, without a doubt,
cannot be used for HEAs with a high content of Ti, since, according to the accepted
classification, a Moeq. < 3 is typical for near α alloys with an hcp lattice, while Ti50Nb0 has
the bcc structure.

Another approach for predicting the main deformation mechanism in Ti alloys was
proposed by Morinaga and co-authors [37]. In this approach, the bond order Bo and the
metal d-orbital energy level Md were used to predict the β-phase stability in titanium alloys.
Later, the Bo–Md map was used to tailor the chemical composition of Ti-rich HEAs [38].
Although some Ti-rich HEAs can indeed be clustered as per their main deformation
mechanism (Figure 8), the Ms = RT is barely a straight line as it was initially proposed
by Lilensten and co-authors [37]. Indeed, the results obtained in the present work show
that the program alloys are located above (Ti30Nb20), on (Ti40Nb10), and below (Ti50Nb0)
the Ms = RT line, but none of them exhibits TRIP/TWIP effects, and the two upper alloys
(Ti30Nb20 and Ti40Nb10) have similar behavior, which differs considerably from that of the
Ti50Nb0 alloy. Furthermore, another well-known HfNbTaTiZr HEA with a microstructure
evolution essentially similar to that of Ti30Nb20 and Ti40Nb10 is located well above the
proposed Ms = RT line (Figure 8).
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However, it should be noted that the developed alloys (Ti30Nb20 and Ti40Nb10)
have properties that make them highly attractive for biomedical application, owing to a
combination of very high yield strengths (1090 and 930 MPa, respectively), low Young’s
moduli (~78 and ~69, respectively), and reasonable ductility. The results of the cytotoxicity
assay also show that the Ti40Nb10 alloy has a somewhat low cytotoxic effect, while Ti50Nb0
can be considered an absolutely biocompatible alloy. However, the Ti30Nb20 alloy has
a more pronounced cytotoxic effect (without causing total cell death) that inhibits the
proliferation processes and triggers MSC apoptosis.
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5. Conclusions

In this study, the structure and mechanical behavior of Ti(50-x)Zr38NbxTa8Sn4 high-
entropy alloys with x = 0, 10, and 20 at.% were investigated. The following conclusions
were drawn:

The initial microstructure of all the alloys consisted of bcc equiaxed grains. An increase
in the Ti/Nb ratio resulted in grain coarsening, from 115 ± 30 µm in the Ti30Nb20 alloy to
250 ± 60 µm and 280 ± 70 µm in the Ti40Nb10 and Ti50Nb0 alloys, respectively.

The Ti30Nb20 and Ti40Nb10 alloys showed significantly higher (>900 MPa) values of
yield strength compared to the Ti50Nb0 alloy (<700 MPa). The ductility of all three alloys
was similar (δ = 24–29%). However, the Ti30Nb20 and Ti40Nb10 alloys showed a short
strain-hardening stage followed by a gradual decrease in flow stress after reaching the
yield point. Furthermore, these alloys showed “dropped-then-recovered” strain-hardening
rate curves, in contrast to the Ti50Nb0 alloy.

In the Ti30Nb20 and Ti40Nb10 alloys, the formation of dislocation bands and the
activation of cross-slip at the microscale, as well as the development of kink bands at the
mesoscale, could result in some plastic instability. In contrast, the lamellar-like microstruc-
ture with parallel dislocation bands observed in the Ti50Nb0 alloy was associated with a
more stable mechanical behavior.

The Ti30Nb20 and Ti40Nb10 alloys developed have properties that make them highly
attractive for biomedical application: high yield strengths (1090 and 930 MPa, respec-
tively), low Young’s moduli (~78 and ~69 GPa, respectively), reasonable ductility, and
excellent biocompatibility.
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